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ABSTRACT

We investigate some problems involving optimization, expansion, coding theory and

pseudorandomness establishing some new connections among these fields.

Our first result is an approximation algorithm for constraint satisfaction problems

(CSPs), where constraints are placed on the edges of “expanding” hypergraphs. This

result (builds on and) generalizes known algorithms for graphs. Our algorithm is based

on the Sum-of-Squares semi-definite programming hierarchy and it is a natural higher-

order generalization of the graph case.

Next, we observe that the task of decoding some well-known families of distance am-

plified codes using expanding structures can be reduced to approximating suitable “ex-

panding” CSPs. By enhancing the Sum-of-Squares hierarchy with an “entropic” potential,

we can, roughly speaking, obtain list decoding guarantees out of unique decoding. In this

way, we obtain a new list decoding framework which is our second result.

In a breakthrough work, Ta-Shma [STOC 2017] found the first explicit family of ε-

balanced binary codes near the so-called Gilbert–Varshamov bound (hence achieving

nearly optimal distance versus rate trade-off). Put it simply, Ta-Shma’s codes are distance

amplified codes using carefully desinged expanding structures. We obtain our third result

by overcoming the far from optimal trade-offs of our list decoding framework allowing

us to provide the first polynomial time decoder for Ta-Shma’s codes.

Finally, using pseudorandomness techniques based on our new weak regularity de-

composition of sparse tensors (supported on expanding structures) we can also approx-

imate the CSPs arising in the decoding tasks mentioned above. Thanks to the much

faster computational time of finding weak regularity decompositions compared to solv-

ing Sum-of-Squares programs, we obtain our fourth result: a near-linear time decoder for

Ta-Shma’s codes.
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CHAPTER 1

INTRODUCTION

A central concept in our work is expansion. In theoretical computer science (TCS) and

mathematics, expansion comes in a few flavors with the most notable example, perhaps,

being expander graphs [HLW06]. Roughly speaking, expander graphs are graphs mim-

icking some of the properties of complete graphs such as being well-connected. Fortu-

nately, contrary to complete graphs which have as many edges as possible, exapnder

graphs can have much fewer edges and yet still be well-connected. By combining these

opposing properties of sparseness and well-connectedness, expanders found a myriad of

applications in TCS and this wide applicability continues to grow.

One way to extend the theory of expander graphs is to consider notions of expanding

hypergraphs. In this direction, a theory of high-dimensional expnaders (HDXs) has re-

cently emerged [Lub18]. Given the extra richness of hypergraphs compared to their one

dimensional counterparts (graphs), the very definition of hypergraph expansion seems

trickier and some (not necessarily equivalent) definitions were proposed [LM06, KKL14,

EK16a, DK17]. This represents a departure from the expansion of graphs, where different

definitions amount to morally the same notion of expansion1 (be it isoperimetric, alge-

braic or in terms of mixing time of random walks).

Another point of departure between graphs and hypergraphs appears in the study of

constraint satisfaction problems (CSPs). CSPs whose constraints lie on the edges of sparse

random regular graphs admit non-trivial approximation algorithms2 [BRS11, GS11, OGT15].

However, CSPs whose constraints lie on hyperedges of sparse random hypergraphs (even

of hyperedge size 3) are believed to be hard to approximate efficiently. In fact, the later

1. This in terms of notions related to edge expansion. Vertex expansion of graphs is indeed a different
notion.

2. Random d-regular graphs are expanding (even near-Ramanujan) with high probability [Fri91].

1



kind of CSP cannot be non-trivially approximated using powerful algorithmic techniques,

e.g., [Gri01, Sch08, KMOW17].

A natural question emerges: how well can we approximate CSPs whose constraints

lie on the hyperedges of (sparse) high-dimensional expanders? Given that CSPs on sparse

random hypergraphs are believed to be hard to approximate, it would be conceivable to

expect that CSPs on sparse HDXs are similarly hard. In our first result in this work [AJT19],

we show that this intuition is false when the constraints are placed on the hyperedges of

a sufficiently expanding HDX (and the variables correspond to vertices). Our approxima-

tion algorithm is a natural higher-order generalization of known algorithms for CSPs on

graphs by Barak, Raghavendra and Steurer [BRS11] and Guruswami and Sinop [GS11],

which are based on a convex optimization hierarchy called Sum-of-Squares semi-definite

programming hierarchy.

To analyze the quality of approximation of our algorithm, we are led to consider

(higher-order) versions of specific random walks in a hypergraph. As long as the opera-

tors corresponding to these walks are expanding (i.e., these walks mix fast), our algorithm

can provide good additive approximation to the optimum value of the CSP. This expan-

sion requirement can be seen as giving rise to another notion of high-dimensional expan-

sion which we dub splittability. Curiously, the walk operators considered in our work are

of the same as the operators independently considered for agreement tests [DD19], which

is an important primitive in the construction of probabilistic check proofs (PCPs). This

notion of expansion (splittability) rediscovered in our CSP work actually first appeared

in another context [Mos10].

Having the ability to efficiently approximate CSPs on (some) expanding hypergraphs

will turn out to be extremely useful to us, and it underlies most of our subsequent results

in this work. Of course, the alternative of having hard to approximate CSPs could have

been interesting and valuable in itself. We point out that, by placing the constraints and

2



variables differently on a HDX, explicit hardness results for the Sum-of-Squares hierarchy

were later obtained in [DFHT21].

We mentioned that expansion has found a myriad of applications in TCS and one

particularly fertile field of this phenomenon has been coding theory [Gur04]. Two ma-

jor uses of expansion in coding theory are: (i) in distance amplification of a base code

(e.g., [GI05, TS17]), and (ii) in the design of parity check matrices (e.g., [Gal62, SS96]).

In this work, we investigate the former case and show that the ability to approximate

CSPs on expanding (splittable) structures can be leveraged to provide efficient decoding

algorithms.

Our second result [AJQ+20] is a list decoding framework for distance amplified codes

using expanding structures: HDXs and walks over expander graphs. List decoding is a

relaxed decoding regime where one seeks to correct a large fraction of adversarial errors

at the expense of having not just one but possibly a small list of codewords. It was intro-

duced by Elias [Eli57] and it has more recently become a central primitive in coding the-

ory thanks to the seminal efficient list decoding work of Sudan [Sud97] and Guruswami

and Sudan [GS98]. Surprisingly, list decoding can be useful even in performing unique

decoding.

A key observation is that the problem of unique decoding distance amplified codes

using expanding structures (considered in this work) can be reduced to approximating

CSPs whose constraints lie on the hyperedges of suitable hypergraphs. To perform list

decoding, we can then use as starting point our Sum-of-Squares based CSP approxima-

tion algorithm for expanding hypergraphs. However, we will need to recover not only

one approximate solution as in unique decoding, but a few (far apart) solutions to be

able to perform list decoding. For this reason, we add to the Sum-of-Squares program an

“entropic” potential function in order to make the (near) optimum solution of this convex

program sufficiently rich to “encode” all the solutions we need to retrieve. This technique
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of using an entropic potential in Sum-of-Squares was independently used in robust statis-

tics [KKK19, RY20]. Whereas their results are in a continuous setting over the reals (i.e.,

R), our results are over discrete (finite) alphabets.

In coding theory, special attention is given to the trade-off between the distance of

a code and its rate. Naturally, when using a code we want to pay as little as possible

in terms of added redundancy to be able to recover from a given fraction of adversarial

errors. Despite their fundamental nature, it is surprising that simple questions about

the achievable parameters and the very construction of (nearly) optimum codes remain

open specially over small alphabets. For binary codes, a precise trade-off between these

parameters remains a major elusive open problem.

The best existential distance versus rate trade-offs was shown by Gilbert [Gil52] for

arbitrary codes and it was later shown for random linear codes by Varshamov [Var57].

Unfortunately, these results are merely existential not yielding an explicit efficient way

to build these codes. The combinition of distance and rate achieved by their results is

widely known as the Gilbert–Varshamov (GV) bound. The importance of this bound is

that it is not too far from optimal as shown by the two linear programming (LP) bounds

of McEliece, Rodemich, Rumsey and Welch [MRRW77]. For instance, in the large distance

regime for binary codes, namely, distance 1/2− ε, the GV bound establishes the existence

of codes of rate Ω(ε2) whereas one of the LP bounds states that O(ε2 log(1/ε)) is an upper

bound on the rate of any such code.

In a breakthrough work, Ta-Shma [TS17] gave the first explicit construction of a binary

code near the GV bound. More precisely, Ta-Shma constructed linear binary codes of

distance 1/2− ε/2 and rate Ω(ε2+o(1)). Ta-Shma’s codes have the additional property of

being ε-balanced, i.e., the hamming weight of every non-zero codeword is at least 1/2−

ε/2 and at most 1/2 + ε/2. This gives rise to ε-biased distributions of nearly optimum

support size which is an important object in the theory of pseudorandomness. It was left

4



open whether Ta-Shma’s codes admit efficient decoding. Note that efficient decoding is

not guaranteed since there are families of codes that are hard to decode.

Our third result in this work [JQST20] is a positive answer that Ta-Shma’s codes do

admit an efficient (polynomial time) decoding algorithm. Before we discuss our decoding

algorithms, let’s first give a high-level overview of Ta-Shma’s construction so that it might

be clear how it fits in our story so far. Ta-Shma’s codes are distance amplified codes

using a carefully constructed expanding structure. To be more specific, the expanding

structure considered by Ta-Shma is the collection of walks of a fixed small length on the

wide replacement product of two expander graphs [BATS08], which is a generalization of

the the celebrated Zig-Zag product of Reingold, Vadhan and Wigderson [RVW00]. This

special collection of walks can be seen as a derandomization of the collections of all walks

of the same length on a single expander graph, which was known to achieve distance

1/2− ε but rate Ω(ε4+o(1)).

Our list decoding framework can be applied to Ta-Shma’s codes after simple mod-

ifications and some observations. Unfortunately, at least naively, this application can

only be done after drastically reducing the rate to Θ(2−polylog(1/ε)). In our third result,

we have to bring extra techniques to operate on the nearly optimal regime of distance

1/2 − ε/2 and rate Ω(ε2+o(1)). One such technique is to use list decoding to perform

unique decoding since in our case the various parameter dependencies become much

more favorable. The second technique is to create a sequence of codes (code cascading),

where list decoding takes place between consecutive codes. Carefully combining these

techniques, we then obtain the first polynomial time decoding algorithm for Ta-Shma’s

codes.

One downside of our decoding algorithm for Ta-Shma’s codes is that albeit the run-

ning time being polynomial, it actually requires large degrees (in some regimes even de-

pending on 1/ε). In our fourth result in this work [JST21], we provide a near-linear time
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(in the block length) decoder for Ta-Shma’s code. One reason the algorithms of our third

result our slow is that they are based on the Sum-of-Squares hierarchy. The hierarchy is

known to be very powerful, but to also require substantial running time. For this rea-

son, in our fourth result we adopt a completely different approach based on weak reg-

ularity decompositions as pioneered by Frieze and Kannan [FK98] but for sparse tensor

supported on expanding structures. We show that computing these regularity decompo-

sitions can be done in near-linear time. This later approach is arguably simpler and more

intuitive.

1.1 Chapter Outlines

As we alluded previously, we investigate problems involving optimization, expansion,

coding theory and pseudorandomness establishing some connections along way. The

work in this dissertation is based on joint results with Vedat Alev, Dylan Quintana, Shashank

Srivastava and Madhur Tulsiani (see acknowledgments for more details). Next, we pro-

vide brief outlines for each subsequent chapter.

- Approximating k-CSPs on expanding structures: In Chapter 2, we give polyno-

mial time approximation algorithms for k-CSPs (Constraint Satisfaction Problems)

on suitably 3 expanding hypergraphs, which is a class of structures containing high-

dimensional expanders (as in Dinur and Kaufman definition [DK17]) as an impor-

tant special case. Naturally, the quality of approximation crucially depends on qual-

ity of expansion of these hypergraphs. Our algorithmic results are based on the SOS

hierarchy and generalize the 2-CSPs results of [BRS11, GS11]. Via known connec-

tions, our algorithms translate into approximation algorithms for quantum k-CSPs,

3. More precisely, we generalize to hypergraphs the notion of threshold rank of a graph [BRS11] which
is a robust version of expansion tolerating a few,i.e., O(1), large eigenvalues (the rank) in the adjacency
matrix of a graph.
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the so-called k-local Quantum Hamiltonians.

- List decoding framework for binary codes: In Chapter 3, we provide a list decod-

ing framework for distance amplified codes based on expanding structures: high-

dimensional expanders (as in Dinur and Kaufman definition [DK17]) and walks on

expander graphs. We view the problem of unique decoding as solving a suitable Max

k-CSP (Constraint Satisfaction Problem) instance, which can be solved using our

earlier work [AJT19] based on the SOS hierarchy. To obtain the list decoding frame-

work, we maximize an entropic proxy while solving a k-CSP. This makes the SOS

solution rich enough so that we can “recover” a list of all the desired codewords

from it. Despite this parameter shortcoming, this framework served as our starting

point for unique decoding results of nearly optimal codes mentioned next.

- Unique decoding near optimal binary codes: In Chapter 4, we give polynomial

time unique decoding algorithms for nearly optimal, in terms of redundancy (rate)

versus robustness (distance) trade-off (i.e., near the so-called Gilbert–Varshamov

bound [Gil52, Var57]), explicit binary codes of large distance. These codes are (es-

sentially) those explicit binary codes of distance 1/2− ε and rate Ω(ε2+o(1)) arising

from the breakthrough construction of Ta-Shma [TS17]. Our algorithms are based on

Sum-of-Squares hierarchy and use as a starting point a decoding framework from

our earlier work [AJQ+20] discussed in Chapter 3. Our main contribution consists

in overcoming the far from optimal rates from [AJQ+20] to operate in this near op-

timal regime for unique decoding. This result can be seen as a step towards a better

understanding of the elusive case of binary codes in the general adversarial error

model of Hamming [Ham50]. These algorithms are just a proof of concept showing

that polynomial time algorithms exist in this previously unattained regime.

- Near-linear time decoding near optimal binary codes: In Chapter 5, this previous
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result of decoding Ta-Shma’s codes opened avenues for a near-linear time unique

algorithms using a novel algorithmic weak regularity decomposition in the style

of Frieze and Kannan [FK96] but for sparse tensors supported on expending hy-

pergraphs. With this new weak regularity decomposition, we can approximate

the k-CSPs, decode some distance amplified codes and even perform list decod-

ing. We hope that these techniques can also open avenues to list decoding al-

gorithms with near optimal parameters, this being a major open problem in the

field [Gur09, Gur10].
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CHAPTER 2

APPROXIMATING CSPS ON HIGH-DIMENSIONAL EXPANDERS

2.1 Introduction

We consider the problem of approximately solving constraint satisfaction problems (CSPs)

on instances satisfying certain expansion properties. The role of expansion in understand-

ing the approximability of CSPs with two variables in each constraint (2-CSPs) has been

extensively studied and has led to several results, which can also be viewed as no-go

results for PCP constructions (since PCPs are hard instances of CSPs). It was shown by

Arora et al. [AKK+08] (and strengthened by Makarychev and Makarychev [MM11]) that

the Unique Games problem is easily approximable on expanding instances, thus proving

that the Unique Games Conjecture of Khot [Kho02] cannot be true for expanding instances.

Their results were extended to all 2-CSPs and several partitioning problems in works by

Barak, Raghavendra and Steurer [BRS11], Guruswami and Sinop [GS11], and Oveis Gha-

ran and Trevisan [OGT15] under much weaker notions of expansion.

We consider the following question:

When are expanding instances of k-CSPs easy for k > 2?

At first glance, the question does not make much sense, since random instances of k-

CSPs (which are also highly expanding) are known to be hard for various models of

computation (see [KMOW17] for an excellent survey). However, while the kind of ex-

pansion exhibited by random instances of CSPs is useful for constructing codes, it is not

sufficient for constructing primitives for PCPs, such as locally testable codes [BSHR05].

On the other hand, objects such as high-dimensional expanders, which possess a form

of “structured multi-scale expansion” have been useful in constructing derandomized

direct-product and direct-sum tests (which can be viewed as locally testable distance
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amplification codes) [DK17], lattices with large distance [KM18], list-decodable direct

product codes [DHK+18], and are thought to be intimately connected with PCPs [DK17].

Thus, from the PCP perspective, it is more relevant to ask if this form of expansion can be

used to efficiently approximate constraint satisfaction problems.

