CS 579: Computational Complexity Fall 2025

Lecture 04 - September 04

Prof. Fernando Granha Jeronimo Super Scribes: Pranav Rajpal €& Andrei Staicu

1 Previous Lecture
Recall that the Hadamard code is the set of evaluation points of linear functions g over Fy,
H, = {Eval(ls) | S C [n]} CFY, N=2" (1)

Hadamard code has the following properties: it has relative distance §(H,) = 1/2, rate r(H,) =

IO%N, is a linear code, and is locally testable.

The local testing procedure is as follows; sample z,y € FZ uniformly and accept if f(x +y) =
f(z)+ f(y). We proved last lecture that if € is the minimum relative hamming distance from f to
a linear function then:

Pr(BLR test passes) <1—e=1— (min (xs, f)) (2)

ScC[n]

Therefore, if the test passes with high probability then we can say that € is small and so f is close
to linear, and conversely functions that are close to linear are more likely to pass the BLR test.

2 Hadamard Code is Locally Decodable and Correctable

As with local testability, a code being locally decodable or locally correctable is in the eye of
the beholder (the locality or number of queries can be considered in various parameter regime:
constant, logarithmic, sub-linear, etc). We will use the following informal definition:

Definition 2.1. A code C' C X" is locally correctable [1] if, when some x € L" is e-close to
some ¢ € C (i.e. §(x,d) <€), so the fraction of bits flipped between ¢ and x is at most €),
then any arbitrary symbol in the nearest codeword ¢’ can be recovered with high probability using
relatively few queries to x.

As an example of a locally correctable code, we can show that Hadamard codes, in addition to
being locally testable, are also locally correctable codes.

Specifically, we're given some arbitrary string Eval(f) € F) that represents the evaluation vector
of a function f : Fy — Fy, and we know that §(f, fs) < e for some linear function fg. We are also
given some z € F} and we want to compute fs(x). We can do that using the following procedure:

a) Sample y € FZ randomly.

b) Query f(x +y) and f(y) and return f(z +y) + ().

By the union bound, the event that either f(z+y) or f(y) are corrupted happens with probability
at most 2e since each is corrupted with probability at most €. Thus with probability at least
1 — 2e we have that f(x 4+ y) = fs(z +y) and f(y) = fs(y), meaning that the returned value is
fs(x+y)+ fs(y) = fs(x). Importantly, that analysis holds even when the locations of the errors in
f and the location of x are chosen adversarially, as opposed to just returning f(x) directly, which
would have a probability of failure of 1 if an adversary intentionally queried a location where the
input vector had been corrupted.

Notice that given any x, this procedure can be repeated multiple times and, since the value of y is
sampled independently on each run of that algorithm, we can return a majority vote of the values
returned from each run to "boost” the probability of the correct value being returned. That lets
us turn this into an algorithm that succeeds with high probability by repeating the test to make
the probability of failure arbitrarily small.

Definition 2.2. A code C is locally decodable (2, /)] if, for some message y that gets encoded to
a codeword ¢ € C, observing a corrupted codeword x € ¥™ that is € close to ¢ (i.e. §(x,c) =¢€), one
can efficiently recover any index y; of the message y with high probability by only reading relatively
few entries of x.

We can show that Hadamard codes are also locally decodable codes by designing a fairly simple
algorithm to recover the message (which would be represented by the set S in the function fg) for
a corrupted version f of the corresponding codeword.

The idea is that, now that we have shown that Hadamard codes are locally correctable, we can use
our above algorithm as a black box to read out the value of fg(z) for any arbitrary z. Specifically,
the decoding procedure involves the locally correctable queries: if fg(x), then we can query f at
e; (the vector with a single 1 at entry ¢ and Os everywhere else) to see if i € S. For that, we are
using the fact that

fs(e;) =1 < ieS (3)

since XORing 0 with anything does not change its value, so the only entry that can have an impact
on the value of fg(e;) is entry i.

