CS 579: Computational Complexity Fall 2025

Lecture 03 - September 02

Prof. Fernando Granha Jeronimo Super Scribes: Andrei Staicu € Pranav Rajpal

1 Previous Lecture
When we discussed space-bounded computation through the problem of STCoONN with G = (V, E)
a directed graph, it captures non-deterministic computation. We saw Savitch’s theorem:

Theorem 1.1 (Savitch’s Theorem).

NSPACE(f(n)) € SPACE((f(n))?)

We can also study undirected connectivity, i.e., USTCONN, which captures reversible computation,
and it is a complete problem for SL (symmetric log-space).

We then did Boolean Fourier Analysis, the analysis of functions f : {0,1}"™ — R. Depending
on the setting it is useful to view the domain as Z% or Fy.

The characters of Z3 are as follows: VS C [n], xs : {0,1}" = R by xs(z) = [[;cq(—1)"".
These functions form an orthonormal basis with inner product:

(£.9) = Eacqony o) f@)] = 57 3 9(@)f(2) 1)

TELY

~

We can write f(z) = ZSCM f(S)xs(x), and for any f : Z5 — R we can compute Fourier coeffi-
cients as follows: B

f(8) = Eu[f(x)xs(x)] (2)

1.1 Representation Theory Aside

A representation of a group G on a complex-vector space V is a homomorphism py : G — GL(V),
if V is k-dimensional, then GL(V) is the set of invertible k x k matrices with entries in C.

A sub-representation of a representation V is a subspace W C V invariant under G, py (¢9)(W) C W
for all g € G. A representation is irreducible if it has no non-trivial sub-representations.

A map ¢ : V — W (a matrix) is G-linear if for all g,h € G, ¢ - pyv(9) = pw(g) - ¢. Note
that everything in the previous expression is a matrix, so this is saying something analogous to:
matrices commute. If ¢ is G-linear, then ker ¢ and Im ¢ are both subrepresentations of V and W
respectively.

Schur’ Lemma says the following: if V, W are irreducible representations and ¢ : V. — W is
G-linear either ¢ = AI for some A € C or ¢ = 0.

Proof. For any ¢ : V. — W that is G-linear, ker ¢ is a sub-representation so must be zero. Since
C is algebraically closed, ¢ has an eigenvalue so ¢ — AI has a kernel, which also must be zero.
Therefore ¢ = AI. O

In any finite abelian group G, (in particular Z7), all irreducible representations are 1-dimensional,
and thus all isomorphic to C. Since py : G — C* is a group homomorphism:

pv(g) - pv(h) = pv(gh) = pv(hg) = pv(h) - pv(g) (3)

Each py(g) € C\ {0} is G-linear, we have py(g) = Ag,v.

The character of the irreducible representation (py, V'), recall py : G — GL(V), is the function
xv:G—=Cbygm— Agv.

Notice also xv (g-h) = Agn,v = Ag,v - An,v, since all elements of Z% “square” to 1, then A,y = *1
for all g € Z% and all irreducible representations V' have real eigenvalues.

The following facts were hinted at in class:

e If G is an abelian group, the characters of G™ are x(g1,-..,9n) = [xv;(g:) where V; is any
irreducible representation of G.

e In an abelian group, the number of irreducible representations is precisely the size of the
group |G]|.

e In an abelian group, characters of irreducible representations form an orthonormal basis over
the vector space of all functions f : G — C, with respect to the inner product:

1 _
(@.8) = i > alg) - Blg) (4)

geG

In Z%, the characters are explicitly xs(x) = [[;,cg(—1)"* for € Z3, this statement follows from
the first fact, and that the only representations of Zy are py (1) =1 or py (1) = —1.

Check out Representation Theory by Fulton and Harris [4], Chapters 1 and 2 for the proofs of the
above statements, however these are way beyond the scope of this class.

2 Coding Theory

Coding theory deals with the following problem: we want to start with a message x, |z| = k,
encode into ¢, |¢| = n, where if ¢ is a corrupted message, x can be recovered. We want to do the
procedure while: handling errors, recovering information about x, and minimizing the overhead
introduced.