Connections to coding theory. Algorithmic results related to expanding CSPs are also

relevant for the problem of decoding locally testable codes. Consider a code C constructed

via k-local operations (such as k-fold direct-sum) on a base code C0 with smaller distance.

Then, a codeword in C is simply an instance of a CSP, where each bit places a constraint

on k bits (which is k-XOR in case of direct sum) of the relevant codeword in C0. The task of

decoding a noisy codeword is then equivalent to finding an assignment in C0, satisfying

the maximum number of constraints for the above instance. Thus, algorithms for solving

CSPs on expanding instances may lead to new decoding algorithms for codes obtained

by applying local operations to a base code. In fact, the list decoding algorithm for direct-

product codes by Dinur et al. [DHK+18] also relied on algorithmic results for expanding

unique games. Since all constructions of locally testable codes need to have at least some

weak expansion [DK12], it is interesting to understand what notions of expansion are

amenable to algorithmic techniques.

High-dimensional expanders and our results. A d-dimensional expander is a downward-

closed hypergraph (simplicial complex), say X, with edges of size at most d + 1, such

that for every hyperedge a ∈ X (with |a| ≤ d − 1), a certain “neighborhood graph”

G(Xa) is a spectral expander1. Here, the graph G(Xa) is defined to have the vertex set

{i | a ∪ {i} ∈ X} and edge-set {i, j | a ∪ {i, j} ∈ X}. If the (normalized) second singular

value of each of the neighborhood graphs is bounded by γ, X is said to be a γ-high-

1. While there are several definitions of high-dimensional expanders, we consider the one by Dinur and
Kaufman [DK17], which is most closely related to spectral expansion, and was also the one shown to be
related to PCP applications. Our results also work for a weaker but more technical definition by Dikstein
et al. [DDFH18], which we defer till later.
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dimensional expander (γ-HDX).

Note that (the downward closure of) a random sparse (d + 1)-uniform hypergraph,

say with n vertices and c · n edges, is very unlikely to be a d-dimensional expander. With

high probability, no two hyperedges share more than one vertex and thus for any i ∈ [n],

the neighborhood graph Gi is simply a disjoint union of cliques of size d, which is very

far from an expander. While random hypergraphs do not yield high-dimensional ex-

panders, such objects are indeed known to exists via (surprising) algebraic constructions

[LSV05b, LSV05a, KO18a, CTZ18] and are known to have several interesting properties

and applications [KKL16, DHK+18, KM17, KO18b, DDFH18, DK17, PRT16].

Expander graphs can simply be thought of as the one-dimensional case of the above

definition. The results of Barak, Raghavendra and Steurer [BRS11] for 2-CSPs yield that

if the constraint graph of a 2-CSP instance (with size n and alphabet size q) is a suffi-

ciently good (one dimensional) spectral expander, then one can efficiently find solutions

satisfying OPT− ε fraction of constraints, where OPT denotes the maximum fraction of

constraints satisfiable by any assignment. Their algorithm is based on (q/ε)O(1) levels of

the Sum-of-Squares (SoS) SDP hierarchy, and the expansion requirement on the constraint

graph is that the (normalized) second singular value should be at most (ε/q)O(1). We

show a similar result for k-CSPs when the corresponding simplicial complex XI, which is

obtained by including one hyperedge for each constraint and taking a downward closure,

is a sufficiently good (k− 1)-dimensional expander.

Theorem 2.1.1 (Informal). Let I be an instance of MAX k-CSP on n variables taking values

over an alphabet of size q, and let ε > 0. Let the simplicial complex XI be a γ-HDX with

γ = εO(1) · (1/(kq))O(k). Then, there is an algorithm based on (k/ε)O(1) · qO(k) levels of

the Sum-of-Squares hierarchy, which produces an assignment satisfying OPT− ε fraction of the

constraints.

Remark 2.1.2. While the level-t relaxation for MAX k-CSP can be solved in time (nq)O(t)

11



[RW17], the rounding algorithms used by [BRS11] and our work do not need the full power of

this relaxation. Instead, they are captured by the “local rounding” framework of Guruswami and

Sinop [GS12] who show how to implement a local rounding algorithm based on t levels of the SoS

hierarchy, in time qO(t) · nOk(1) (where q denotes the alphabet size).

Our techniques. We start by using essentially the same argument for analyzing the SoS

hierarchy as was used by [BRS11] (specialized to the case of expanders). They viewed the

SoS solution as giving a joint distribution on each pair of variables forming a constraint,

and proved that for sufficiently expanding graphs, these distributions can be made close

to product distributions, by conditioning on a small number of variables (which governs

the number of levels required). Similarly, we consider the conditions under which joint

distributions on k-tuples corresponding to constraints can be made close to product dis-

tributions. Since the [BRS11] argument shows how to split a joint distribution into two

marginals, we can use it to recursively split a set of size k into two smaller ones (one can

think of all splitting operations as forming a binary tree with k leaves).

However, our arguments differ in the kind of expansion required to perform the

above splitting operations. In the case of the 2-CSP, one splits along the edges of the

constraint graph, and thus we only need the expansion of the contraint graph (which

is part of the assumption). However, in the case of k-CSPs, we may split a set of size

(`1 + `2) into disjoint sets of size `1 and `2. This requires understanding the expansion

of the following family of (weighted) bipartite graphs arising from the complex XI: The

vertices in the graph are sets of variables of size `1 and `2 that occur in some constraint,

and the weight of an edge {a1, a2} for a1 ∩ a2 = ∅, is proportional to the probability that

a random constraint contains a1 t a2. Note that this graph may be weighted even if the

k-CSP instance I is unweighted.

We view the above graphs as random walks, which we call “swap walks” on the

hyperedges (faces) in the complex X. While several random walks on high-dimensional
12



expanders have been shown to have rapid mixing [KM17, KO18b, DK17, LLP17], we need

a stronger condition. To apply the argument from [BRS11], we not only need that the

second singular value is bounded away from one, but require it to be an arbitrarily small

constant (as a function of ε, k and q). We show that this is indeed ensured by the condition

that a1∩ a2 = ∅, and obtain a bound of kO(k) ·γ on the second singular value. This bound,

which constitutes much of the technical work in the paper, is obtained by first expressing

these walks in terms of more canonical walks, and then using the beautiful machinery of

harmonic analysis on expanding posets by Dikstein et al. [DDFH18] to understand their

spectra.

The swap walks analyzed above represent natural random walks on simplicial com-

plexes, and their properties may be of independent interest for other applications. Just as

the high-dimensional expanders are viewed as “derandomized” versions of the complete

complex (containing all sets of size at most k), one can view the swap walks as deran-

domized versions of (bipartite) Kneser graphs, which have vertex sets ([n]`1
) and (

[n]
`2
), and

edges (a, b) iff a ∩ b = ∅. We provide a more detailed and technical overview in Sec-

tion 2.3 after discussing the relevant preliminaries in Section 2.2.

High-dimensional threshold rank. The correlation breaking method in [BRS11] can be

applied as long as the graph has low threshold rank i.e., the number of singular values

above a threshold τ = (ε/q)O(1) is bounded. Similarly, the analysis described above can

be applied, as long as all the swap walks which arise when splitting the k-tuples have

bounded threshold rank. This suggests a notion of high-dimensional threshold rank for

hypergraphs (discussed in Section 2.7), which can be defined in terms of the threshold

ranks of the relevant swap walks. We remark that it is easy to show that dense hyper-

graphs (with Ω(nk) hyperedges) have small-threshold rank according to this notion, and

thus it can be used to recover known algorithms for approximating k-CSPs on dense in-

stances [FK96] (as was true for threshold rank in graphs).
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Other related work. While we extend the approach taken by [BRS11] for 2-CSPs, some-

what different approaches were considered by Guruswami and Sinop [GS11], and Oveis-

Gharan and Trevisan [OGT15]. The work by Guruswami and Sinop relied on the expan-

sion of the label extended graph, and used an analysis based on low-dimensional ap-

proximations of the SDP solution. Oveis-Gharan and Trevisan used low-threshold rank

assumptions to obtain a regularity lemma, which was then used to approximate the CSP.

For the case of k-CSPs, the Sherali-Adams hierarchy can be used to solve instances with

bounded treewidth [WJ04] and approximately dense instances [YZ14, MR17]. Brandao

and Harrow [BH13] also extended the results by [BRS11] for 2-CSPs to the case of 2-local

Hamiltonians. We show that their ideas can also be used to prove a similar extension of

our results to k-local Hamiltonians on high-dimensional expanders.

In case of high-dimensional expanders, in addition to canonical walks described here,

a “non-lazy” version of these walks (moving from s to t only if s 6= t) was also consid-

ered by Kaufman and Oppenheim [KO18b], Anari et al. [ALGV18] and Dikstein et al.

[DDFH18]. The swap walks studied in this paper were also considered independently in

a very recent work of Dikstein and Dinur [DD19] (under the name "complement walks").

In a recent follow-up work [AJQ+20], the algorithms developed here were also used

to obtain new unique and list decoding algorithms for direct sum and direct product

codes, obtained by a “lifting" a base code C0 via k-local operations to amplify distance.

This work also showed that the hypergraphs obtained by considering collections of length-

k walks on an expanding graph also satisfy (a slight variant of) splittability, and admit

similar algorithms.
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2.2 Preliminaries and Notation

2.2.1 Linear Algebra

Recall that for an operator A : V → W between two finite-dimensional inner product

spaces V and W, the operator norm can be written as

‖A‖op = sup
f ,g 6=0

〈A f , g〉
‖ f ‖ ‖g‖ .

Also, for such an A the adjoint A† : W → V is defined as the (unique) operator satisfying

〈A f , g〉 =
〈

f ,A†g
〉

for all f ∈ V, g ∈ W. For A : V → W, we take ‖A‖op = σ1(A) ≥

σ2(A) ≥ · · · ≥ σr(A) > 0 to be its singular values in descending order. Note that for

A : V → V, σ2(A) denotes its second largest eigenvalue in absolute value.

2.2.2 High-Dimensional Expanders

A high-dimensional expander (HDX) is a particular kind of downward-closed hyper-

graph (simplicial complex) satisfying an expansion requirement. We elaborate on these

properties and define well known natural walks on HDXs below.

Simplicial Complexes

Definition 2.2.1. A simplicial complex X with ground set [n] is a downward-closed collection of

subsets of [n] i.e., for all sets s ∈ X and t ⊆ s, we also have t ∈ X. The sets in X are also referred

to as faces of X.

We use the notation X(i) to denote the collection of all faces s in X with |s| = i. When faces

are of cardinality at most d, we also use the notation X(≤ d) to denote all the faces of X. By

convention, we take X(0) := {∅}.
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A simplicial complex X(≤ d) is said to be a pure simplicial complex if every face of X is

contained in some face of size d. Note that in a pure simplicial complex X(≤ d), the top slice X(d)

completely determines the complex.

Note that it is more common to associate a geometric representation to simplicial

complexes, with faces of cardinality i being referred to as faces of dimension i− 1 (and the

collection being denoted by X(i − 1) instead of X(i)). However, since we will only be

treating these as hypergraphs, we prefer to index faces by their cardinality, to improve

readability of related expressions.

An important simplicial complex is the complete complex.

Definition 2.2.2 (Complete Complex ∆d(n)). We denote by ∆d(n) the complete complex with

faces of size at most d i.e., ∆d(n) := {s ⊆ [n] | |s| ≤ d}.

Walks and Measures on Simplicial Complexes

Let Ck denote the space of real valued functions on X(k) i.e.,

Ck := { f | f : X(k)→ R} ∼= RX(k).

We describe natural walks on simplicial complexes considered in [DK17, DDFH18, KO18b],

as stochastic operators, which map functions in Ci to Ci+1 and vice-versa.

To define the stochastic operators associated with the walks, we first need to describe

a set of probability measures which serve as the stationary measures for these random

walks. For a pure simplicial complex X(≤ d), we define a collection of probability mea-

sures (Π1, . . . Πd), with Πi giving a distribution on faces in the slice X(i).

Definition 2.2.3 (Probability measures (Π1, . . . , Πd)). Let X(≤ d) be a pure simplicial com-

plex and let Πd be an arbitrary probability measure on X(d). We define a coupled array of random
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variables (s(d), . . . , s(1)) as follows: sample s(d) ∼ Πd and (recursively) for each i ∈ [d], take

s(i−1) to be a uniformly random subset of s(i), of size i− 1.

The distributions Πd−1, . . . , Π1 are then defined to be the marginal distributions of the ran-

dom variables s(d−1), . . . , s(1) as defined above.

The following is immediate from the definition above.

Proposition 2.2.4. Let a ∈ X(`) be an arbitrary face. For all j ≥ 0, one has

∑
b∈X(`+j):

b⊇a

Π`+j(b) =

(
`+ j

j

)
·Π`(a).

For all k, we define the inner product of functions f , g ∈ Ck, according to associated

measure Πk

〈 f , g〉 = E
s∼Πk

[ f (s)g(s)] = ∑
s∈X(k)

f (s)g(s) ·Πk(s) .

We now define the up and down operators Ui : Ci → Ci+1 and Di+1 : Ci+1 → Ci as

[Uig](s) = E
s′∈X(i), s′⊆s

[
g(s′)

]
=

1
i + 1

· ∑
x∈s

g(s\{x})

[Di+1g](s) = E
s′∼Πi+1|s′⊃s

[
g(s′)

]
=

1
i + 1

· ∑
x/∈s

g(st {x}) · Πi+1(st {x})
Πi(s)

An important consequence of the above definition is that Ui and Di+1 are adjoints with

respect to the inner products of Ci and Ci+1.

Fact 2.2.5. Ui = D†
i+1, i.e., 〈Ui f , g〉 = 〈 f ,Di+1g〉 for every f ∈ Ci and g ∈ Ci+1.

Note that the operators can be thought of as defining random walks in a simplicial

complex X(≤ d). The operator Ui moves down from a face s ∈ X(i + 1) to a face s′ ∈ X(i),

but lifts a function g ∈ Ci up to a function Ug ∈ Ci+1. Similarly, the operator Di+1 can

be thought of as defining a random walk which moves up from s ∈ X(i) to s′ ∈ X(i + 1).
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It is easy to verify that these walks respectively map the measure Πi+1 to Πi, and Πi to

Πi+1.

High-Dimensional Expansion

We recall the notion of high-dimensional expansion (defined via local spectral expansion)

considered by [DK17]. We first need a few pieces of notation.

For a complex X(≤ d) and s ∈ X(i) for some i ∈ [d], we denote by Xs the link complex

Xs := {t\s | s ⊆ t ∈ X} .

When |s| ≤ d − 2, we also associate a natural weighted graph G(Xs) to a link Xs, with

vertex set Xs(1) and edge-set Xs(2). The edge-weights are taken to be proportional to the

measure Π2 on the complex Xs, which is in turn proportional to the measure Π|s|+2 on X.

The graph G(Xs) is referred to as the skeleton of Xs. Dinur and Kaufman [DK17] define

high-dimensional expansion in terms of spectral expansion of the skeletons of the links.

Definition 2.2.6 (γ-HDX from [DK17]). A simplicial complex X(≤ d) is said to be γ-High

Dimensional Expander (γ-HDX) if for every 0 ≤ i ≤ d − 2 and for every s ∈ X(i), the graph

G(Xs) satisfies σ2(G(Xs)) ≤ γ, where σ2(G(Xs)) denotes the second singular value of the

(normalized) adjacency matrix of G(Xs).

2.2.3 Constraint Satisfaction Problems (CSPs)

A k-CSP instance I = (H, C, w) with alphabet size q consists of a k-uniform hypergraph,

a set of constraints

C = {Ca ⊆ [q]a : a ∈ H},
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and a non-negative weight function w ∈ RH
+ on the constraints, satisfying ∑a∈H w(a) =

1.

A constraint Ca is said to be satisfied by an assignment σ if we have σ|a ∈ Ca i.e., the

restriction of σ on a is contained in Ca. We write, SATI(σ) for the (weighted fraction of

the constraints) satisfied by the assignment σ i.e.,

SATI(σ) = ∑
a∈H

w(a) · 1[σ|a ∈ Ca] = E
a∼w

[1[σ|a ∈ Ca]] .

We denote by OPT(I) the maximum of SATI(σ) over all σ ∈ [q]V(H).

Any k-uniform hypergraph H can be associated with a pure simplicial complex in

a canonical way by just setting XI = {b : ∃ a ∈ H and a ⊇ b} – notice that XI(k) = H.

We will refer to this complex as the constraint complex of the instance I. The probability

distribution Πk on XI will be derived from the weights function w of the constraint, i.e

Πk(a) = w(a) ∀a ∈ XI(k) = H.

