CS 579: Computational Complexity Fall 2025

Lecture 07 - September 16

Prof. Fernando Granha Jeronimo Super Scribes: Connor Mowry € Abhinav Angirekula

1 Recap: Previous Week’s Topics

Last week while Fernando was away, we learned about two foundational topics that connect to our
study of interactive proofs and PCPs: expander graphs and list decoding.
1.1 Expander Graphs

Expander graphs are sparse graphs with strong connectivity properties. They serve as fundamental
pseudorandom objects in theoretical computer science with applications spanning;:

e Derandomization and pseudorandom generators
e Error-correcting codes and their explicit constructions
e Network design and communication complexity

e The PCP theorem itself, where expanders enable gap amplification

1.2 List Decoding

List decoding provides a powerful generalization of unique decoding by allowing the decoder to
output a small list of possible codewords rather than a single codeword.

Definition 1 (List Decoding). A code C'is (p, L)-list decodable if for every received word w, there
are at most L codewords within relative distance p from w.

Key properties:
e Unique decoding: Special case where L =1 and p < d/2 (where d is minimum distance)
e List decoding advantage: Can correct errors beyond the unique decoding radius d/2

e List size: Remarkably, L can remain polynomial (often constant) even for error rates ap-
proaching the information-theoretic limit

e Hierarchy: Unique Decoding C List Decoding C List Recovery

These tools become crucial in PCP constructions, where locally decodable codes with list-decoding
properties enable efficient proof verification.

2 Introduction

In this lecture, we explore interactive proof systems and probabilistically checkable proofs (PCPs),
two fundamental concepts that revolutionized our understanding of proof verification and approxi-
mation algorithms. We begin with the Graph Isomorphism problem as a motivating example, then
formalize interactive proofs, and conclude with the powerful PCP theorem and its connections to
hardness of approximation.



3 Graph Isomorphism

Definition 2 (Graph Isomorphism). Two graphs G1 = (V1, Eq) and G = (Va, E3) are isomorphic,
denoted G; = Ga, if there exists a bijection m : Vi — V5 such that (u,v) € Ej if and only if
(m(u), 7(v)) € Es.

The Graph Isomorphism problem asks: given two graphs G; and Ga, determine whether G = Gs.

Remark. Graph Isomorphism belongs to NP, since a permutation 7w serves as a polynomial-size
certificate that can be verified in polynomial time. The exact complexity of this problem remains
unknown—it is neither known to be in P nor proven to be NP-complete. This problem is not
believed to be NP-complete, and Babai found a breakthrough quasi-polynomial-time algorithm for
it.

3.1 Graph Non-Isomorphism
While Graph Isomorphism is in NP, its complement problem presents an interesting challenge:

Definition 3 (Graph Non-Isomorphism). The Graph Non-Isomorphism problem asks: given graphs
G1 and G, verify that for all permutations 7, the graphs are not the same up to relabeling.

Graph Non-Isomorphism appears to require checking all n! possible permutations, suggesting it
may not be in NP. However, as we’ll see, it admits an elegant interactive proof.

4 The Polynomial Hierarchy

Before discussing interactive proofs, we briefly introduce the polynomial hierarchy, which provides
context for understanding the power of interaction.

Definition 4 (Polynomial Hierarchy). The Polynomial Hierarchy (PH) consists of a sequence of
complexity classes defined using bounded alternation of quantifiers:

e ¥} = NP: Languages decidable with one existential quantifier
e II! = coNP: Languages decidable with one universal quantifier
e For k> 2:
Yo ={L:z el < FyVyIys- - Quur : o(x,y1,-..,Yk)} (1)
I ={L:x €L < Yy13yYys-- Qryr : #(x, 41, Uk)} (2)
where |y;| = poly(|z|) and ¢ is computable in polynomial time.
The entire hierarchy is PH = (J;~, b= Urs1 I}

Example (Graph Non-Isomorphism in the Hierarchy). Graph Non-Isomorphism can be expressed

as:
V€ Sy m(Gh) # Ge

This places it in II} = coNP, though as we’ll see, interaction provides a more efficient verification.
Remark. Key observations about the polynomial hierarchy:

e Adjacent quantifiers of the same type can be merged: Jx3y is equivalent to 3(x,y)



e Each level contains the previous: X UIT) € X7 | N1I}
e PH C PSPACE, though equality is unknown (and it is not expected)
e If PH collapses (i.e., ¥} = X}, for some k), then PH = %}

Definition 5 (TQBF). The True Quantified Boolean Formula (TQBF) problem asks whether a
fully quantified Boolean formula is true:

dr1Vaedxs -+ Qun t (X1, ..., Ty)
where each x; € {0,1} and ¢ is a Boolean formula. TQBF is PSPACE-complete.

The polynomial hierarchy captures problems with bounded quantifier alternation, while interactive
proofs, as we’ll see next, achieve the full power of PSPACE through interaction and randomness.

5 Interactive Proof Systems

5.1 The Model

Definition 6 (Interactive Proof System). An interactive proof system for a language L consists of
two parties:

e A Verifier: A probabilistic polynomial-time algorithm with access to random bits
e A Prover: A computationally unbounded entity

After polynomial rounds of interaction, the Verifier accepts or rejects based on the input and the
conversation transcript.

Definition 7 (The Class IP). A language L € IP if there exists an interactive proof system such
that:

e Completeness: If x € L, there exists a Prover strategy that causes the Verifier to accept
with probability > 2/3

e Soundness: If = ¢ L, for all Prover strategies, the Verifier rejects with probability > 2/3

5.2 Protocol for Graph Non-Isomorphism
We now present an interactive protocol demonstrating that Graph Non-Isomorphism € IP.