Using the local decodability of the Hadamard code, we can learn the linear function by decoding
every message symbol i € [n], then in n = log N steps we can recover the entire message S. In this
case, note that learning is more expensive than locally testing, correcting, or decoding.

3 Boolean Fourier Analysis and Spectral Graph Theory

Definition 3.1. The Boolean hypercube is the following (family of) graph(s):
B" = (F3,{(z,y) | Alz,y) =1}) (4)

The Boolean hypercube can be equivalently defined in the language of group theory, which will
be very useful in shedding light on its algebraic structure, as we shall see shortly. Specifically, it
can be viewed as a Cayley graph, which is a graph created from a group H and a generating set
T C H of that group where each group element in H becomes a vertex in the graph, and for every
generating set element ¢t € T" and every group element g € H, we add an edge from the vertex for
g to the vertex for the group element tg. In our case, the group here is Z% over addition (which
we will write as F} for convenience) with generators T' = {eq,...,e,}, where e; € F} is a vector
with a 1 in position ¢ and Os everywhere else, which is written as Cay(Z5,T).

Definition 3.2. An adjacency matriz A € RN*N of a graph G = (V, E) with |V| = N is defined
by:
(5)

0 otherwise

A, — {1 if (u,v) € E

If G is d-regqular (i.e. every vertex has degree d), then the normalized adjacency matriz A is defined

1
as EA'

Proposition 3.3. For all xs, xs is an eigenvector of fl, the normalized adjacency matrixz of the
Boolean hypercube graph, and the corresponding eigenvalue would be

28l

n

1 (6)

Proof. We can first simplify the value of entry z in the result of Ayg:

(Axs)e =D Awyxs)
yeFry

1
E Z Ax,yXS (y)

yeFy

1 n
ZEZXS(QC—F@Z-) Apy #0 <= y=z+¢;
i=1

1 n
= - E xs(z)xs(es) Xs is a homomorphism
n
i=1

- (i Zm(ei)) xs(@)

From that, we can see that the sum that Eval(xs), is multiplied by is only dependent on S, not on
the value of , which means that for a fixed S that expression is a constant (i.e. it’s an eigenvalue
of the vector Eval(ys)).

We can then simplify the expression for that eigenvalue (which we will call A\g) using the fact that
xs(e;) = —1if and only if ¢ € S (since all other entries of e; are 0 so regardless of whether those
components are included in S they will not affect the value of the product). Using that, we have
that

1 n
As = - ;XS(%)

1 — 1
_ _ i€S
3
=1

1
€S iZS
L(15] + (n — |8
= — —_— n_
n
_ n—2|S]
o n
Thus the eigenvalue is
2|9]
Ag =1 7
s n (7)

O

The reason that we are discussing eigenvalues of the Boolean hypercube here is that the eigenvalues
of any given graph give us some insight into the structure of the graph itself, as can be seen from
the following statements.

Fact 3.4. For a d-regular graph, A has etgenvalue —1 iff it is bipartite.

Since Aj,; = —1, this fact shows that the Boolean cube is bipartite. Indeed, vertices with even
Hamming weight connect only to vertices with odd Hamming weight.

Definition 3.5 (Spectral Gap). The spectral gap of a graph G is the difference between the 2
largest eigenvalues of the normalized adjacency matriz in absolute value.

The spectral gap of the Boolean cube is:
2 2

n_ logy N

The spectral gap can be connected to how fast (some) probability distribution across vertices of
G spreads out into a uniform distribution when treating G as a Markov chain [3]. Although some
care is needed, can you find a distribution on the vertices of the Boolean hypercube that does not
converge to the uniform distribution?

4 Complexity of Boolean Functions

Part of the reason that we are interested in boolean Fourier analysis is that it is a useful tool for
analyzing the complexity of boolean functions naturally arising from many computational models
such as various circuits models, decision trees, etc. In order to do that, we will start here by
defining some notions of complexity for boolean functions that might be interesting to look at.