2.2.4 Sum-of-Squares Relaxations and t-local PSD Ensembles

The Sum-of-Squares (SoS) hierarchy gives a sequence of increasingly tight semidefinite

programming relaxations for several optimization problems, including CSPs. Since we

will use relatively few facts about the SoS hierarchy, already developed in the analysis of

Barak, Raghavendra and Steurer [BRS11], we will adapt their notation of t-local distribu-

tions to describe the relaxations. For a k-CSP instance I = (H, C, w) on n variables, we

consider the following semidefinite relaxation given by t-levels of the SoS hierarchy, with

vectors v(S,α) for all S ⊆ [n] with |S| ≤ t, and all α ∈ [q]S. Here, for α1 ∈ [q]S1 and

α2 ∈ [q]S2 , α1 ◦ α2 ∈ [q]S1∪S2 denotes the partial assignment obtained by concatenating

α1 and α2.
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maximize E
a∼w

[
∑

α∈Ca

‖v(a,α)‖2

]
=: SDP(I)

subject to
〈

v(S1,α1), v(S2,α2)

〉
= 0 ∀ α1|S1∩S2 6= α2|S1∩S2〈

v(S1,α1), v(S2,α2)

〉
=
〈

v(S3,α3), v(S4,α4)

〉
∀ S1 ∪ S2 = S3 ∪ S4, α1 ◦ α2 = α3 ◦ α4

∑
j∈[q]
‖v({i},j)‖2 = 1 ∀i ∈ [n]

‖v(∅,∅)‖ = 1

For any set S with |S| ≤ t, the vectors v(S,α) induce a probability distribution µS

over [q]S such that the assignment α ∈ [q]S appears with probability ‖v(S,α)‖2. More-

over, these distributions are consistent on intersections i.e., for T ⊆ S ⊆ [n], we have

µS|T = µT, where µS|T denotes the restriction of the distribution µS to the set T. We use

these distributions to define a collection of random variables Y1, . . . , Yn taking values in

[q], such that for any set S with |S| ≤ t, the collection of variables {Yi}i∈S have a joint

distribution µS. Note that the entire collection (Y1, . . . , Yn) may not have a joint distribu-

tion: this property is only true for sub-collections of size t. We will refer to the collection

(Y1, . . . , Yn) as a t-local ensemble of random variables.

We also have that that for any T ⊆ [n] with |T| ≤ t − 2, and any β ∈ [q]T, we can

define a (t− |T|)-local ensemble (Y′1, . . . , Y′n) by “conditioning” the local distributions on

the event YT = β, where YT is shorthand for the collection {Yi}i∈T. For any S with |S| ≤

t− |T|, we define the distribution of Y′S as µ′S := µS∪T|{YT = β}. Finally, the semidefinite

program also ensures that for any such conditioning, the conditional covariance matrix

M(S1,α1)(S2,α2)
= Cov

(
1[Y′S1

= α1], 1[Y′S2
= α2]

)

is positive semidefinite, where |S1| , |S2| ≤ (t− |T|)/2. Here, for each pair S1, S2 the co-

variance is computed using the joint distribution µ′S1∪S2
. The PSD-ness be easily verified
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by noticing that the above matrix can be written as the Gram matrix of the vectors

w(S,α) :=
1

‖v(T,β)‖
· v(T∪S,β◦α) −

‖v(T∪S,β◦α)‖2

‖v(T,β)‖3 · v(T,β)

In this paper, we will only consider t-local ensembles such that for every conditioning on

a set of size at most t− 2, the conditional covariance matrix is PSD. We will refer to these

as t-local PSD ensembles. We will also need a simple corollary of the above definitions.

Fact 2.2.7. Let (Y1, . . . , Yn) be a t-local PSD ensemble, and let X be any simplicial complex with

X(1) = [n]. Then, for all s ≤ t/2, the collection {Ya}a∈X(≤s) is a (t/s)-local PSD ensemble,

where X(≤ s) =
⋃s

i=1 X(i).

For random variables YS in a t-local PSD ensemble, we use the notation {YS} to

denote the distribution of YS (which exists when |S| ≤ t). We also define Var[YS] as

∑α∈[q]S Var[1 [YS = α]].

2.3 Proof Overview: Approximating MAX 4-XOR

We consider a simple example of a specific k-CSP, which captures most of the key ideas

in our proof. Let I be an unweighted instance of 4-XOR on n Boolean variables. Let H

be a 4-uniform hypergraph on vertex set [n], with a hyperedge corresponding to each

constraint i.e., each a = {i1, i2, i3, i4} ∈ H corresponds to a constraint in I of the form

xi1 + xi2 + xi3 + xi4 = ba (mod 2) ,

for some ba ∈ {0, 1}. Let X denote the constraint complex for the instance I such that

X(1) = [n], X(4) = H and let Π1, . . . , Π4 be the associated distributions (with Π4 being

uniform on H).
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Local vs global correlation: the BRS strategy. We first recall the strategy used by [BRS11],

which also suggests a natural first step for our proof. Given a 2-CSP instance with an

associated graph G, and a t-local PSD ensemble Y1, . . . , Yn obtained from the SoS relax-

ation, they consider if the “local correlation" of the ensemble is small across the edges of

G (which correspond to constraints) i.e.,

E
{i,j}∼G

[∥∥∥{YiYj

}
− {Yi}

{
Yj

}∥∥∥
1

]
≤ ε .

If the local correlation is indeed small, we easily produce an assignment achieving a value

SDP− ε in expectation, simply by rounding each variable xi independently according to

the distribution {Yi}. On the other hand, if this is not satisfied, they show (as a special

case of their proof) that if G is an expander with second eigenvalue λ ≤ c · (ε2/q2), then

variables also have a high “global correlation", between a typical pair (i, j) ∈ [n]2. Here,

q is the alphabet size and c is a fixed constant. They use this to show that for (Y′1, . . . , Y′n)

obtained by conditioning on the value of a randomly chosen Yi0 , we have

E
i
[Var [Yi]]− E

i0,Yi0

E
i

[
Var

[
Y′i
]]
≥ Ω(ε2/q2) ,

where the expectations over i and i0 are both according to the stationary distribution on

the vertices of G. Since the variance is bounded between 0 and 1, this essentially shows

that the local correlation must be at most ε after conditioning on a set of size O(q2/ε2)

(although the actual argument requires a bit more care and needs to condition on a some-

what larger set).
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Extension to 4-XOR. As in [BRS11], we check if the t-local PSD ensemble (Y1, . . . , Yn)

obtained from the SDP solution satisfies

E
{i1,i2,i3,i4}∈H

[∥∥∥{Yi1Yi2Yi3Yi4

}
−
{

Yi1

}{
Yi2

}{
Yi3

}{
Yi4

}∥∥∥
1

]
≤ ε .

As before, independently sampling each xi from {Yi} gives an expected value at least

SDP − ε in this case. If the above inequality is not satisfied, an application of triangle

inequality gives

E
{i1,i2,i3,i4}∈H


∥∥∥{Yi1Yi2Yi3Yi4

}
−
{

Yi1Yi2

}{
Yi3Yi4

}∥∥∥
1

+∥∥∥{Yi1Yi2

}
−
{

Yi1

}{
Yi2

}∥∥∥
1

+
∥∥∥{Yi3Yi4

}
−
{

Yi3

}{
Yi4

}∥∥∥
1

 > ε .

Symmetrizing over all orderings of {i1, i2, i3, i4}, we can write the above as

ε2 + 2 · ε1 > ε ,

which gives max {ε1, ε2} ≥ ε/3. Here,

ε1 := E
{i1,i2}∼Π2

[∥∥∥{Yi1Yi2

}
−
{

Yi1

}{
Yi2

}∥∥∥
1

]
, and

ε2 := E
{i1,i2,i3,i4}∼Π4

[∥∥∥{Yi1Yi2Yi3Yi4

}
−
{

Yi1Yi2

}{
Yi3Yi4

}∥∥∥
1

]
= E
{i1,i2,i3,i4}∼Π4

[∥∥∥{Y{i1,i2}Y{i3,i4}
}
−
{

Y{i1,i2}
}{

Y{i3,i4}
}∥∥∥

1

]
.

As before, ε1 measures the local correlation across edges of a weighted graph G1 with

vertex set X(1) = [n] and edge-weights given by Π2. Also, ε2 measures the analogous

quantity for a graph G2 with vertex set X(2) (pairs of variables occurring in constraints)

and edge-weights given by Π4.

Recall that the result from [BRS11] can be applied to any graph G over variables in a
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2-local PSD ensemble, as long as the σ2(G) is small. Since {Yi}i∈[n] and {Ys}s∈X(2) are

both (t/2)-local PSD ensembles (by Fact 4.7.14), we will apply the result to the graph G1

on the first ensemble and G2 on the second ensemble. We consider the potential

Φ(Y1, . . . , Yn) := E
i∼Π1

[Var [Yi]] + E
s∼Π2

[Var [Ys]] .

Since local correlation is large along at least one of the graphs G1 and G2, using the

above arguments (and the non-decreasing nature of variance under conditioning) it is

easy to show that in expectation over the choice of {i0, j0} ∼ Π2 and β ∈ [q]2 chosen from{
Y{i0,j0}

}
, the conditional ensemble (Y′1, . . . , Y′n) satisfies

Φ(Y1, . . . , Yn)− E
i0,j0,β

[
Φ(Y′1, . . . , Y′n)

]
= Ω(ε2) ,

provided G1 and G2 satisfy σ2(G1), σ2(G2) ≤ c · ε2 for an appropriate constant c.

The bound on the eigenvalue of G1 follows simply from the fact that it is the skeleton

of X, which is a γ-HDX. Obtaining bounds on the eigenvalues of G2 and similar higher-

order graphs, constitutes much of the technical part of this paper. Note that for a random

sparse instance of MAX 4-XOR, the graph G2 will be a matching with high probability

(since {i1, i2} in a constraint will only be connected to {i3, i4} in the same constraint).

However, we show that in case of a γ-HDX, this graph has second eigenvalue O(γ). We

analyze these graphs in terms of modified high-dimensional random walks, which we

call “swap walks”.

We remark that our potential and choice of a “seed set” of variables to condition on,

is slightly different from [BRS11]. To decrease the potential function above, we need that

for each level X(i) (i = 1, 2 in the example above) the seed set must contain sufficiently

many independent samples from X(i) sampled according to Πi. This can be ensured by

drawing independent samples from the top level X(k) (though X(2) suffices in the above
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example). In contrast, the seed set in [BRS11] consists of random samples from Π1.

Analyzing Swap Walks. The graph G2 defined above can be thought of as a random

walk on X(2), which starts at a face s ∈ X(2), moves up to a face (constraint) s′ ∈ X(4)

containing it, and then descends to a face t ∈ X(2) such that t ⊂ s′ and s ∩ t = ∅ i.e.,

the walk “swaps out” the elements in s for other elements in s′. Several walks considered

on simplicial complexes allow for the possibility of a non-trivial intersection, and hence

have second eigenvalue lower bounded by a constant. On the other hand, swap walks

completely avoid any laziness and thus turn out to have eigenvalues which can be made

arbitrarily small. To understand the eigenvalues for this walk, we will express it in terms

of other canonical walks defined on simplicial complexes.

Recall that the up and down operators can be used to define random walks on sim-

plicial complexes. The up operator Ui : Ci → Ci+1 defines a walk that moves down from

a face s ∈ X(i + 1) to a random face t ∈ X(i), t ⊂ s (the operator thus “lifts” a function

in Ci to a function in Ci+1). Similarly, the down operator Di : Ci → Ci−1 moves up from

a face s ∈ X(i− 1) to t ∈ X(i), t ⊃ s, with probability Πi(t)/(i ·Πi−1(s)). These can be

used to define a canonical random walk

N
(u)
2,2 := D3 · · ·Du+2Uu+1 · · ·U2 , N

(u)
2,2 : C2 → C2 ,

which moves from up for u steps s ∈ X(2) to s′ ∈ X(u + 2), and then descends back

to t ∈ X(2). Such walks were analyzed optimally by Dinur and Kaufman [DK17], who

proved that λ2

(
N
(u)
2,2

)
= 2/(u + 2)±Ou(γ) when X is a γ-HDX. Thus, while this walk

gives an expanding graph with vertex set X(2), the second eigenvalue cannot be made

arbitrarily small for a fixed u (recall that we are interested in showing that σ2(G2) ≤ c · ε2).

However, note that we are only interested in N
(2)
2,2 conditioned on the event that the two

elements from s are “swapped out” with new elements in the final set t i.e., s∩ t = ∅. We
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define

S
(u,j)
2,2 (s, t) :=


(u+2

2 )

(u
j)·(

2
2−j)
· N(u)

2,2 if |t \ s| = j

0 otherwise

,

where the normalization is to ensure stochasticity of the matrix. In this notation, the graph

G2 corresponds to the random-walk matrix S
(2,2)
2,2 . We show that while σ2(N

(2)
2,2 ) ≈ 1/2,

we have that σ2(S
(2,2)
2,2 ) = O(γ). We first write the canonical walks in terms of the swap

walks. Note that

N
(2)
2,2 =

1
6
· I + 2

3
· S(2,1)

2,2 +
1
6
· S(2,2)

2,2 ,

since the “descent” step from s′ ∈ X(4) containing s ∈ X(2), produces a t ∈ X(2) which

“swaps out” 0, 1 and 2 elements with probabilities 1/6, 2/3 and 1/6 respectively. Similarly,

N
(1)
2,2 =

1
3
· I + 2

3
· S(1,1)

2,2 .

Finally, we use the fact (proved in Section 2.4) that while the canonical walks do depend

on the “height” u (i.e., N(u)
2,2 6= N

(u′)
2,2 ) the swap walks (for a fixed number of swaps j) are

independent of the height to which they ascend! In particular, we have

S
(2,1)
2,2 = S

(1,1)
2,2 .

Using these, we can derive an expression for the swap walk S
(2,2)
2,2 as

S
(2,2)
2,2 = I + 6 · N(2)

2,2 − 6 · N(1)
2,2 = I + 6 · (D3D4U3U2 −D3U2)

To understand the spectrum of operators such as the ones given by the above expression,

we use the beautiful machinery for harmonic analysis over HDXs (and more generally

over expanding posets) developed by Dikstein et al. [DDFH18]. They show how to de-
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compose the spaces Ck into approximate eigenfunctions for operators of the form DU.

Using these decompositions and the properties of expanding posets, we can show that

distinct eigenvalues of the above operator are approximately the same (up to O(γ) errors)

when analyzing the walks on the complete complex. Finally, we use the fact that swap

walks in a complete complex correspond to Kneser graphs (for which the eigenvectors

and eigenvalues are well-known) to show that λ2(S
(2,2)
2,2 ) = O(γ).

Splittable CSPs and high-dimensional threshold rank. We note that the ideas used

above can be generalized (at least) in two ways. In the analysis of distance from product

distribution for a 4-tuple of random variables forming a contraint, we split it in 2-tuples.

In general, we can choose to split tuples in a k-CSP instance along any binary tree T with

k leaves, with each parent node corresponding to a swap walk between tuples forming

its children. Finally, the analysis from [BRS11] also works if the each of the swap walks

in some T have a bounded number (say r) of eigenvalues above some threshold τ, which

provide a notion of high-dimensional threshold rank for hypergraphs. We refer to such

an instance as a (T , τ, r)-splittable.

The arguments sketched above show that high-dimensional expanders are (T , O(γ), 1)-

splittable for all T . Since the knowledge of T is only required in our analysis and not

in the algorithm, we say that rankτ(I) ≤ r (or that I is (τ, r)-splittable) if I is (T , τ, r)-

splittable for any T . We defer the precise statement of results for (τ, r)-splittable instances

to Section 2.7.

2.4 Walks

It is important to note that both Ui and Di+1 can be thought of as row-stochastic matrices,

i.e. we can think of them as the probability matrices describing the movement of a walk
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from X(i + 1) to X(i); and from X(i) to X(i + 1) respectively. More concretely, we will

think

[D>i+1es](t) = P
[
the walk moves up from s ∈ X(i) to t ∈ X(i + 1)

]
and similarly

[U>i et](s) = P [the walk moves down from t ∈ X(i + 1) to s ∈ X(i)] .

By referring to the definition of the up and down operators in Section 2.2, it is easy to

verify that

[D>i+1es](t) = 1[t ⊇ s] · 1
i + 1

Πi+1(t)

Πi(s)
and [U>i et](s) = 1[s ⊆ t] · 1

i + 1
.