Definition 2.1. A code C of block length n over an alphabet X2 is C C ™. FElements c € C are
codewords.

Definition 2.2. The Hamming distance between x,y € X" is the number of places x and y
disagree:

n
Az, y) = Z Loy (5)
i=1
The relative Hamming distance is §(z,y) := ~A(z,y) and the minimum distance of a code
C C X" ismingo Ale,).
Codes with larger minimum distance can correct more errors.
Definition 2.3. The message length of a code C over an alphabet 3 is defined to be
k = logs |C] (6)
or equivalently, the message length k is the number of symbols from X needed to represent any
arbitrary message.

Definition 2.4. The rate of a code C is the ratio of its message length to its block length, i.e.,
k/n. Informally, this represents how much longer a message becomes when encoded using a specific
code, so a larger rate means less overhead s introduced.

Consider all linear functions over Fa[z1, ..., z,] with zero constant. This is simply:

fz) = Z T (7)

where the addition happens mod 2 and ¢; € Fo = {0,1}. Thus, every linear function is of the
form

fs(x) = @xi, for any subset S C [n] (8)
i€s
Consider the map that takes g € Fy[zq,...,z,] linear, to the vector of its evaluations over all of

2, denote this by Eval(f). This encoding is an injective map that takes F§ — FY where N = 2".

Define the Hadamard code by the set of encodings of linear functions, i.e. {Eval(ls)}gcn)- First
we can define a linear code:

Definition 2.5. A linear code C of dimension k and block length n over a finite field F is a
k-dimensional subspace of F™.

Proposition 2.6. If C is a linear code, then the minimum distance of C is mingec Az, 0).
Proof. Say the minimum distance of C, which we’ll call d, is the minimum distance between some
distinct z,y € C, meaning that d = A(z,y). Since C is a linear code, x — y € C as well, and the
number of positions that z disagrees with y will be the same as the number of positions that z —y
disagrees with 0 because (x—y); # 0 if and only if ; # y;. That means that d = A(x—y, 0), which
tells us that the minimum distance can be represented as A(c,0) for some ¢ € C, as desired. [
The Hadamard code has the following properties:

e It is a linear code

e It has block length 2"

e It has message length n

e It has minimum distance 21,

This implies that it has rate n/2™ and relative distance 1/2. The only statement that doesn’t
follow from the definition is its distance.

Proposition 2.7. The Hadamard code has minimum relative distance 1/2.
Proof. As shown in Proposition we can find the minimum relative distance of a linear code C
by finding min;ec §(z,0). In the case of the Hadamard code, 0 refers to the all zero vector, which

is the evaluation vector of fp, which means that A(x,0) = A(fs, fp) is the number of inputs x
such that fg(z) = 1.

The idea that we can use here is that if we have 2 codewords corresponding to the functions
fs, fr : F3 — Fy then the value of (—1)fs(®) . (=1)/r(@) = (_1)fs@)+/1(2) ig dependent only on
whether fs(x) and fr(z) are equal:

o If fs(z) = fr(z) = c for some ¢ € {0,1} then ¢ + ¢ = 2¢ = 0 (mod 2), which means that
(-1)° =1.

o If fs(x) # fr(x) then you'd get that fs(x) + fr(z) =1so (—1)' = —1.

That lets us easily relate the distance between the codewords fs and fy as a sum that ends up
being easier to work with:

Z (—=1)fs@) . (_1)fm(x) - Z (-1) + Z 1

zeFy fs(z)=1 fs(z)=0

In order to find the distance A(fs, fp), we can evaluate the sum on the left by noticing that the
character function yg(x) for any S C [n] can be written in terms of fs(x) as

xs(x) = (1)@ 9)

which can be seen fairly easily by expanding out fs(z) as a sum mod 2.

