
CS 579: Computational Complexity Fall 2025

Lecture 02 - August 28

Prof. Fernando Granha Jeronimo Super Scribes: William Gay & Sasha Levinshteyn

1 Space Bounded Computation

1.1 The Basic Complexity Classes

See the previous lecture notes for the definitions of some of the basic complexity classes.

1.2 Savitch’s Theorem

Last lecture, we defined DSPACE(s(n)) and NSPACE(g(n)). A critical question is the rela-
tionship between deterministic space and nondeterministic space. Does nondeterminism grant any
power in terms of space complexity?

Theorem 1 (Savitch’s Theorem). We find that

NSPACE(g(n)) ⊆ DSPACE(g(n)2),

meaning that nondeterminism gives at most a quadratic improvement.

Definition 2. In order to show this theorem, we want to think about Turing machines. A snapshot
of a Turing machine is called a configuration. We can capture all configurations and how the TM
can move from one to another in a configuration graph. Note that this configuration graph can
have at most 2O(s(n)) vertices, where s(n) is the space usage of the TM. The configuration graph
ends up being strongly explicit, meaning that it is easy to describe/enumerate the edges.

Definition 3 (STCONN). STCONN is the problem of determining whether there is a path between
two vertices s and t in a directed graph.

Algorithm. Given a graph G = (V,E) and two vertices s and t, we ask the following question as
a subproblem: is there a path between s and t of length at most k? Let P (s, t,m) be true if and
only if there is a path from s to t with length at most 2m. We have the following recurrence:

P (s, t,m) =
∨
z∈V

[P (s, z,m− 1) ∧ P (z, t,m− 1)] .

This comes from splitting the path in two. This recurrence has O(log|V |) levels of recursion. Each
level requires O(log|V |) bits of storage for the relevant variables. As such, the resulting algorithm
for STCONN takes O((log|V |)2) space.

Proof. Consider the configuration graph of our nondeterministic TM N with a space bound of g(n).
We let s be the starting configuration and t be a vertex connected to all the accepting configurations.
Then, STCONN accepts if and only if the configuration graph of N has an accepting path.

Since the number of configurations is 2O(g(n)), STCONN will run on the configuration graph in
O(g(n)2) space. We can then construct a deterministic TM M that checks the configuration graph
and solves the same problem as N with O(g(n)2) space.

1

2 Analysis of Boolean Functions

Boolean functions are fundamental objects in theoretical computer science. They are the func-
tions that can be computed by Boolean circuits, decision trees, and related computational models.
Formally, an n-ary Boolean function is a map

f : {−1, 1}n → {−1, 1}.

Throughout, we use the domain {−1, 1}n instead of {0, 1}n, as this choice simplifies the algebraic
and analytic treatment. There is a natural identification between {0, 1} and {−1, 1}. Concretely,
the map x 7→ (−1)x is the unique non-trivial character of the group Z/2Z. This viewpoint connects
Boolean functions with harmonic analysis on the group (Z/2Z)n.

2.1 The Function Space and Fourier Spectrum

We may also regard the elements of {−1, 1} as real numbers. Thus we can treat Boolean functions
as real-valued functions:

f : {−1, 1}n → R.

This allows us to employ the tools of linear algebra, by viewing Boolean functions as elements of
the real vector space R{0,1}n . A natural basis for this space is given by the characters of (Z/2Z)n.
For each subset S ⊆ [n] := {1, 2, . . . , n}, define the character

χS(x) :=
∏
i∈S

xi, x ∈ {−1, 1}n.

For example:
χ∅(x) = 1, χ{i}(x) = xi, χ{i,j}(x) = xixj , etc.

Since the characters {χS : S ⊆ [n]} form a basis, every Boolean function f admits a unique
expansion:

f(x) =
∑
S⊆[n]

f̂(S)χS(x),

where the coefficients f̂(S) ∈ R are called the Fourier coefficients of f .

Example (XOR on 2 bits). Define f(x1, x2) = x1x2. This is already a character: f = χ{1,2}.

Hence its Fourier expansion has a single coefficient f̂({1, 2}) = 1.

Example (AND on 2 bits). In our convention (−1 = TRUE, +1 = FALSE),

AND(x1, x2) = max{x1, x2}.

Its Fourier expansion is
AND(x1, x2) =

1
2 + 1

2x1 +
1
2x2 −

1
2x1x2.

Example (OR on 2 bits). Similarly,

OR(x1, x2) = min{x1, x2}.

Its expansion is
OR(x1, x2) = −1

2 + 1
2x1 +

1
2x2 +

1
2x1x2.

2

2.2 Inner Products and Expectations

We define the expectation inner product between two functions f, g : {−1, 1}n → R by

⟨f, g⟩ := E
x∼{−1,1}n

[f(x)g(x)] =
1

2n

∑
x∈{−1,1}n

f(x)g(x).

Theorem 4 (Orthogonality of Characters). For subsets S, T ⊆ [n], we have

⟨χS , χT ⟩ =

{
1 S = T,

0 S ̸= T.

Proof. If S = T , then χS(x)χT (x) = 1 for all x, so the average is 1. If S ̸= T , then there exists
an index i in the symmetric difference S△T . For half of the inputs x, we have xi = 1, and for the
other half xi = −1. Thus E[χS(x)χT (x)] = 0.

By orthogonality, we obtain
f̂(S) = ⟨f, χS⟩ = E[f(x)χS(x)].

Theorem 5 (Average Value). The coefficient f̂(∅) equals the average value of f :

f̂(∅) = E[f(x)].

Proof. By definition,
f̂(∅) = ⟨f, χ∅⟩ = E[f(x) · 1] = E[f(x)].

Theorem 6 (Inner Product Formula). For all f, g : {−1, 1}n → R,

⟨f, g⟩ =
∑
S⊆[n]

f̂(S)ĝ(S).

Proof. Expanding both f and g,

⟨f, g⟩ =
〈∑

S

f̂(S)χS ,
∑
T

ĝ(T)χT

〉
.

By bilinearity and orthogonality,

⟨f, g⟩ =
∑
S,T

f̂(S)ĝ(T)⟨χS , χT ⟩ =
∑
S

f̂(S)ĝ(S).

Corollary 7 (Parseval’s Identity). For all f : {−1, 1}n → R,

E[f(x)2] =
∑
S⊆[n]

f̂(S)2.

Proof. We compute

E[f(x)2] = ⟨f, f⟩ =
∑
S

f̂(S)2

3

Theorem 8 (Variance). For all f : {−1, 1}n → R,

Var[f(x)] =
∑

∅̸=S⊆[n]

f̂(S)2

Proof. We compute

Var[f(x)] = E[f(x)2]−E[f(x)]2 =

 ∑
S⊆[n]

f̂(S)2

− f̂(∅)2 =
∑

∅̸=S⊆[n]

f̂(S)2.

2.3 The Boolean Hypercube and Hadamard Matrices

Another important structure related to the domain {−1, 1}n is the Boolean hypercube. This is the
graph on the vertex set {−1, 1}n such that x, y ∈ {−1, 1}n have an edge between them if their
Hamming distance ∆(x, y) is exactly 1. The Hamming distance is defined by

∆(x, y) := | {i ∈ [n] : xi ̸= yi} |.

The Hadamard matrix is the change-of-basis matrix from the standard basis (delta functions on
{−1, 1}n) to the Fourier basis (characters).

Example (4× 4 Hadamard matrix). The 4× 4 Hadamard matrix is given by

H4 =
1

4


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 .

It is easy to verify, for example, that δ(1,−1) =
1
4(χ∅ + χ{1} − χ{2} − χ{1,2}).

4