It is easy to see that our notion of random walk respects the probability distributions Πj,

i.e. we have

U>i Πi+1 = Πi and D>i+1Πi = Πi+1,

i.e., randomly moving up from a sample of Πj gives a sample of Πj+1 and similarly,

moving down from a sample of Πj+1 results in a sample of Πj.

Instead of going up and down by one dimension, one can try going up or down

by multiple dimensions since
(
Di+1 · · ·Di+`

)
and

(
Ui+` · · ·Ui

)
are still row-stochastic

matrices. Further, the corresponding probability vectors still have intuitive explanations

in terms of the distributions Πj. For a face s ∈ X(k), we introduce the notation

p(u)s =
(
Dk+1 · · ·Dk+u

)>es

where we take p(0)s = es. This notation will be used to denote the probability distribution

of the up-walk starting from s ∈ X(k) and ending in a random face t ∈ X(k+ u) satisfying
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t ⊇ s.

Note that the following Lemma together with Proposition 2.2.4 implies that p(u)s is

indeed a probability distribution.

Proposition 2.4.1. For s ∈ X(k) and a ∈ X(k + u) one has,

p(u)s (a) = 1[a ⊇ s] · 1

(k+u
u )
·

Πk+u(a)

Πk(s)
.

Proof. Notice that for u = 0, the statement holds trivially. We assume that there exists

some u ≥ 0 that satisfies

p(u)s (a) = 1[a ⊇ s] · 1

(k+u
u )
·

Πk+u(a)

Πk(s)

for all a ∈ X(k + u).

For b ∈ X(k + (u + 1)) one has,

p(u+1)
s (b) = [D>k+u+1p(u)s ](b) =

1
k + u + 2

· ∑
x∈b

Πk+u+1(b)

Πk+u(b\{x})
· p(u)s (b\{x}).

Plugging in the induction assumption, this implies

p(u+1)
s (b) =

1
(k + u + 1)

·∑
x∈b

Πk+u+1(b)

Πk+u(b\{x})
·
(

1[(b\{x)}) ⊇ s] · 1

(k+u
u )
· Πk+u(b\{x})

Πk(s)

)
,

=
1

(k + u + 1)
· 1

(k+u
u )
·∑

x∈b
1[b\{x} ⊇ s] · Πk+u+1(b)

Πk(s)
.

First, note that the up-walk only hits the faces that contain s, otherwise 1[b\{x} ⊇ s] = 0.

Suppose therefore b ∈ X(k + u + 1) satisfies b ⊇ s. Since there are precisely (u + 1)
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indices whose deletion still preserves the containment of s, we can write

p(u+1)
s (b) = 1[b ⊇ s] · u + 1

k + u + 1
· 1

(k+u
u )

Πk+u+1(b)

Πk(s)
,

= 1[b ⊇ s] · 1

(k+u+1
u+1 )

·
Πk+u+1(b)

Πk(s)
.

Thus, proving the proposition.

Similarly, we introduce the notation q(u)a , as

q(u)a (s) =
(
Uk+u−1 · · ·Uk

)>es,

i.e. for the probability distribution of the down-walk starting from a ∈ X(k + u) and

ending in a random face of X(k) contained in a. The following can be verified using

Proposition 2.4.1, and the fact that
(
Uk+u−1 · · ·Uk

)†
= Dk+u · · ·Dk+1.

Corollary 2.4.2. Let X(≤ d) be a simplicial complex, and k, u ≥ 0 be parameters satisfying

k + u ≤ d. For a ∈ X(k + u) and s ∈ X(k), one has

q(u)a (s) =
1

(k+u
u )
· 1[s ⊆ a].

In the remainder of this section, we will try to construct more intricate walks on X

from X(k) to X(l).

2.4.1 The Canonical and the Swap Walks on a Simplicial Complex

Definition 2.4.3 (Canonical and Swap u-Walks). Let d ≥ 0, X(≤ d) be a simplicial complex,

and k, l, u ≥ 0 be parameters satisfying l ≤ k, u ≤ l and d ≥ k + u; where the constraints on

these parameters are to ensure well-definedness. We will define the following random walks,
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- canonical u-walk from X(k) to X(l). Let N(u)
k,l be the (row-stochastic) Markov operator

that represents the following random walk: Starting from a face s ∈ X(k),

– (random ascent/up-walk) randomly move up a face s′′ ∈ X(k + u) that contains s,

where s′′ is picked with probability

p(u)s (s′′) = [
(
Dk+1 · · ·Dk+u

)>es](s′′).

– (random descent/down-walk) go to a face s′ ∈ X(l) picked uniformly among all

the l-dimensional faces that are contained in s′′, i.e., the set s′ is picked with probability

qs′′(s
′) = 1[s′ ⊆ s′′] · 1

(k+u
l )

= [
(
Uk+u−1 · · ·Ul

)>es′′ ](s
′).

The operator N(u)
k,l : Cl → Ck satisfies the following equation,

N
(u)
k,l = Dk+1 · · ·Dk+uUk+u−1 · Uk · · ·Ul .

Notice that we have N(0)
k,k = I, and N

(0)
k,l = (Uk−1 . . .Ul) for l < k.

- swapping walk from X(k) to X(l). Let Sk,l be the Markov operator that represents the

following random walk: Starting from a face s ∈ X(k),

– (random ascent/up-walk) randomly move up to a face s′′ ∈ X(k + l) that contains

s, where as before s′′ is picked with probability

p(l)s (s′′) = [
(
Dk+1 · · ·Dk+l+1

)>es](s′′).

– (deterministic descent) deterministically go to s′ = s′′\s ∈ X(l).

For our applications, we will need to show that the walk Sk,l has good spectral expan-
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sion whenever X is a d-dimensional γ-expander, for γ sufficiently small. To show this, we

will relate the swapping walk operator Sk,l on X to the canonical random walk operators

N
(u)
k,l (q.v. Lemma 2.4.4).

By the machinery of expanding posets (q.v. Section 2.5) it is possible to argue that the

spectral expansion of the random walk operator N
(u)
k,l on a high dimensional expander

will be close to that of the complete complex. This will allow us to conclude using the

relation between the swapping walks and the canonical walks (q.v. Lemma 2.4.4) that

the spectral expansion of the swapping walk on X, will be comparable with the spectral

expansion of the swap walk on the complete complex. More precisely, we will show

Lemma 2.4.4 (Lemma 2.5.34). For any d, k, l ≥ 0, and the complete simplicial simplicial complex

X(≤ d), one has the following: If k ≥ l ≥ 0 and d ≥ k + l, we have

σ2(Sk,l) = Ok,l

(
1
n

)
.

Using these two, and the expanding poset machinery, we will conclude

Theorem 2.4.5 (Theorem 2.5.2 simplified). Let X be a d-dimensional γ expander. If k ≥ l ≥ 0

satisfy d ≥ l + k we have,

σ2(Sk,l) = Ok,l(γ)

where Sk,l is the swapping walk on X from X(k) to X(l).

To prove Theorem 2.4.5 we will need to define an intermediate random walk that we

will call the j-swapping u-walk from X(k) to X(l):

Definition 2.4.6 (j-swapping u-walk from X(k) to X(l)). Given d, u, j, k, l ≥ 0 satisfying

l ≤ k, j ≤ u, u ≤ l, and d ≥ k + u. Let S
(u,j)
k,l be the Markov operator that represents the

following random walk from X(k) to X(l) on a d-dimensional simplicial complex X: Starting

from s ∈ X(k)
32



- (random ascent/up-walk) randomly move up to a face s′′ ∈ X(k + u) that contains s,

where s′′ is picked with probability

p(u)s (s′′) = [
(
Dk+1 · · ·Dk+u

)>es](s′′).

- (conditioned descent) go to a face s′ ∈ X(l) sampled uniformly among all the subsets of

s′′ ∈ X(k + u) that have intersection j with s′′\s, i.e. |s′ ∩ (s′′\s)| = j.

Notice that Sk,l = S
(l,l)
k,l for any k and I = S

(u,0)
k,k for any u.

Remark 2.4.7. We will prove that the parameter u does not effect the swapping walk S
(u,j)
k,l so

long as u ≥ j, i.e. for all u, u′ ≥ j we have S
(u′,j)
k,l = S

(u,j)
k,l . Thus, we will often write S

(j)
k,l for

S
(j,j)
k,l .

2.4.2 Swap Walks are Height Independent

Recall that the swap walk S
(u,j)
k,l is the conditional walk defined in terms of N(u)

k,l where

s ∈ X(k) is connected to t ∈ X(l) only if |t \ s| = j. The parameter u is called the height

of the walk, namely the number of times it moves up. Since up and down operators have

second singular value bounded away from 1, the second singular value of N(u)
k,l shrinks as

u increases. In other words, the operator N(u)
k,l depends on the height u. Surprisingly, the

walk S
(u,j)
k,l which is defined in terms of N(u)

k,l does not depend on the particular choice of

u as long as it is well defined. More precisely, we have the following result.

Lemma 2.4.8. If X is a d-dimensional simplicial complex, 0 ≤ l ≤ k, and u, u′ ∈ [j, d− k], then

S
(u,j)
k,l = S

(u′,j)
k,l .

In order to obtain Lemma 2.4.8, we will need a simple proposition:
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Proposition 2.4.9. Let s ∈ X(k), s′ ⊆ s and |t′| = j. Suppose s′ t t′ ∈ X(l). Then, we have

S
(u,j)
k,l (s, s′ t t′) =

1

( k
l−j) · (

u
j )
· ∑
a∈X(k+u):
a⊇(stt′)

p(u)s (a).

Proof. The only way of picking s′ t t′ at the descent step is picking some a ∈ X(k + u)

that contains s′ t t′ in the ascent step. The probability of this happening is precisely,

p1 = ∑
a∈X(k+u):
a⊇(stt′)

p(u)s (a).

Suppose we are at a set a = st t, such that t ⊇ t′ and s∩ t = ∅. Now, the probability of the

descent step ending at s′ t t′ is the probability of a randomly sampled (l − j)-elemented

subset of s being s′ and the probability of a randomly sampled j-elemented subset of t

being t′. It can be verified that this probability is

p2 =
1

( k
l−j) · (

u
j )

.

By law of total probability we establish that

S
(u,j)
k,l (s, s′ t t′) = p1 · p2 =

1

( k
l−j) · (

u
j )
· ∑
a∈X(k+u):
at(stt′)

p(u)s (a).

Lemma 2.4.10 (Height Independence). Let u ∈ [j, d − k]. For any s ∈ X(k), s′ ⊆ s and

t′ ∈ X(j) satisfying s′ t t′ ∈ X(l) we have the following,

S
(u,j)
k,l (s, s′ t t′) =

1

( k
l−j)(

k+j
j )
·

Πk+j(st t′)

Πk(s)
.
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In particular, the choice of u ∈ [j, d− k] does not affect the swap walk.

Proof. We have,

∑
a∈X(k+u):a⊇stt′

p(k+u)
s (a) =

1

(k+u
u )
· 1

Πk(s)
· ∑
a∈X(k+u):a⊇stt

Πk+u(a),

=
(k+u

u−j)

(k+u
u )
·

Πk+j(st t′)

Πk(s)

where the first equality is due to Proposition 2.4.1 and the second is due to Proposi-

tion 2.2.4 together with the observation that st t′ ∈ X(k + j).

Thus, by Proposition 2.4.9 we get,

S
(u,j)
k,l (s, t) =

1

(u
j ) · (

k
l−j)

(k+u
u−j)

(k+u
u )
·

Πk+j(st t′)

Πk(s)
.

We complete the proof by noting that,

(k+u
u−j)

(k+u
u )

=
(u

j )

(
k+j

j )
,

and thus

S
(u,j)
k,l (s, t) =

1

( k
l−j) · (

k+j
j )
·

Πk+j(st t′)

Πk(s)

which proves the formula.

Since the choice of u does not affect the formula, we obtain Lemma 2.4.8.
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2.4.3 Canonical Walks in Terms of the Swap Walks

We show that the canonical walks are given by an average of swap walks with respect to

the hypergeometric distribution.

Lemma 2.4.11. Let u, l, k, d ≥ 0 be given satisfying l ≤ k and u ≤ l. Then, we have the following

formula for the canonical u-walk on any X(≤ d) satisfying d ≥ k + u

N
(u)
k,l =

u
∑
j=0

(u
j )(

k
l−j)

(k+u
l )

· S(j)
k,l .

Proof. Suppose the canonical u-walk starting from s ∈ X(k) picks s′′ ∈ X(k + u) in the

second step. Write Ej(s
′′) for the event that the random face s′ the canonical u-walk picks

in the descent step satisfies ∣∣s′ \ s∣∣ = j.

By elementary combinatorics,

P
s′⊆s′′

[
Ej(s

′′) | s′′
]
=

(u
j )(

k
l−j)

(k+u
l )

where the draw of the probability is over the subsets s′ ∈ X(l) of s′′. Further, let t′j be

the random variable that stands for the face picked in the descent step of the j-swapping

u-walk from X(k) to X(l).

By the definition of the j-swapping walk from X(k) to X(l), conditioning that the

ascent step picks the same s′′ ∈ X(k + u) we have

P
[
t′j = t | s′′

]
= P

[
s′ = t | s′′ and Ej(s

′′)
]

. (2.1)
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Now, by the law of total probability we have

N
(u)
k,l (s, t) = P

[
S′ = t

]
=

u

∑
j=0

∑
s′′∈X(k+u)

P
[
s′′
]
·P
[
Ej(s

′′) | s′′
]
·P
[
s′ = t | s′′ and Ej(s

′′)
]

,

=
u

∑
j=0

(u
j)(

k
l−j)

(k+u
l )
· E
s′′⊇s

[
P
[
s′ = t | s′′ and Ej(s

′′)
]]

,

=
u

∑
j=0

(u
j)(

k+u
l−j )

(k+u
l )

· E
s′′⊇s

[
P
[
t′j = t | s′′

]]

where we used Equation (2.1) to get the last equality. Another application of the law of

total probability gives us

E
s′′⊇s

[
P
[
t′j = t | s′′

]]
= P

[
t′j = t

]
.

This allows us to write,

N
(u)
k,l (s, t) =

u
∑
j=0

(u
j )(

k
l−j)

(k+u
l )

·P
[
t′j = t

]
,

=
u
∑
j=0

(u
j )(

k
l−j)

(k+u
l )

· S(u,j)
k,l (s, t),

The statement follows using height independence, i.e. Lemma 2.4.8

2.4.4 Inversion: Swap Walks in Terms of Canonical Walks

We show how the swap walks can be obtained as a signed sum of canonical walks. This

result follows from binomial inversion which we recall next.

Fact 2.4.12 (Binomial Inversion, [BS02]). Let (an)n≥0, (bn)n≥0 be arbitrary sequences. Sup-

pose for all n ≥ 0 we have,

bn =
n
∑
j=0

(
n
j

)
· (−1)j · aj.
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Then, we also have

an =
n
∑
j=0

(
n
j

)
· (−1)j · bj.

Corollary 2.4.13. Let k, l, d ≥ 0 be given parameters such that k + l ≤ d and k ≥ l. For any

simplicial complex X(≤ d), one has the following formula for the u-swapping walk from X(k) to

X(l) in terms of the canonical j-walks:

(
k

l − u

)
S
(u)
k,l =

u
∑
j=0

(−1)u−j ·
(

k + j
l

)
·
(

u
j

)
· N(j)

k,l .

Proof. Fix faces s ∈ X(k) and t ∈ X(l) and set for all j ∈ [0, u]

aj :=
(

k
l − j

)
· (−1)j · S(j)

k,l (s, t).

Notice that we have by Lemma 2.4.11

(
k + u

l

)
· N(u)

k,l (s, t) =
u
∑
j=0

(
u
j

)
· (−1)j · aj =

u
∑
j=0

(
u
j

)
·
(

k
l − j

)
· ·S(j)

k,l (s, t).

i.e. if we set

bu =

(
k + u

l

)
· N(u)

k,l (s, t),

we can apply Fact 2.4.12 to obtain

(
k

l − u

)
· (−1)u · S(u)k,l (s, t) = au

=
u
∑
j=0

(
u
j

)
· (−1)j · bj

=
u
∑
j=0

(
u
j

)
·
(

k + j
l

)
· (−1)j · N(j)

k,l (s, t).

Dividing both sides of this equation by (−1)u yields the desired result.
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2.5 Spectral Analysis of Swap Walks

Swap walks arise naturally in our k-CSPs approximation scheme on HDXs where the

running time and the quality of approximation depend on the expansion of these walks.

For this reason, we analyze the spectra of swap walks. We show that swap walks Sk,k

of γ-HDXs are indeed expanding for γ sufficiently small. More precisely, the first main

result of this section is the following.