That means that the sum above can be written as an inner product:

D (D@ ()P = N s (@)x(@) = 2" (xs, x0) (10)

z€Fy z€Fy

Since (xs,Xxg) = 0 (due to the character functions forming an orthonormal basis), then

=D+ > 1=0 (11)

fs(z)=1 fs(xz)=0

That can only happen if exactly half of the evaluation points of fg have fg(x) = 1, which is
equivalent to saying that §(fs, fp) = 3, as desired. O

2.1 Locally Testable Codes

One natural property testing question that can be asked about a code is whether it is possible to
of test if any arbitrary string is close to a codeword. That’s extremely useful, since if we received
a message that was encoded using a given code, we’d want to be able to tell whether it had been
corrupted with some errors that we’d need to try correcting, or if it was still a valid codeword. For
our purposes, we're going to focus on fast probabilistic tests of how likely it is that we’ll be able to
correct all the errors in a provided word. The motivation here is that if the string that we received
ends up having too many errors for us to be able to correct them, then we’ll need to ask the sender
to send the message again (in the hopes that it won’t get corrupted as much the second time), but
the full algorithm for trying to decode the received string into a message may be time-consuming,
so we’d like to be able to quickly test whether waiting for decoding to finish is worthwhile [3].

Codes where the above goal is feasible are called locally testable codes, which, informally speaking,
are codes such that, using only a few queries to a given word x € X", you can check if x is close
to a codeword ¢ € C (i.e. x is either the same as ¢ or a corrupted version of ¢ with relatively few
errors). More formally, we can define locally testable codes as follows.

Definition 2.8. A code C C X" is locally testable [1|, |3] with query complexity ¢ € N and
soundness 1 > 0 if there exists some randomized testing algorithm that takes in as input some
x € X" and either accepts or rejects. That algorithm needs to meet the following properties:

o Ifx € C, then Pr[test accepts]| =1 (i.e. the tester always accepts for valid codewords).

o Ifx & C, then Prltest rejects] > n - 6(x,C) where §(x,C) is the minimum relative distance
between x and any codeword in C. Importantly, the test becomes more likely to reject as the
relative distance (and consequently the number of errors) increases.

o The testing algorithm can only query at most q bits of the input string x.

To help illustrate that definition of locally testable codes, we can show that the Hadamard codes
discussed above are locally testable codes. In that case, the word that we’d receive as input to our
algorithm would be a vector in FY which represents the evaluation Eval(f) for some f : F§ — Fo.
Being able to test if f is a valid codeword means that we’d want to check if the provided function
f is linear, since Hadamard codes are by definition the set of all linear functions, while at the same
time minimizing the number of entries in the input vector we’d need to read. It’s worth noting
that since the vector that we want to test is the evaluation vector of a function f, reading out the
bit at some arbitrary position x in Eval(f) is equivalent to calling f with the value z. Because of
that, we interchangeably treat the input string for our testing algorithm as a vector in FY and as
an oracle f :[Fy — Fy that we can make queries to.

In order to show that Hadamard codes are locally testable, we will first need to define what a
convolution is and some relevant properties, since that will be useful in our analysis.

Definition 2.9. The convolution of f,g as functions over Fy is defined by
1
(F *9)(@) = Eyery F)g (e + 1) = o D FW)g(e +)
yEFy

—

Proposition 2.10. If f,g are two functions F} — C, then (f % g)(S) = f(S) - §(S).

Proof. This is mostly just algebraic manipulation using Equation [2] and the definition of convolu-
tion:

(f *9)(5)

(f*9);xs)

b 3 (Fr)@)xs(a)

z€Fy

1
on Z fWglz+y) | xs(@)
z€Fy yeFy

= o= Z FWg(x +y)xs(x)

z,yeFy

=2 > TWgxs(u+y) u=r4+y = r=u+y
u,yEFy

== Z fly (u)xs(y) Xs is a homomorphism
7yE]F77/

— (2171 > g(w)xs(u) 2% > fwxs)
g

u€lFy yery

Using that, we can then show that Hadamard codes are locally testable.

Proposition 2.11. Hadamard codes are locally testable codes with query complexity ¢ = 3 and
soundness n = 1.