Theorem 8. Graph Non-Isomorphism € IP.

Proof. We describe a protocol between Verifier and Prover:
Protocol:
1. Verifier samples ¢ € {1, 2} uniformly at random
2. Verifier samples a random permutation 7 and computes H = 7(G;)
3. Verifier sends H to the Prover
4. Prover responds with j € {1,2}
5

. Verifier accepts if and only if j = ¢



Analysis:
Case 1: G1 % Gy (graphs are non-isomorphic)
e The all-powerful Prover can determine which graph was permuted
e For any H, either H = G; or H = (G2, but not both
e The Prover always correctly identifies ¢
e Pr[Verifier accepts] = 1
Case 2: G1 = Gy (graphs are isomorphic)
e Any permutation of (G1 is also a permutation of Go
e The distribution of H is identical regardless of whether i =1 or ¢ = 2
e No Prover strategy can determine ¢ with probability > 1/2
e Pr[Verifier accepts] < 1/2

5.3 Power of Interaction

The Graph Non-Isomorphism protocol illustrates how interaction with randomness enables veri-
fication of statements that seem to require exponential certificates. This leads to a remarkable
characterization:

Theorem 9 (Shamir, 1992). IP = PSPACE.

This theorem shows that interactive proofs with polynomial rounds are exactly as powerful as
polynomial space computation.

6 Probabilistically Checkable Proofs

6.1 Definition and Parameters

While interactive proofs allow multiple rounds of communication, PCPs take a different approach:
the proof is written down once, but the verifier can query it probabilistically.

Definition 10 (PCP). A language L € PCP[r(n), g(n)] if there exists a probabilistic polynomial-
time verifier V' such that:

e On input z of length n, V' uses O(r(n)) random bits

V makes O(q(n)) queries to a proof string =
e Completeness: If x € L, 37 such that Pr[V7(z) =1] =1
e Soundness: If x ¢ L, Vrr, Pr[V7(z) =1] < 1/2

Remark. Note that NP = PCP|0, poly(n)], as traditional NP verification uses no randomness
and reads the entire proof.



6.2 The PCP Theorem
Theorem 11 (PCP Theorem (Arora, Safra 1992; Arora, Lund, Motwani, Sudan, Szegedy 1992)).

NP = PCP[O(logn), O(1)]

This remarkable result states that every NP statement has a proof that can be verified probabilis-
tically by:

e Using only logarithmically many random bits
e Reading only a constant number of proof bits

e Maintaining perfect completeness and constant soundness

7 Connection to Constraint Satisfaction Problems

7.1 CSP Formulation

Definition 12 (Constraint Satisfaction Problem). A Constraint Satisfaction Problem (CSP) in-
stance ¢ consists of:

e Variables z1,...,x, over domain [q]
e Constraints C1, ..., ), where each C; involves k variables
e For each constraint, a set of satisfying assignments
The value of ¢, denoted val(¢), is the maximum fraction of simultaneously satisfiable constraints.

Example (MAX-3SAT). Variables are Boolean, constraints are clauses with 3 literals. The goal
is to maximize the fraction of satisfied clauses.

Example (MAX-CUT). Given graph G = (V, E), assign each vertex to one of two sets. Constraints
correspond to edges; an edge is satisfied if its endpoints are in different sets.

7.2 PCP Implies Hardness of Approximation

The PCP Theorem has a remarkable equivalent formulation:

Theorem 13 (Gap-CSP Version of PCP Theorem). There exists a polynomial-time reduction from
any NP language L to CSP instances such that:

e I[fx € L: The produced CSP ¢ has val(¢) =1
o Ifx ¢ L: The produced CSP ¢ has val(¢) < 1/2

Corollary 14. Unless P = NP, there is no polynomial-time algorithm that approximates MAX-
CSPs within a factor better than some constant o < 1.

7.3 From PCP Verifier to CSP

Given a PCP verifier V using r random bits and making ¢ queries:

1. Create variables for each proof bit position



2. For each possible random string R € {0,1}":
e I/ with randomness R queries positions i1, ...,
e Create a constraint on variables z;,, ..., x;,
e The constraint is satisfied iff V' accepts given those bit values
This construction yields:

°6™) = poly(n)

e Number of constraints: 2" = 20(
e Variables per constraint: ¢ = O(1)
e Completeness: If © € L, the correct proof satisfies all constraints

e Soundness: If x ¢ L, at most half the constraints can be satisfied

8 Implications and Open Problems

The PCP Theorem fundamentally changed our understanding of:
e Proof verification: Proofs can be verified locally with constant queries

e Approximation algorithms: Many optimization problems have inherent approximation
barriers

e Error-correcting codes: PCPs connect to locally testable and decodable codes

8.1 Current Research Directions
1. Unique Games Conjecture: Predicts optimal approximation ratios for many problems
2. Short PCPs: Minimizing proof length while maintaining constant queries
3. Quantum PCPs: Extension to quantum proofs and verification
4

. Fine-grained PCPs: Understanding the exact constants in the PCP parameters

9 Conclusion

Interactive proofs and PCPs reveal deep connections between proof verification, randomness, and
approximation. The ability to verify proofs locally—reading only constant bits—seems almost
paradoxical, yet the PCP Theorem shows this is possible for all of NP. These results have revolu-
tionized both complexity theory and our understanding of approximation algorithms, showing that
for many optimization problems, even approximate solutions are computationally hard.