Theorem 2.5.1 (Swap Walk Spectral Bound). Let X(≤ d) be a γ-HDX with d ≥ 2k. Then the

second largest singular value σ2(Sk,k) of the swap operator Sk,k is

σ2(Sk,k) ≤ γ ·
(

27 · k4 · 23k · kk
)

.

Theorem 2.5.1 is enough for the analysis of our k-CSP approximation scheme when k

is a power of two. However, to analyze general k-CSPs on HDXs we need to understand

the spectra of general swap walks Sk,l where k may differ from l. Therefore, we generalize

the spectral analysis of Sk,k above to Sk,l obtaining Theorem 2.5.2, our second main result

of this section.

Theorem 2.5.2 (Rectangular Swap Walk Spectral Bound). Suppose X(≤ d) is a γ-HDX with

d ≥ k + l and k ≤ l. Then the largest non-trivial singular value σ2(Sk,l) of the swap operator Sk,l

is

σ2(Sk,l) ≤
√

γ ·
(
28 · k2`2 · 22k+4l · kk

)
.

2.5.1 Square Swap Walks Sk,k

We prove Theorem 2.5.1 by connecting the spectral structure of Sk,k of general γ-HDXs to

the well behaved case of complete simplicial complexes. To distinguish these two cases
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we denote by S∆
k,k the swap Sk,k of complete complexes 2. In fact, S∆

k,k is the random walk

operator of the well known Kneser graph K(n, k) (see Definition 2.5.3).

Definition 2.5.3 (Kneser Graph K(n, k) [GM15]). The Kneser graph K(n, k) is the graph G =

(V, E) where V = (
[n]
k ) and E = {{s, t} | s∩ t = ∅}.

Then at least for complete complexes we know that S∆
k,k is expanding. This is a direct

consequence of Fact 2.5.4.

Fact 2.5.4 (Kneser Graph [GM15]). The singular values 3 of the Kneser graph K(n, k) are

(
n− k− i

k− i

)
,

for i = 0, . . . , k.

This means that σ2(S
∆
k,k) = Ok(1/n) as shown in Claim 2.5.5.

Claim 2.5.5. Let d ≥ 2k and ∆d(n) be the complete complex. The second largest singular value

σ2(S
∆
k,k) of the swap operator S∆

k,k on ∆d(n) is

σ2(S
∆
k,k) =

k
n− k

,

provided n ≥ Mk where Mk ∈N only depends on k.

Proof. First note that for the complete complex ∆d(n), the operator S∆
k,k is the walk ma-

trix of the Kneser graph K(n, k). Since the degree of K(n, k) is (n−k
k ), the result follows

from Fact 2.5.4.

2. The precise parameters of the complete complex ∆d(n) where S∆
k,k lives will not be important. We only

require that S∆
k,k is well defined in the sense that d ≥ 2k and n > d.

3. The precise eigenvalues are also well known, but singular values are enough in our analysis.
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Therefore, if we could claim that σ2(Sk,k) of an arbitrary γ-HDX is close to σ2(S
∆
k,k)

(provided γ is sufficiently small), we would conclude that general Sk,k walks are also

expanding. A priori there is no reason why this claim should hold since a general d-

sized γ-HDX may have much fewer hyperedges (Od(n) versus (n
d) in the complete ∆d(n)).

Fortunately, it turns out that this claim is indeed true (up to Ok(γ) errors).

To prove Theorem 2.5.1 we employ the beautiful expanding poset (EPoset) machinery

of Dikstein et al. [DDFH18]. Before we delve into the full technical analysis, it might be

instructive to see how Theorem 2.5.1 is obtained from understanding the quadratic form〈
Sk,k f , f

〉
where f ∈ Ck.

First we informally recall the decomposition Ck = ∑k
i=0 Ck

i from the EPoset machin-

ery where Ck
i can be thought of as the space of approximate eigenfunctions of degree i of

Ck (the precise definitions are deferred to 2.5.2). In this decomposition, Ck
0 is defined as

the space of constant functions of Ck.

We prove the stronger result that the Sk,k operators of any γ-HDX has an an approx-

imate spectrum that only depends on k provided γ is small enough. More precisely, we

prove Lemma 2.5.6.

Lemma 2.5.6 (Swap Quadratic Form). Let f = ∑k
i=0 fi with fi ∈ Ck

i . Suppose X(≤ d) is a

γ-HDX with d ≥ 2k. If γ ≤ ε
(

64kk+423k+1
)−1

, then

〈
Sk,k f , f

〉
=

k
∑
i=0

λk(i) · 〈 fi, fi〉 ± ε,

where λk(i) depends only on k and i, i.e., λk(i) is an approximate eigenvalue of Sk,k associated to

space Ck
i .

Remark 2.5.7. From Lemma 2.5.6, it might seem that we are done since there exist approximate

eigenvalues λk(i) that only depend on k and i. However, giving an explicit expression for these

approximate eigenvalues is tricky. For this reason, we rely on the expansion of Kneser graphs as
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will be clear later.

Towards showing Lemma 2.5.6, we introduce the notion of balanced operators which

in particular captures canonical and swap walks and we show that the quadratic form

expression of Lemma 2.5.6 is a particular case of a general result for 〈B f , f 〉 where B is a

general balanced operator. A balanced operator in Ck is any operator that can be obtained

as linear combination of pure balanced operators, the later being operators that are a formal

product of an equal number of up and down operators.

Lemma 2.5.8 (General Quadratic Form). Let ε ∈ (0, 1) and let Y ⊆ {Y | Y : Ck → Ck} be

a collection of formal operators that are product of an equal number of up and down walks (i.e.,

pure balanced operators) not exceeding ` walks. Let B = ∑Y∈Y αYY where αY ∈ R and let

f = ∑k
i=0 fi with fi ∈ Ck

i . If γ ≤ ε
(

16kk+2`2 ∑Y∈Y |αY|
)−1

, then

〈B f , f 〉 =
k
∑
i=0

(
∑
Y∈Y

αYλY
k (i)

)
· 〈 fi, fi〉 ± ε,

where λY
k (i) depends only on the operators appearing in the formal expression of Y, i and k, i.e.,

λY
k (i) is the approximate eigenvalue of Y associated to Ck

i .

Remark 2.5.9. Note that our result generalizes the analysis of [DDFH18] for expanding posets

of HDXs which considered the particular case B = Dk+1Uk. Moreover, their error term anal-

ysis treated all the parameters not depending on the number of vertices n as constants. In this

work we make the dependence on the parameters explicit since this dependence is important in

understanding the limits of our k-CSPs approximation scheme on HDXs. The beautiful EPoset

machinery [DDFH18] is instrumental in our analysis.

Now, we are ready to prove Theorem 2.5.1. For convenience we restate it below.

Theorem 2.5.10 (Swap Walk Spectral Bound (restatement of Theorem 2.5.1)). Let X(≤ d)

be a γ-HDX with d ≥ 2k. For every σ ∈ (0, 1), if γ ≤ σ ·
(

64kk+423k+1
)−1

, then the second
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largest singular value σ2(Sk,k) of the swap operator Sk,k is

σ2(Sk,k) ≤ σ.

Proof. First we show that for i ∈ [k] the i-th approximate eigenvalue λk(i) of the swap

operator Sk,k is actually zero. Note that for i ∈ [k] the space Ck
i is a non-trivial eigenspace

(i.e., Ck
i is not the space of constant functions). Let S∆

k,k be the swap operator of the com-

plete complex ∆d(n). On one hand Claim 2.5.5 gives

σ2(S
∆
k,k) = max

f∈Ck : f⊥1,‖ f ‖=1

∣∣∣〈S∆
k,k f , f

〉∣∣∣ = Ok

(
1
n

)
.

On the other hand since ∆d(n) is a γ∆-HDX where γ∆ = Ok(1/n), if n is sufficiently large

we have γ∆ ≤ γ and thus Lemma 2.5.8 can be applied to give

σ2(S
∆
k,k) ≥ max

fi∈Ck
i : i∈[k],‖ fi‖=1

∣∣∣〈S∆
k,k fi, fi

〉∣∣∣ = |λk(i)| · 〈 fi, fi〉 ± Ok

(
1
n

)
.

Since n is arbitrary and λk(i) depends only on k and i, we obtain λk(i) = 0 as claimed.

Now applying Lemma 2.5.8 to the swap operator Sk,k of the γ-HDX X(≤ d) yields

σ2(Sk,k) = max
f∈Ck : f⊥1,‖ f ‖=1

∣∣〈Sk,k f , f
〉∣∣ ≤ max

i∈[k]
|λk(i)| + σ = σ,

concluding the proof.

2.5.2 Expanding Posets and Balanced Operators

We state the definitions used in our technical proofs starting with γ-EPoset from [DDFH18].

Definition 2.5.11 (γ-EPoset adapted from [DDFH18]). A complex X(≤ d) with operators
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U0, . . . ,Ud−1, D1, . . . ,Dd is said to be a γ-EPoset 4 provided

∥∥∥M+
i − Ui−1Di

∥∥∥
op
≤ γ, (2.2)

for every i = 1, . . . , d− 1, where

M+
i :=

i + 1
i

(
Di+1Ui −

1
i + 1

I

)
,

i.e., M+
i is the non-lazy version of the random walk N

(1)
i,i = Di+1Ui.

Definition 2.5.11 can be directly used as an operational definition of high-dimension

expansion as done in [DDFH18]. To us it is important that γ-HDXs are also γ-EPosets as

established in Lemma 2.5.12. In fact, these two notions are known to be closely related.

Lemma 2.5.12 (From [DDFH18]). Let X be a d-sized simplicial complex.

- If X is a γ-HDX, then X is a γ-EPoset.

- If X is a γ-EPoset, then X is a 3dγ-HDX.

Naturally the complete complex ∆d(n) is a γ-EPoset since it is a γ-HDX. Moreover, in

this particular case γ vanishes as n grows.

Lemma 2.5.13 (From [DDFH18]). The complete complex ∆d(n) is a γ-EPoset with γ = Od (1/n).

4. We tailor their general EPoset definition to HDXs. In fact, what they call γ-HDX we call γ-EPoset.
Moreover, what they call γ-HD expander we call γ-HDX.
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Harmonic Analysis on Simplicial Complexes

The space Ck defined in Section 2.2.2 can be decomposed into subspaces Ck
i of functions

of degree i for 0 ≤ i ≤ k where

Ck
i := {Uk−ihi | hi ∈ Hi},

with Hi := ker (Di), and

Ck
0 := { f : X(k)→ R | f is constant}.

More precisely, we have the following.

Lemma 2.5.14 (From [DDFH18]).

Ck =
k
∑
i=0

Ck
i .

Lemma 2.5.14 is proven in Appendix A.2 as Lemma A.2.3.

For convenience set ~δ ∈ Rd−1 such that δi = 1/(i + 1) for i ∈ [d− 1]. It will also be

convenient to work with the following equivalent version of Eq. (2.2)

‖Di+1Ui − (1− δi)Ui−1Di − δiI‖op ≤
i

i + 1
γ. (2.3)

Towards our goal of understanding quadratic forms of swap operators we study the

approximate spectrum of operators of the form Y = Y` . . .Y1 where each Yi is either an

up or down operator, namely, Y is a generalized random walk of ` steps. We regard the

expression Y` . . .Y1 defining Y as a formal product.

Definition 2.5.15 (Pure Balanced Operator). We call Y : Ck → Ck a pure balanced operator if

Y can be defined as product Y` . . .Y1
5 where each Yi is either an up or down operator. When we

5. For the analysis it is convenient to order the indices appearing in Y` . . .Y1 in decreasing order from
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say that the spectrum of Y depends on Y we mean that it depends on k and on the formal expression

Y` . . .Y1 (i.e., pattern of up and down operators).

Remark 2.5.16. By definition canonical walks N(u)
k,k are pure balanced operators.

Taking linear combinations of pure balanced operators leads to the notion of balanced

operators.

Definition 2.5.17 (Balanced Operator). We call B : Ck → Ck a balanced operator provided

there exists a set of pure balanced operators Y such that

B = ∑
Y∈Y

αY · Y,

where αY ∈ R.

Remark 2.5.18. Corollary 2.4.13 establishes that S(u)k,k are balanced operators. In particular, Sk,k

is a balanced operator.

It turns out that at a more crude level the behavior of Y is governed by how the num-

ber of up operators compares to the number of down operators. For this reason, it is con-

venient to define U (Y) = {Yi | Yi is an up operator} andD(Y) = {Yi | Yi is a down operator}

where Y is a pure balanced operator. When Y is clear in the context we use U = U (Y)

and D = D(Y).

Henceforth we assume hi ∈ Hi = ker (Di), fi ∈ Ck
i and g ∈ Ck. This convention will

make the statements of the technical results of Section 2.5.3 cleaner.

2.5.3 Quadratic Forms over Balanced Operators

Now we establish all the technical results leading to and including the analysis of quadratic

forms over balanced operators. By considering this general class of operators our analysis

left to right.
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generalizes the analysis given in [DDFH18]. At the same time we refine their error terms

analysis by making the dependence on the EPoset parameters explicit. Recall that an ex-

plicit dependence on these parameters is important in understanding the limits of our

k-CSP approximation scheme.

Lemma 2.5.19 (General Quadratic Form (restatement of Lemma 2.5.8)). Let ε ∈ (0, 1) and

let Y ⊆ {Y | Y : Ck → Ck} be a collection of formal operators that are product of an equal number

of up and down walks (i.e., pure balanced operators) not exceeding ` walks. Let B = ∑Y∈Y αYY

where αY ∈ R and let f = ∑k
i=0 fi with fi ∈ Ck

i . If γ ≤ ε
(

16kk+2`2 ∑Y∈Y |αY|
)−1

, then

〈B f , f 〉 =
k
∑
i=0

(
∑
Y∈Y

αYλY
k (i)

)
· 〈 fi, fi〉 ± ε,

where λY
k (i) depends only on the operators appearing in the formal expression of Y, i and k, i.e.,

λY
k (i) is the approximate eigenvalue of Y associated to Ck

i .

Since swap walks are balanced operators, we will deduced the following (as proven

later).

Lemma 2.5.20 (Swap Quadratic Form (restatement of Lemma 2.5.6)). Let f = ∑k
i=0 fi with

fi ∈ Ck
i . Suppose X(≤ d) is a γ-HDX with d ≥ 2k. If γ ≤ ε

(
64kk+423k+1

)−1
, then

〈
Sk,k f , f

〉
=

k
∑
i=0

λk(i) · 〈 fi, fi〉 ± ε,

where λk(i) depends on only on k an i, i.e., λk(i) is an approximate eigenvalue of Sk,k associated

to space Ck
i .

The next result, Lemma 2.5.21, (implicit in [DDFH18]) will be key in establishing that

the spectral structure of γ-EPosets is fully determined by the parameters in~δ provided γ is

small enough. Note that the Eposet Definition 2.5.11 provides a “calculus” for rearranging
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a single pair of up and down DU. The next result treats the more general case of DU · · ·U.

Lemma 2.5.21 (Structure Lemma). Suppose |D| = 1. Let Yc ∈ D be the unique down operator

in Y` . . .Y1. If ‖A‖op ≤ 1, then

〈AY` . . .Y1hi, g〉 =


0 if ` = 1 or c = 1

Qc,i(~δ) ·
〈
AU`−2hi, g

〉
± (c− 1) · γ ‖hi‖ ‖g‖ otherwise,

where Qc,i is a polynomial in the variables ~δ depending on c, i such that Qc,i(~δ) ≤ 1.

Proof. We induct on (`, c). If ` = 1 or c = 1, we have Y1hi = Dihi = 0 so the result trivially

holds. Otherwise, we have YcYc−1 = Dj+1Uj where j = i + c− 2. Then

〈AY` . . .Yc+1(YcYc−1)Yc−2 . . .Y1hi, g〉 ,

becomes

(1− δj) ·
〈
AY` . . .Yc+1Uj−1DjYc−2 . . .Y1hi, g

〉
+ δj · 〈AY` . . .Yc+1Yc−2 . . .Y1hi, g〉 ± γ ‖hi‖ ‖g‖ (Eq. (2.2))

= (1− δj) ·
〈
AY1 . . .Yc−1Uj−1DjYc+2 . . .Y`hi, g

〉
+ δj ·

〈
AU`−2hi, g

〉
± γ ‖hi‖ ‖g‖

= (1− δj) ·Qc−1,i(~δ) ·
〈
AU`−2hi, g

〉
± (1− δj) · (c− 2) γ ‖hi‖ ‖g‖ + δj ·

〈
AU`−2hi, g

〉
± γ ‖hi‖ ‖g‖ (I.H.)