Definition 4.1. The sensitivity /5] of a function f : F3 — Fy at some input x € F§ is the number
of bit positions in x where flipping a single bit changes the output, or more formally:

S(f,z)=NHienl| f(zx) # flz+ei)} 9)
The maximum sensitivity S(f) would then be the largest sensitivity of any input:
S(f) = maxS(f.x) (10)

Definition 4.2. If f =} ¢ f(S)XS, then the Boolean degree of f is the size of the largest set S
that shows up in the Fourier series version of f:

deg(f) = max{|S| | f(S) # 0} (11)

Equivalently, if we view f as mapping from {£1}™ to {£1} (using the mapping x — (=1)* to
convert from Fo to {£1}), then the Boolean degree is the degree of the polynomial created when
writing f as a Fourier expansion (since in that case xs(x) = [[,cqxi would be a polynomial of
degree |S]).

€S

4.1 Decision Trees for Boolean Functions

A decision tree for f: {0,1}™ — {0,1} is a rooted binary tree where:
e Each internal node is labeled with a variable x;.
e Each edge corresponds to an assignment x; = 0 or z; = 1.
e Each leaf is labeled with an output value 0 or 1.

On input z € {0,1}", the computation follows a path from the root according to the values of
queried variables until reaching a leaf, whose label is the output f(x).

The decision tree complexity of f, denoted D(f), is the minimum depth of a decision tree computing
f

We encourage you to prove the following simple lemma related the Fourier degree and the decision
tree complexity of a Boolean function.

Lemma 4.3. For every Boolean function f :{-1,1}" — {-1,1},

deg(f) < D(f).

References

[

1]
2]

3]

4]

[5]

“Locally correctable code (LCC)”. In: The Error Correction Zoo. Ed. by Victor V. Albert and
Philippe Faist. 2023. URL: https://errorcorrectionzoo.org/c/lccl

“Locally decodable code (LDC)”. In: The Error Correction Zoo. Ed. by Victor V. Albert and
Philippe Faist. 2023. URL: https://errorcorrectionzoo.org/c/ldc.

Sanjeev Arora and Boaz Barak. “Pseudorandom constructions: Expanders and extractors”. In:
Computational Complexity: A Modern Approach. Cambridge University Press, 2009, pp. 421—
459. 1sBN: 9780511804090. DOTI: |10.1017/CB09780511804090.024. URL: https://doi.org/
10.1017/CB09780511804090.024.

Tali Kaufman and Michael Viderman. “Locally Testable vs. Locally Decodable Codes”. In:
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques.
Ed. by Maria Serna et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 670-682.
ISBN: 978-3-642-15369-3. DOI: |10.1007/978-3-642-15369-3_50. URL: https://doi.org/
10.1007/978-3-642-15369-3_50.

Claire Kenyon and Samuel Kutin. “Sensitivity, block sensitivity, and ¢-block sensitivity of
boolean functions”. In: Information and Computation 189.1 (2004), pp. 43-53. 1SSN: 0890-5401.
DOI: https://doi.org/10.1016/j.ic.2002.12.001. URL: https://www.sciencedirect.
com/science/article/pii/S0890540103002530.

https://errorcorrectionzoo.org/c/lcc
https://errorcorrectionzoo.org/c/ldc
https://doi.org/10.1017/CBO9780511804090.024
https://doi.org/10.1017/CBO9780511804090.024
https://doi.org/10.1017/CBO9780511804090.024
https://doi.org/10.1007/978-3-642-15369-3_50
https://doi.org/10.1007/978-3-642-15369-3_50
https://doi.org/10.1007/978-3-642-15369-3_50
https://doi.org/https://doi.org/10.1016/j.ic.2002.12.001
https://www.sciencedirect.com/science/article/pii/S0890540103002530
https://www.sciencedirect.com/science/article/pii/S0890540103002530

	Previous Lecture
	Hadamard Code is Locally Decodable and Correctable
	Boolean Fourier Analysis and Spectral Graph Theory
	Complexity of Boolean Functions
	Decision Trees for Boolean Functions