Proof. Consider the following test [2|: sample z,y € F} uniformly and accept if and only if
flz+y) = f(z)+ f(y). We know that if f : F} — Fy is linear, then

flx+y) = f@)+ f(y), Vo,yely

It’s fairly easy to see that that test accepts for all linear functions f, but if f is nonlinear, the
test has some probability of accepting if it happens to pick values of x and y such that f(z+y) =
f(z) + f(y) even if the entire function isn’t linear. Intuitively, we’d expect that a function with
fewer errors would be more likely to accept, since we’d be more likely to pick x and y such that
we read locations that haven’t been corrupted, but we want to formalize that idea to show that
Pr{test rejects] > o(z, C).

First define g(z) = (—=1)7®). Note that if f(z +y) = f(x) + f(y), then (—1)/ @+ +f(@)+f () =1
else it is —1, thus to translate this into the probability the test accepts, we do the following.

1
Prftest accepts] = 750 > Lywytsw=rwsn = E
T, YyELY ©,YELy

535, | B ot @] =545 B b @ro@] (3

1 1 €T x 1
{2 + §(_1))”(-Arz/)+J’(-)+£ () (12)

Notice that by the definition of the convolution and the inner product, we reduce this to the sum
over all the Fourier coeflicients.

1 1 1 —~
hl < 4z -
Prltest accepts] = + SCE[| (8) < 5 + 5 max|[g(S)l(g, 9) = 5 + 5 max[g(S)] (14)

where we're using above that (h, g) = E[f(2)g()] and, since g only takes {—1,1} then E,g(x)? = 1,
and therefore (g, g) = 1. Notice also that g(.S) = (g, xs). Suppose g and xs disagree at €2"-many
places (or equivalently that §(g, xs) = €), then we have that:

1

(9:x5) = 5= O 9(0)xs(e) = o (27— 2") = e2") =1 -2 (15)
z€Fy

Thus we get that 2Pr[test accepts] < 1+ 1 — 2¢ so ¢ < 1 — Pr[test accepts], or equivalently
Prltest rejects] > e. We know that xs(z) = (—1)/5(®) and that g(x) = (—1)7®) which means that
xs(z) = g(z) if and only if fs(z) = f(x), implying that 6(f, fs) = (g, xs), and therefore that
Pr[test rejects] > 6(f, fs), as desired. O

References

[1] “Locally testable code (LTC)”. In: The Error Correction Zoo. Ed. by Victor V. Albert and
Philippe Faist. 2022. URL: https://errorcorrectionzoo.org/c/ltc.

[2] M. Blum, M. Luby, and R. Rubinfeld. “Self-testing/correcting with applications to numerical
problems”. In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Com-
puting. STOC ’90. Baltimore, Maryland, USA: Association for Computing Machinery, 1990,
pp- 73-83. 1SBN: 0897913612. DOI: 10.1145/100216.100225. URL: https://doi.org/10.
1145/100216.100225.

[3] Irit Dinur et al. Locally Testable Codes with constant rate, distance, and locality. 2021. arXiv:
2111.04808 [cs.IT]. URL: https://arxiv.org/abs/2111.04808.

[4] William Fulton and Joe Harris. “Representations of Finite Groups”. In: Representation Theory:
A First Course. New York, NY: Springer New York, 2004, pp. 3—25. ISBN: 978-1-4612-0979-9.
DOI: |10.1007/978-1-4612-0979-9. URL: https://doi.org/10.1007/978-1-4612-0979-9.

https://errorcorrectionzoo.org/c/ltc
https://doi.org/10.1145/100216.100225
https://doi.org/10.1145/100216.100225
https://doi.org/10.1145/100216.100225
https://arxiv.org/abs/2111.04808
https://arxiv.org/abs/2111.04808
https://doi.org/10.1007/978-1-4612-0979-9
https://doi.org/10.1007/978-1-4612-0979-9

	Previous Lecture
	Representation Theory Aside

	Coding Theory
	Locally Testable Codes