= Qc,i(~δ) ·
〈
AU`−2hi, g

〉
± (c− 1) · γ ‖hi‖ ‖g‖ .

With Lemma 2.5.21 we are close to recover the approximate spectrum of Dk+1Uk

from [DDFH18]. However, in our application we will need to analyze more general oper-

ators, namely, pure balanced and balanced operators.
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Lemma 2.5.22 (Refinement of [DDFH18]). If ‖A‖op ≤ 1, then

〈
ADk+1Uk fi, g

〉
= λi · 〈A fi, g〉 ± (k− i + 1) · γ ‖hi‖ ‖g‖ ,

where λi = Qk−i+2,i(~δ).

Proof. Recall that fi = Uk−ihi where hi ∈ ker (Di). Set Y = Dk+1UkU
k−i. Lemma 2.5.21

yields 〈
ADk+1Uk fi, g

〉
= λi · 〈A fi, g〉 ± (k− i + 1) · γ ‖hi‖ ‖g‖ ,

where λi = Qk−i+2,i(~δ).

Then powers of the operator Dk+1Uk behave as expected.

Lemma 2.5.23 (Exponentiation Lemma).

〈(
Dk+1Uk

)s fi, fi
〉

= λs
i · ‖ fi‖2 ± s · (k− i + 1) · γ ‖hi‖ ‖ fi‖ ,

where λi is given in Lemma 2.5.22.

Proof. Follows immediately from the foregoing and the fact that
∥∥Dk+1Uk

∥∥
op = 1.

In case |D| > |U |, Y : Ci → Cj is an operator whose kernel approximately contains

ker(Di) as the following lemma makes precise.

Lemma 2.5.24 (Refinement of [DDFH18]). If |D| > |U | and hi ∈ ker (Di), then

〈AY` . . .Y1hi, g〉 = ± `2 · γ ‖hi‖ ‖g‖ ,

provided ‖A‖op ≤ 1.
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Proof. Let c ∈ [`] be the smallest index for which Yc is a down operator. Observe that

c < `/2 since |D| > |U |. We induct on m = |D|. If c = 1, then 〈ADihi, g〉 = 0. Hence

assume c, m > 1 implying YcYc−1 = Di+cUi+c−1. Applying Lemma 2.5.21 we obtain

〈AY` . . .Y1hi, g〉 =
〈
(AY` . . .Yc+1)DUU

c−2hi, g
〉

= Qc,i(~δ) ·
〈
(AY` . . .Yc+1)U

c−2hi, g
〉
± `

2
· γ ‖hi‖ ‖g‖

= ±Qc,i(~δ) · (`− 2)2 · γ ‖hi‖ ‖g‖ ±
`

2
· γ ‖hi‖ ‖g‖ (Induction)

= ± `2 · γ ‖hi‖ ‖g‖ ,

where in the last derivation we used Qc,i(~δ) ≤ 1.

We turn to an important particular case of |D| = |U |, namely, the canonical walks.

We show that N(u)
k,k is approximately a polynomial in the operator Dk+1Uk. As a warm up

consider the case N
(2)
k,k = Dk+1Dk+2Uk+1Uk. Using the Eq. (2.3), we get

N
(2)
k,k ≈ (1− δk+1) ·Dk+1UkDk+1Uk + δk+1 ·Dk+1Uk

= (1− δk+1) ·
(
Dk+1Uk

)2
+ δk+1 ·Dk+1Uk.

Inspecting this polynomial more carefully we see that that its coefficients form a proba-

bility distribution. This property holds in general as the following Lemma 2.5.25 shows.

This gives an alternative (approximate) random walk interpretation of N(u)
k,k as the walk

that first selects the power s according to the distribution encoded in the polynomial and

then moves according to
(
Dk+1Uk

)s.

Lemma 2.5.25 (Canonical Polynomials). For k, u ≥ 0 there exists a degree u univariate poly-

nomial FN
u,k,~δ

depending only on u, k,~δ such that

∥∥∥N(u)
k,k − FN

u,k,~δ
(Dk+1Uk)

∥∥∥
op
≤ (u− 1)2 · γ.

50



Moreover, the coefficients of this polynomial form a probability distribution, i.e., FN
u,k,~δ

(x) =

∑u
i=0 cixi where ∑u

i=0 ci = 1 and ci ≥ 0 for i = 0, . . . , u.

Proof. For u = 0, N(0)
k,k = I and the lemma trivially follows. Similarly, if u = 1, N(1)

k,k =

Dk+1Uk. Now suppose u ≥ 2. Set Y = N
(u)
k,k , i.e.,

Y = Dk+1 . . .
(
Dk+uUk+u−1

)
. . .Uk.

For convenience let j = k + u − 1. Using the Eq. (2.3) we can replace Dj+1Uj in Y by

(1− δj)Uj−1Dj + δjI incurring an error of γ (in spectral norm) and yielding

Y ≈ (1− δj) · Y′ + δj · N
(u−1)
k,k ,

where Y′ was obtained from Y by moving the rightmost occurence of a down operator (in

this case Dj+1) one position to right. We continue this process of moving the rightmost

occurrence of a down operator until the resulting operator is up to (u− 1) · γ error

α · N(u−1)
k,k

(
Dk+1Uk

)
+ β · N(u−1)

k,k ,

where α = ∏
j
i=k+1 (1− δi) and β = ∑

j
i=k+1 δi ∏

j
i=k+1 (1− δi). Since δi = δi > 0, α, β

are non negative and form a probability distribution. Now the result follows from the

induction hypothesis applied to N
(u−1)
k,k .

Remark 2.5.26. Having a polynomial expression FN
u,k,~δ

(Dk+1Uk) ≈ N
(u)
k,k and knowing that

Sk,k can be written as linear combination of canonical walks, we could deduce that Sk,k is also

approximately a polynomial in Dk+1Uk. Using an error refined version of the Lemma 2.5.23

(showing that exponentiation of Dk+1Uk behaves naturally), we could deduce the approximate

spectrum of Sk,k. We avoid this approach since it analysis introduces unnecessary error terms and

we can understand quadratic forms of pure balanced operators directly.
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Remark 2.5.27. The canonical polynomial FN
u,k,~δ

(Dk+1Uk) is used later in the error analysis that

relates the norms ‖hi‖ and ‖ fi‖ (Lemma 2.5.30).

Now we consider Y where |D| = |U | in full generality. We show how the quadratic

form of Y behaves in terms of the approximate eigenspace decomposition Ck = ∑k
i=0 Ck

i .

Lemma 2.5.28 (Pure Balanced Walks). Suppose Y = Y` . . .Y1 is a product of an equal number

of up and down operators, i.e., |D| = |U |. Then for fi ∈ Ck
i

〈Y fi, fi〉 = λY
k,i · 〈 fi, fi〉 ± γ · (`2 + `(k− i− 1)) ‖hi‖ ‖ fi‖ ,

where λY
k,i is an approximate eigenvalue depending only on Y, k and i.

Proof. We induct on even `. For ` = 0, the result trivially follows so assume ` ≥ 2.

Let c ∈ [`] be the smallest index of a down operator. Set A = Y` . . .Yc+1 and let Y′ =

Yc . . .Y1 = DU . . .U. Observe that

〈
AY′ fi, fi

〉
=
〈
ADUc−1+k−ihi, fi

〉
.

Applying Lemma 2.5.21 to the RHS above gives

〈
ADUc−1+k−ihi, fi

〉
= Qc−1+k−i,i(~δ) ·

〈
AUc−2 fi, fi

〉
± (c + k− i− 2) · γ ‖hi‖ ‖ fi‖ .

Applying the induction hypothesis to Y′′ = AUc−2 in the above RHS yields

Qc−1+k−i,i(~δ) · λY′′
k,i 〈 fi, fi〉

± Qc−1+k−i,i(~δ) · γ · ((`− 1)2 + (`− 1)(k− i− 1)) ‖hi‖ ‖ fi‖

± (c + k− i− 2) · γ ‖hi‖ ‖ fi‖

= λY
k,i · 〈 fi, fi〉 ± γ · (`2 + `(k− i− 1)) ‖hi‖ ‖ fi‖ ,

52



where λY
k,i = Qc−1+k−i,i(~δ) · λY′′

k,i and the last equality follows from Qc−1+k−i,i(~δ) ≤ 1

and c ≤ `.

To understand all errors in the analysis in Lemma 2.5.28 we need to derive the ap-

proximate orthogonality of fi and f j for i 6= j from [DDFH18] in more detail. We start

with the following bound in terms of hi, hj.

Lemma 2.5.29 (Refinement of [DDFH18]). For i 6= j,

〈
fi, f j

〉
= ± (2k− i− j)2 · γ ‖hi‖

∥∥∥hj

∥∥∥ .

Proof. Recall that fi = Uk−ihi, f j = Uk−jhj where hi ∈ ker (Di), hj ∈ ker
(
Dj

)
. Without

loss of generality suppose i > j. We have

〈
Uk−ihi,U

k−jhj

〉
=
〈
Dk−jUk−ihi, hj

〉
.

Since k− j > k− i, the result follows from Lemma 2.5.24.

To give a bound for Lemma 2.5.29 only in terms of the eigenfunction norms ‖ fi‖ and

not in terms of ‖hi‖, we need to understand how the norms of hi and fi are related.

Lemma 2.5.30 (Refinement of [DDFH18]). Let ηk,i = (k− i)2 + 1 and let

βi =

√∣∣∣∣FN
k−i,i,~δ

(δi)± γ · ηk,i

∣∣∣∣,
where FN

k−i,k,~δ
is a canonical polynomial of degree k− i from Lemma 2.5.25. Then

〈 fi, fi〉 = β2
i · 〈hi, hi〉 .

Let θk,i = (i + 1)k−i. Furthermore, if γ ≤ 1/(2 · ηk,i · θk,i), then βi ≥ 1
2θk,i

.
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Proof. Recall that fi = Uk−ihi where hi ∈ ker (Di). For i = k the result trivially follows so

assume k > i. First consider the case k = i + 1. We have

〈Uihi,Uihi〉 = 〈Di+1Uihi, hi〉 = δi · 〈hi, hi〉 ± γ · 〈hi, hi〉 . (2.4)

For general k > i we have

〈
Uk−ihi,U

k−ihi

〉
=
〈
Dk−iUk−ihi, hi

〉
.

Applying Lemma 2.5.25 to Dk−iUk−i yields

〈
Dk−iUk−ihi, hi

〉
=
〈

FN
k−i,i,~δ

(Di+1Ui)hi, hi

〉
± γ · (k− i− 1)2.

Combining Eq. (2.4) and Lemma 2.5.23 gives

〈
FN

k−i,i,~δ
(Di+1Ui)hi, hi

〉
± γ · (k− i− 1)2 =

〈
FN

k−i,i,~δ
(δi)hi, hi

〉
± γ · ((k− i)2 + 1).

Since FN
k−i,i,~δ

(x) = ∑k−i
i=0 cixi where the coefficients ci form a probability distribution, we

get

FN
k−i,i,~δ

(δi) ≥ δk−i
i =

(
1

i + 1

)k−i
.

Now, we can state the approximate orthogonality Lemma 2.5.31 in terms of the eigen-

function norms.

Lemma 2.5.31 (Approximate Orthogonality (refinement of [DDFH18])). Let ηk,s, θk,s, βs for
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s ∈ {i, j} be given as in Lemma 2.5.30. If i 6= j and βi, β j > 0, then

〈
fi, f j

〉
= ± γ · (2k− i− j)2

βiβ j
‖ fi‖

∥∥∥ f j

∥∥∥ .

Furthermore, if γ ≤ min
(

1/(2 · ηk,i · θk,i), 1/(2 · ηk,j · θk,j)
)

, then βi, β j > 0 and

〈
fi, f j

〉
= ± γ · θk,i · θk,j · (2k− i− j)2 ‖ fi‖

∥∥∥ f j

∥∥∥ .

Proof. Follows directly from Lemma 2.5.30.

We generalize the quadratic form of Lemma 2.5.28 to linear combinations of general

pure balanced operators Y, namely, to balanced operators.

Lemma 2.5.32 (General Quadratic Form (restatement of Lemma 2.5.8)). Let ε ∈ (0, 1) and

let Y ⊆ {Y | Y : Ck → Ck} be a collection of formal operators that are product of an equal number

of up and down walks (i.e., pure balanced operators) not exceeding ` walks. Let B = ∑Y∈Y αYY

where αY ∈ R and let f = ∑k
i=0 fi with fi ∈ Ck

i . If γ ≤ ε
(

16kk+2`2 ∑Y∈Y |αY|
)−1

, then

〈B f , f 〉 =
k
∑
i=0

(
∑
Y∈Y

αYλY
k (i)

)
· 〈 fi, fi〉 ± ε,

where λY
k (i) depends only on the operators appearing in the formal expression of Y, i and k, i.e.,

λY
k (i) is the approximate eigenvalue of Y associated to Ck

i .

55



Proof. Using Lemma 2.5.28 and the assumption on γ gives

〈B f , f 〉 =
k
∑
i=0

∑
Y∈Y

αYλY
k (i) · 〈 fi, fi〉

+ ∑
i 6=j

∑
Y∈Y

(
αYλY

k (i) ·
〈

fi, f j

〉
± γ · αY(`2 + `(k− i− 1))

〈
hi, f j

〉)

=
k
∑
i=0

∑
Y∈Y

αYλY
k (i) · 〈 fi, fi〉 + ∑

i 6=j
∑
Y∈Y

αYλY
k (i) ·

〈
fi, f j

〉
± ε

2
.

Next we use Lemma 2.5.31 to bound the second double summation and conclude the

proof.

We instantiate Lemma 2.5.31 for swap walks with their specific parameters. First, we

introduce some notation. Using Corollary 2.4.13, we have

Sk,k =
k
∑
j=0

(−1)k−j ·
(

k + j
k

)
·
(

k
j

)
· N(j)

k,k =
k
∑
j=0

αj · N
(j)
k,k,

where αj = (−1)k−j · (k+j
k ) · (k

j).

Finally, we have all the pieces to prove Lemma 2.5.6 restated below.

Lemma 2.5.33 (Swap Quadratic Form (restatement of Lemma 2.5.6)). Let f = ∑k
i=0 fi with

fi ∈ Ck
i . Suppose X(≤ d) is a γ-HDX with d ≥ 2k. If γ ≤ ε

(
64kk+423k+1

)−1
, then

〈
Sk,k f , f

〉
=

k
∑
i=0

λk(i) · 〈 fi, fi〉 ± ε,

where λk(i) depends on only on k an i, i.e., λk(i) is an approximate eigenvalue of Sk,k associated

to space Ck
i .

Proof. First note that Lemma 2.5.28 establishes the existence of approximate eigenvalues

λk,j(i) of N(j)
k,k corresponding to space Ck

i for i = 0, . . . , k such that λk,j(i) depends only on
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k, i and j. To apply Lemma 2.5.8 we need to bound ∑k
j=0 |αj|. Since

k
∑
j=0
|αj| =

k
∑
j=0

(
k + j

k

)
·
(

k
j

)
≤ 2k ·

k
∑
j=0

(
k + j

k

)
≤ 23k+1,

we are done.

2.5.4 Rectangular Swap Walks Sk,l

We turn to the spectral analysis of rectangular swap walks, i.e., Sk,l where k 6= l. Recall

that to bound σ2(Sk,k) in Section 2.5.1 we proved that the spectrum of Sk,k for a γ-HDX

is close to the spectrum of S∆
k,k using the analysis of quadratic forms over balanced oper-

ators from Section 2.5.3. Then we appealed to the fact that S∆
k,k is expanding since it is

the walk operator of the well known Kneser graph. In this rectangular case, we do not

have a classical result establishing that S∆
k,l is expanding, but we were able to establish

it Lemma 2.5.34.

Lemma 2.5.34. Let d ≥ k + l and ∆d(n) be the complete complex. The second largest singular

value σ2(S
∆
k,l) of the swap operator S∆

k,l on ∆d(n) is

σ2(S
∆
k,l) ≤ max

(
k

n− k
,

l
n− l

)
,

provided n ≥ Mk,l where Mk,l ∈N only depends on k and l.

Towards proving Lemma 2.5.34 we first introduce a generalization of Kneser graphs

which we denote bipartite Kneser graphs defined as follows.

Definition 2.5.35 (General Bipartite Kneser Graph). Let X(≤ d) where d ≥ k + l. We denote

by KX(n, k, l) the bipartite graph on (vertex) partition (X(k), X(l)) where s ∈ X(k) is adjacent

to t ∈ X(l) if and only if s∩ t is empty. We also refer to graphs of the form KX(n, k, l) as bipartite
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Kneser graphs.

It will be convenient to distinguish bipartite Kneser graphs coming from general γ-

HDX and the complete complex ∆d(n).

Definition 2.5.36 (Complete Bipartite Kneser Graph). Let X(≤ d) where d ≥ k + l. If X is

the complete complex, i.e., X = ∆d(n), then we denote KX(n, k, l) as simply as K(n, k, l) and we

refer to it as complete bipartite Kneser.

We obtain the spectra of bipartite Kneser graphs generalizing 6 the classical result

of Fact 2.5.4. More precisely, we prove Lemma 2.5.37.

Lemma 2.5.37 (Bipartite Kneser Spectrum). The non-zero eigenvalues of the (normalized) walk

operator of K(n, k, l) are ±λi where

λi =
(n−k−i

l−i )(n−l−i
k−i )

(n−k
l )(n−l

k )
,

for i = 0, . . . , min(k, l).

Now the proof follows a similar strategy to the Sk,k, namely, we analyze quadratic

forms over Sk,k using the results from Section 2.5.3

Let X(≤ d) where d ≥ k + l. Let Ak,l be the (normalized) walk operator of KX(n, k, l),

i.e.,

Ak,l =

 0 S
(l)
k,l(

S
(l)
k,l

)†
0

 .

To determine the spectrum of Ak,l it is enough to consider the spectrum of B = S
(l)
k,l

(
S
(l)
k,l

)†
.

6. Note that the singular values of K(n, k) can be deduced from the bipartite case.
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Using Corollary 2.4.13, we have

B =

(
l

∑
j=0

(−1)l−j
(

k + j
l

)
·
(

l
j

)
·N(j)

k,l

)
(

l

∑
j′=0

(−1)l−j′
(

k + j′

l

)
·
(

l
j′

)
·
(
N
(j′)
k,l

)†
)

=
l

∑
j,j′=0

αk,l,j,j′N
(j)
k,l N

(j′+k−l)
l,k ,

for some coefficients αk,l,j,j′ depending only on k, l, i, j and j′. Since we have not yet used

any specific property of HDXs, these coefficients are the same for the complete complex

and general HDXs.

Lemma 2.5.38. Let X(≤ d) be a γ-HDX with d ≥ k + l. Let f = ∑k
i=0 fi with fi ∈ Ck

i . For

ε ∈ (0, 1), if γ ≤ ε
(

64kk+2`222k+4l+2
)−1

, then

〈B f , f 〉 =
k
∑
i=0

 l
∑

j,j′=0
αk,l,j,j′λk,l,j,j′(i)

 · 〈 fi, fi〉 + ε,

where λk,l,j,j′(i) is the approximate eigenvalues of N(j)
k,l N

(j′+k−l)
l,k corresponding to space Ck

i . Fur-

thermore, λk,l,j,j′(i) depends only on k, l, i, j and j′.

Proof. First observe that each N
(j)
k,l N

(j′+k−l)
l,k maps Ck to itself, so it is a product of the same

number of up and down operators. Now to apply Lemma 2.5.8 it only remains to bound

∑l
j,j′=0 |αk,l,j,j′ |. Since

l
∑

j,j′=0
|αk,l,j,j′ | =

l
∑

j,j′=0

(
k + j

l

)
·
(

l
j

)(
k + j′

l

)
·
(

l
j′

)

≤ 22l

 l
∑
j=0

(
k + j

l

) ·
 l

∑
j′=0

(
k + j′

l

) ≤ 22k+4l+2,

we are done.

Let B and B∆ stand for the B operator for general γ-HDX and the complete complex,
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respectively.

Lemma 2.5.39. Suppose X(≤ d) is a γ-HDX with d ≥ k + l. For ε ∈ (0, 1), if we have

γ ≤ ε2
(

64kk+2`222k+4l+2
)−1

, then the second largest singular value σ2(B) of B is

σ2(B) ≤ ε2.

Furthermore, the second largest non-trivial eigenvalue λ(Ak,l) of the walk matrix of K(n, k, l) is

λ(Ak,l) ≤ ε.

Proof. The proof follows the same strategy of Theorem 2.5.1, namely, we first consider B∆

and show that ∑l
j,j′=0 αk,l,j,j′λk,l,j,j′(i) = 0. Using Lemma 2.5.34, we deduce that

∣∣∣∣∣∣
l

∑
j,j′=0

αk,l,j,j′λk,l,j,j′(i)

∣∣∣∣∣∣ = Ok,l

(
1

n2

)

for i ∈ [k] where in this range each Ck
i is not the trivial approximate eigenspace (associated

with eigenvalue 1). Since αk,l,j,j′ and λk,l,j,j′(i) do not depend on n and n is arbitrary, the

LHS above is actually zero. Then our choice of γ Lemma 2.5.8 gives

max
f∈Ck : f⊥1,‖ f ‖=1

|〈B f , f 〉| ≤ max
i∈[k]

∣∣∣∣∣∣
l

∑
j,j′=0

αk,l,j,j′λk,l,j,j′(i)

∣∣∣∣∣∣ + ε2 = ε2.

Now the proof of Theorem 2.5.2 follows. For convenience, we restate it.

Theorem 2.5.40 (Rectangular Swap Walk Spectral Bound (restatement of Theorem 2.5.2)).

Suppose X(≤ d) is a γ-HDX with d ≥ k + l and k ≤ l. For σ ∈ (0, 1), if γ ≤ σ2 ·(
64kk+2`222k+4l+2

)−1
, then the largest non-trivial singular value σ2(Sk,l) of the swap oper-
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ator Sk,l is

σ2(Sk,l) ≤ σ.

Proof. Follows directly from Lemma 2.5.39.

2.5.5 Bipartite Kneser Graphs - Complete Complex

Now we determine the spectrum of the complete bipartite Kneser graph K(n, k, l). More

precisely, we prove the following.

Lemma 2.5.41 (Bipartite Kneser Spectrum (restatement of Lemma 2.5.37)). The non-zero

eigenvalues of the normalized walk operator of K(n, k, l) are ±λi where

λi =
(n−k−i

l−i )(n−l−i
k−i )

(n−k
l )(n−l

k )
,

for i = 0, . . . , min(k, l).

Henceforth, set X = ∆d(n). To prove Lemma 2.5.37 we work with the natural rectan-

gular matrix associated with K(n, k, l), namely, the matrix W ∈ RX(k)×X(l) such that

W(s, t) = 1[s∩t=∅]

for every s ∈ X(k) and t ∈ X(l).

Observe that the entries of WW> and W>W only depend on the size of the intersec-

tion of the sets indexing the row and columns. Hence, these matrices belong to the John-

son scheme [GM15] J(n, k) and J(n, l), respectively. Moreover, the left and right singular

vectors of W are eigenvectors of these schemes.

We adopt the eigenvectors used in Filmus’ work [Fil16], i.e., natural basis vectors

coming from some irreducible representation of Sn (see [Sag13]). First we introduce some
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notation. Let µ = (n− i, i) be a partition of n and let τµ be a standard tableau of shape

µ. Suppose the first row τµ contains a1 < · · · < an−i whereas the second contains b1 <

· · · < bi. To τµ we associate the function ϕτµ ∈ R([n]k ) as follows

ϕτµ = (1a1 − 1b1
) . . . (1ai − 1bi

),

where 1a ∈ R(n
k) is the containment indicator of element a, i.e., 1a(s) = 1 if and only if

a ∈ s. Filmus proved that

{
ϕτµ | 0 ≤ i ≤ k, µ ` (n− i, i), τµ standard

}

is an eigenbasis of J (n, k). We abuse the notation by considering ϕτµ as both a function

in R(n
k) and R(n

l ) as long as these functions are well defined.

Claim 2.5.42. If µ = (n− i, i) and k, l ≥ i, then

Wϕτµ = (−1)i ·
(

n− k− i
l − i

)
· ϕτµ .

Proof. We follow a similar strategy of Filmus. For convenience suppose ϕτµ = (11 −

12) . . . (12i−1 − 12i). For i = 0 the claim follows immediately so assume i ≥ 1. Consider(
Wϕτµ

)
(s) where s ∈ (

[n]
k ). Note that

(
Wϕτµ

)
(s) = ∑

t∈Y : s∩t=∅
ϕτµ(t).

If 2j − 1, 2j ∈ s for some j ∈ [i], then 2j − 1, 2j 6∈ t so ϕτµ(s) = 0 =
(

Wϕτµ

)
(s). If

2j − 1, 2j 6∈ s for some j ∈ [i], for each t adjacent to s there four cases: 2j − 1, 2j ∈ t,

2j − 1, 2j 6∈ t, 2j − 1 ∈ t and 2j 6∈ t or vice-versa. The first two cases yield ϕτµ(t) = 0

while the last two cases cancel each other in the summation and again ϕτµ(s) = 0 =
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(
Wϕτµ

)
(s). Now suppose that s contains exactly one element of each pair 2j− 1, 2j. For

any adjacent t to yield ϕτµ(t) 6= 0, t must contain [2i] \ s. Since there are (n−k−i
l−i ) such

possibilities for t we obtain

Wϕτµ = (−1)i ·
(

n− k− i
l − i

)
· ϕτµ ,

where the sign (−1)i follows from the product of the signs of each the i pairs and the fact

that s and t partition the elements in each pair.

Since we are working with singular vectors, we need to be careful with their normal-

ization when deriving the singular values. We stress that the norm of ϕτµ depends on the

space where ϕτµ lies.

Claim 2.5.43. If µ = (n− i, i) and ϕτµ ∈ R(n
k), then

∥∥∥ϕτµ

∥∥∥
2

=

√
2i
(

n− 2i
k− i

)
.

Proof. Since ϕτµ assumes values in {−1, 0, 1} so its enough to count the number of sets

s ∈ (
[n]
k ) such that ϕτµ(s) 6= 0. To have ϕτµ(s) 6= 0, s must contain exactly one element

in each pair and the remaining k − i elements of s can be chosen arbitrarily among the

elements avoiding the 2i elements appearing in the indicators defining ϕτµ .

Now the singular values of W follow.

Corollary 2.5.44 (Singular Values). The singular values of W are

σi =

(
n− k− i

l − i

)
·

∥∥∥ϕk
τµ

∥∥∥
2∥∥∥ϕl

τµ

∥∥∥
2

,

for i = 0, . . . , min(k, l).
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Note that for k = l we recover the well know result of Fact 2.5.4.

Finally we compute the eigenvalues of the bipartite graph K(n, k, l). Let An,k,l be its

normalized adjacency matrix, i.e.,

An,k,l =

 0 1
(n−k

l )
W

1
(n−l

k )
W> 0

 .

Lemma 2.5.45 (Bipartite Kneser Spectrum (restatement of Lemma 2.5.37)). The non-zero

eigenvalues of the normalized walk operator of K(n, k, l) are ±λi where

λi =
(n−k−i

l−i )(n−l−i
k−i )

(n−k
l )(n−l

k )
,

for i = 0, . . . , min(k, l).

Proof. Since the spectrum of a bipartite graph is symmetric around zero, it is enough to

compute the eigenvalues of A2
n,k,l . Set α = 1/(n−k

l )(n−l
k ). Moreover, we consider α ·WW>

since α ·W>W has the same non-zero eigenvalues. The non-zero eigenvalues of α ·WW>

are

λi =
(n−k−i

l−i )(n−l−i
k−i )

(n−k
l )(n−l

k )
,

for i = 0, . . . , min(k, l).

2.6 Approximating Max-k-CSP

In the following, we will show that k-CSP instances I whose constraint complex XI(≤

k) is a suitable expander admit an efficient approximation algorithm. We will assume

throughout that XI(1) = [n], and drop the subscript I.

This was shown for 2-CSPs in [BRS11]. In extending this result to k-CSPs we will
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rely on a central Lemma of their paper. Before, we explain our algorithm we give a basic

outline of our idea:

We will work with the SDP relaxation for the k-CSP problem given by L-levels of SoS

hierarchy, as defined in Section 2.2.4 (for L to be specified later). This will give us an

L-local PSD ensemble {Y1, . . . , Yn}, which attains some value SDP(I) ≥ OPT(I). Since

{Y1, . . . , Yn}, is a local PSD ensemble, and not necessarily a probability distribution, we

cannot sample from it directly. Nevertheless, since
{

Yj

}
will be actual probability distri-

butions for all j ∈ [n], one can independently sample σj ∼
{

Yj

}
and use σ = (σ1, . . . , σn)

as the assignment for the k-CSP instance I.

Unfortunately, while we know that the local distributions {Ya}a∈X(k) induced by

{Y1, . . . , Yn} will satisfy the constraints of I with good probability, i.e.,

E
a∼Πk

E
{Ya}

1[Ya satisfies the constraint on a︸ ︷︷ ︸
⇐⇒Ya∈ Ca

]

 = SDP(I) ≥ OPT(I),

this might not be the case for the assignment σ sampled as before. It might be that the

random variables Ya1 , . . . , Yak are highly correlated for a ∈ X(k), i.e.,

E
a∼Πk

∥∥{Ya} − {Ya1} · · · {Yak}
∥∥

1

is large. One strategy employed by [BRS11] to ensure that the quantity above is small, is

making the local PSD ensemble {Y1, . . . , Yn} be consistent with a randomly sampled par-

tial assignment for a small subset of variables (q.v. Section 2.2.4). We will show that this

strategy is succesful if X(≤ k) is a γ-HDX (for γ sufficiently small). Our final algorithm

will be the following,
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Algorithm 2.6.1 (Propagation Rounding Algorithm).

Input An L-local PSD ensemble {Y1, . . . , Yn} and some distribution Π on X(≤ `).

Output A random assignment σ : [n]→ [q].

1. Choose m ∈ {1, . . . , L/`} uniformly at random.

2. Independently sample m `-faces, sj ∼ Π for j = 1, . . . , m.

3. Write S =
⋃m

j=1 sj, for the set of the seed vertices.

4. Sample assignment σS : S→ [q] according to the local distribution, {YS}.

5. Set Y′ = {Y1, . . . Yn|YS = σS}, i.e. the local ensemble Y conditioned on agreeing with

σS.

6. For all j ∈ [n], sample independently σj ∼ {Y′j}.

7. Output σ = (σ1, . . . , σn).
In our setting, we will apply Algorithm 4.7.16 with the distribution Πk and the L-local

PSD ensemble {Y1, . . . , Yn}. Notice that in expectation, the marginals of Y′ on faces a ∈

X(k) – which are actual distributions – will agree with the marginals of Y, i.e. ES,ηS
E Y′a =

E Ya. In particular, the approximation quality of Algorithm 4.7.16 will depend on the

average correlation of Y′a1
, . . . , Y′ak

on the constraints a ∈ X(k), where Y′ is the local PSD

ensemble obtained at the end of the first phase of Algorithm 4.7.16.

In the case where k = 2, the following is known

Theorem 2.6.2 (Theorem 5.6 from [BRS11]). Suppose a undirected graph G = ([n], E, Π2) and

an L-local PSD ensemble Y = {Y1, . . . , Yn} are given. There exists absolute constants c ≥ 0 and

C ≥ 0 satisfying the following: If L ≥ c · q
ε4 , Supp(Yi) ≤ q for all i ∈ V, and λ2(G) ≤ C · ε2/q2

then we have

E
{i,j}∼Π2

∥∥∥{Y′i, Y′j} − {Y
′
i}{Y

′
j}
∥∥∥

1
≤ ε,
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where Y′ is as defined in Algorithm 4.7.16 on the input of {Y1, . . . , Yn} and Π1.

To approximate k-CSPs well, we will show the following generalization of Theo-

rem 2.6.2 for k-CSP instances I, whose constraint complex X(≤ k) is γ-HDX, for γ suffi-

ciently small.

Theorem 2.6.3. Suppose a simplicial complex X(≤ k) with X(1) = [n] and an L-local PSD

ensemble Y = {Y1, . . . , Yn} are given.

There exists some universal constants c′ ≥ 0 and C′ ≥ 0 satisfying the following: If L ≥ c′ ·

(qk · k5/ε4), Supp(Yj) ≤ q for all j ∈ [n], and X is a γ-HDX for γ ≤ C′ · ε4/(k8+k · 26k · q2k).

Then, we have

E
a∼Πk

∥∥∥{Y′a} − {Y′a1

}
· · ·
{

Y′ak

}∥∥∥
1
≤ ε, (2.5)

where Y′ is as defined in Algorithm 4.7.16 on the input of {Y1, . . . , Yn} and Πk.

Indeed, using Theorem 2.6.3, it will be straightforward to prove the following,

Corollary 2.6.4. Suppose I is a q-ary k-CSP instance whose constraint complex X(≤ k) is a

γ-HDX.

There exists absolute constants C′ ≥ 0 and c′ ≥ 0, satisfying the following: If γ ≤ C′ ·

ε4/(k8+k · 26k · q2k), there is an algorithm that runs in time nO(k5·q2k·ε−4) based on (
c′·k5·qk

ε4 )-

levels of SoS-hierarchy and Algorithm 4.7.16 that outputs a random assignment σ : [n] → [q]

that in expectation ensures SATI(σ) = OPT(I)− ε.

Proof of Corollary 2.6.4. The algorithm will just run Algorithm 4.7.16 on the local PSD-

ensemble {Y1, . . . , Yn} given by the SDP relaxation of I strengthened by L = c′ · k5·q2k

ε4 -

levels of SoS-hierarchy and Πk – where c′ ≥ 0 is the constant from Theorem 2.6.3. Y

satisfies,

SDP(I) = E
a∼Πk

[
E
{Ya}

[1[Ya ∈ Ca]]
]
≥ OPT(I). (2.6)

67



Let S, σS, and Y′ be defined as in Algorithm 4.7.16 on the input of Y and Πk. Since

the conditioning done on {Y′} is consistent with the local distribution, by law of total

expectation and Eq. (3.14) one has

E
S

E
σS∼{YS}

E
a∼Πk

E
{Y′a}

[
1[Y′a ∈ Ca]

]
= SDP(I) ≥ OPT(I). (2.7)

By Theorem 2.6.3 we know that

E
S

E
σS∼{YS}

E
a∼Πk

∥∥∥{Y′a} − {Y′a1
} · · · {Y′ak

}
∥∥∥

1
≤ ε (2.8)

Now, the fraction of constraints satisfied by the algorithm in expectation is

E
σ
[SATI(σ)] = E

S
E

σS∼{YS}
E

a∼Πk
E

(σ1,...,σn)∼{Y′1}···{Y
′
n}

[1[σ|a ∈ Ca]].

By using Eq. (3.16), we can obtain

E
σ
[SATI(σ)] ≥ E

S

[
E

σS∼{YS}
E
{Ya}

1[Y′a satisfies the constraint on a]

]
− ε.

Using Eq. (3.15), we can conclude

E
σ
[SATI(σ)] ≥ SDP(I)− ε = OPT(I)− ε.

Our proof of Theorem 2.6.3 will hinge on the fact that we can upper-bound the ex-

pected correlation of a face of large cardinality `, in terms of expected correlation over

faces of smaller cardinality and expected correlations along the edges of a swap graph.
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The swap graph G`1,`2
here is defined as a weighted graph

G`1,`2
=
(

X(`1) t X(`2), E(`1, `2), w`1,`2

)
,

where

E(`1, `2) = {{a, b} : a ∈ X(`1), b ∈ X(`2), and at b ∈ X(`1 + `2)}.

We will assume `1 ≥ `2, and if `1 = `2 we are going to identify the two copies of every

vertex. We will endow E(`1, `2) with the weight function,

w`1,`2
(a, b) =

Π`1+`2
(at b)

(`1+`2
`1

)
,

which can easily be verified to be a probability distribution on E(`1, `2) Notice that in the

case where `1 6= `2 the random walk matrix of G`1,`2
is given by

A`1,`2
=

 0 S`1,`2

S†
`1,`2

0

 ,

and if `1 = `2 we have A`1,`1
= S`1,`1

. The stationary distribution of A`1,`2
is Π`1,`2

defined by,

Π`1,`2
(b) = 1[b ∈ X(`1)] ·

1
2
·Π`1

(b) + 1[b ∈ X(`2)] ·
1
2
·Π`2

(b). (2.9)

When we write an expectation of f (•, •) over the edges in E(`1, `2) with respect to w`1,`2
,

it is important to note,

E
{s,t}∼w`1,`2

[ f (s, t)] = ∑
{s,t}∈E(`1,`2)

1

(`1+`2
`1

)
· f (s, t) ·Π`1+`2(st t) =

1

( ``1
)

E
a∼Πk

[
∑
{s,t}∼a

f (s, t)

]
, (2.10)

where sum within the expectation in the RHS runs over the (`1+`2
`1

) possible ways of
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splitting a into s t t such that s ∈ X(`1) and t ∈ X(`2). When we are speaking about the

spectral expansion of G`1,`2
, we will be speaking with regards to λ2(G`1,`2

) and not with

regards to σ2(G`1,`2
).

Remark 2.6.5. By simple linear algebra, we have

λ2(G`1,`2
) := λ2(A`1,`2

) ≤ σ2(S`1,`2
),

where we employ the notation λ2(M) to denote the second largest eigenvalue (signed) of the matrix

M.

With this, we will show

Lemma 2.6.6 (Glorified Triangle Inequality). For a simplicial complex X(≤ k), `1 ≥ `2 ≥ 0,

` = `1 + `2, ` ≤ k, and an `-local ensemble {Y1, . . . , Yn}, one has

E
a∈Π`

[∥∥∥∥∥{Ya} −
`

∏
i=1

{
Yai

}∥∥∥∥∥
1

]
≤ E
{s,t}∼w`1,`2

[‖{Ys, Yt} − {Ys}{Yt}‖1]

+ E
s∼Π`1

[∥∥∥∥∥{Ys} −
`1

∏
i=1

{
Ysi

}∥∥∥∥∥
1

]
+ E

t∼Π`2

[∥∥∥∥∥{Yt} −
`2

∏
i=1
{Yti}

∥∥∥∥∥
1

]
(2.11)

One useful observation, is that by using Lemma 2.6.6 repeatedly, we can reduce the

problem of bounding Ea∈Π`

∥∥∥{Ya} −∏`
i=1{Yai}

∥∥∥
1

to a problem of bounding

E
{s,t}∼w`1,`2

‖{Ys, Yt} − {Ys}{Yt}‖1,

for `1 + `2 ≤ k. Though it is not a direct implication, it is heavily suggested by Fact 4.7.14

and Theorem 2.6.2, that if G`1,`2
is a good spectral expander, after an application of Algo-

rithm 4.7.16 with our chosen parameters, we should be able to bound these expressions.

Using a key lemma used from [BRS11], we will prove that this is indeed the case. The
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only thing we need to make sure after this point, is that the second eigenvalue λ2(G`1,`2
)

of the swap graphs G`1,`2
we will be using are small enough for our purposes. Indeed,

our choice of γ in Theorem 2.6.3 and Corollary 2.6.4 is to make sure that the bound we

get on λ2(G`1,`2
) from Theorem 2.5.2 (together with Remark 2.6.5) is good enough for our

purposes.

2.6.1 Breaking Correlations for Expanding CSPs: Proof of Theorem 2.6.3

Throughout this section, we will use the somewhat non-standard definition of variance

introduced in [BRS11],

Var [Ya] = ∑
σ∈[q]a

Var [1[Ya = σ]] .

We will use the following central lemma from [BRS11] in our proof of Theorem 2.6.3:

Lemma 2.6.7 (Lemma 5.4 from [BRS11]). Let G = (V, E, Π2) be a weighted graph, {Y1, . . . , Yn}

a local PSD ensemble, where we have Supp(Yi) ≤ q for every i ∈ V, and q ≥ 0. Suppose ε ≥ 0 is

a lower bound on the expected statistical difference between independent and correlated sampling

along the edges,i.e.,

ε ≤ E
{i,j}∼Π2

[∥∥∥{Yij} − {Yi}{Yj}
∥∥∥

1

]
.

There exists absolute constants c0 ≥ 0 and c1 ≥ 0 that satisfy the following: If λ2(G) ≤ c0 · ε2

q2 .

Then, conditioning on a random vertex decreases the variances,

E
i∼Π1

E
j∼Π2

E
{Yj}

[
Var

[
Yi | Yj

]]
≤ E

i∼Π1
[Var [Yi]]− c1 ·

ε2

q2 .

For our applications, we will be instantiating Lemma 2.6.7 with G`1,`2
as G; and with

the local PSD ensemble {Ya}a∈X that is obtained from {Y1, . . . , Yn} (q.v. Fact 4.7.14). For

convenience, we will write the concrete instance of the Lemma that we will use,
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Corollary 2.6.8. Let `1 ≥ `2 ≥ 0 satisfying `1 + `2 ≤ k be given parameters, and let G`1,`2
be

the swap graph defined for a γ-HDX X(≤ k). Let {Ya}a∈X be a local PSD ensemble; satisfying

Supp(Ya) ≤ qk for every a ∈ X(`1) ∪ X(`2) for some q ≥ 0. Suppose ε ≥ 0 satisfies,

ε

4k
≤ E
{s,t}∈w`1,`2

[‖{Ystt} − {Ys}{Yt}‖1] .

There exists absolute constants c0 ≥ 0 and c2 ≥ 0 that satisfy the following: If λ2(G) ≤ c0 ·

(ε/(4k · qk))2. Then, conditioning on a random face a ∼ Π`1,`2
decreases the variances, i.e.

2 · E
a,b∼Π2

`1,`2

[
E
{Ya}

[Var [Yb | Ya]]

]
= E

a∈Π`1,`2

[
E

s∼Π`1

[Var [Ys | Ya]] + E
t∼Π`2

[Var [Yt | Ya]]

]
,

≤ E
s∼Π`1

[Var [Ys]] + E
t∼Π`2

[Var [Yt]]− c2 ·
ε2

16 · k2 · q2k .

Here, it can be verified that the expansion criterion presupposed by Lemma 2.6.7 is

satisfied by Corollary 2.6.8 by Theorem 2.5.2. The constant c2 satisfies c2 = 2 · c1.

Proof of Theorem 2.6.3. We will follow the same proof strategy in [BRS11], and extend their

arguments for k-CSPs.

Write Πm
k for the distribution of the random set that is obtained in steps (2)-(3) of

Algorithm 4.7.16 with Π = Πk, i.e. S ∼ Πm
k is sampled by

1. independently sampling m k-faces sj ∼ Πk for j = 1, . . . , m.

2. outputting S =
⋃m

j=1 sj.

First, for m ∈ [L/k] we will define

εm = E
S∼Πm

k

E
{YS}

E
a∼Πk

∥∥∥∥∥∥{Ya | YS} −
k

∏
j=1
{Yaj | YS}

∥∥∥∥∥∥
1

,
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which will measure the average correlation along X(k) after conditioning on m k-faces.

Notice that our goal is ensuring,

E
m∼[L/k]

εm ≤ ε

where m is sampled uniformly at random.

To help us with this goal, we will define a potential function

Φm = E
i∼[k]

E
S∼Πm

k

E
{YS}

E
a∼Πi

Var [Ya | YS]. (2.12)

where i is sampled uniformly at random. Observe that Φm always satisfies 0 ≤ Φm ≤ 1.

Using this, we will try to bound the fraction of indices m ∈ [L/k] such that εm is large,

i.e., say εm ≥ ε/2. To this end assume εm ≥ ε/2, i.e. we have

E
S∼Πm

k

E
{YS}

E
a∼Πk

[∥∥∥∥∥{Ya | YS} −
k

∏
i=1
{Ya1 |YS}

∥∥∥∥∥
1

]
≥ ε

2
. (2.13)

We will use Lemma 2.6.6 in the following way: Let T be any binary tree with k leaves.

We will label each of the vertices v ∈ T with the number of leaves of the subtree rooted

at v. Notice that this ensures that

1. the root vertex of T has the label k,

2. for any vertex v ∈ T with label `, the label `1 of the left child of v and the label `2 of

the right child of v add up to k, i.e. `1 + `2 = k,

3. every vertex v ∈ T with the label 1 is a leaf.

We write J(T ) for the set of labels ` of the internal nodes of T , note |J(T )| ≤ k. We will

use the notation `1 (resp. `2) to refer to the label of the left (resp. right) of a vertex v ∈ T

with the label `.
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By applying Lemma 2.6.6, we obtain that for any local PSD ensemble Z one has

E
a∼Πk

[∥∥∥∥∥{Za} −
k

∏
i=1
{Zai}

∥∥∥∥∥
1

]
≤ ∑

`∈J(T )
E

{t1,t2}∈w`1,`2

[∥∥{Zt1tt2} − {Zt1}{Zt2}
∥∥

1
]

.

Now, by plugging this in Eq. (4.8), with Za = {Ya | YS}, we obtain

E
S∼Πm

k

E
{YS}

 ∑
`∈J(T )

E
{t1,t2}∼w`1,`2

∥∥{Yt1tt2 | YS} − {Yt1 | YS}{Yt2 | YS}
∥∥

1

 ≥ ε

2
. (2.14)

In particular, in the sum over J(T ) there should be some large term corresponding to

some ` ∈ J(T ). i.e. we have,

E
S∼Πm

k

E
{YS}

[
E

{t1,t2}∈w`1,`2

∥∥{Yt1tt2 | YS} − {Yt1 | YS}{Yt2 | YS}
∥∥

1

]
≥ ε

2 · |J(T )| ≥
ε

2k
.

Now, we have

P
S∼Πm

k
{YS}

[
E

{s,t}∈w`1,`2

∥∥{Yt1tt2 | YS} − {Yt1 | YS}{Yt2 | YS}
∥∥

1 ≥
ε

4k

]
≥ ε

4k
.

This together with Corollary 2.6.8 implies,

P
S∼Πm

k
{YS}

 E
a∈Π`1,`2

 Et1∼Π`1
[Var[Yt1 | YS]−Var[Yt1 | YS, Ya]]

+ Et2∈Π`2
[Var[Yt2 | | YS]−Var[Yt2 | YS, Ya]]

 ≥ c2 ·
ε2

16 · k2 · q2k


≥ ε

4k
, (2.15)

provided that λ2(G`1,`2
) ≤ c0(ε/(4k · qk))2.

Now, observe that a sample a ∼ Π`1,`2
can be obtained from a sample sm+1 ∼ Πk in

the following way,
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1. with probability 1
2 each, pick j = 1 or j = 2.

2. delete all but `j elements from sm+1.

It is important to note that for the sample a ∼ Π`1,`2
obtained this way, we have sm+1 ⊇ a.

An application of Jensen’s inequality shows that the variance is non-increasing under

conditioning, i.e. for random variables Z and W we have,

E
Z
[Var [W | Z]] = E

Z

[
E
W

[
W2 | Z

]]
−E

Z

[(
E
W
[W | Z] 2

)]
,

≤ E
[
W2
]
−
(

E
Z
[E [W | Z]]

)2
,

= Var [W] .

This means conditioning on sm+1, the drop in variance can only be more, i.e., Eq. (2.15)

implies

P
S∼Πm

k
{YS}

[
E

sm+1∈Πk

[
Et1∼Π`1

[Var[Yt1 | YS]−Var[Yt1 | YS, Ysm+1 ]]

+ Et2∈Π`2
[Var[Yt2 | | YS]−Var[Yt2 | YS, Ysm+1 ]]

]
≥ c2 ·

ε2

16 · k2 · q2k

]
≥ ε

4k
.

By relabeling `1 as `2 if needed, we can obtain the following inequality from the above

P
S∼Πm

k
{YS}

[
E

sm+1∈Πk

[
E

t1∼Π`1

[
Var

[
Yt1 | YS

]
−Var

[
Yt1 | YS, Ysm+1

]]]
≥ c2 ·

ε2

32 · k2 · q2k

]
≥ ε

4k
.

(2.16)

This implies

Φm −Φm+1 ≥
1
k
· ε

4k
·
(

c2 ·
ε2

32 · k2 · q2k

)
= c2 ·

ε3

128 · k4 · q2k ,

where the 1
k term in the RHS corresponds to `1 ∈ [k] being chosen in Eq. (4.7), the ε

4k term

in the RHS corresponds to the probability of the variances in X(`1) drop by
(

c2 · ε2

32·k2·qk

)
.
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Since, the variance is non-increasing under conditioning

1 ≥ Φ1 ≥ · · · ≥ Φm ≥ 0.

this means there can be at most 128k4 · q2k/(c2 · ε3) indices m ∈ [L/k] such that εm ≥ ε/2.

In particular, since the total number of indices is (L/k) we have,

E
m∼[L/k]

εm ≤
ε

2
+

k
L
· 128 · k4 · q2k

c2 · ε3 .

This means that there exists an absolute constant c′ ≥ 0 such that

L ≥ c′ · k5 · q2k

ε4 ensures E
m∈[L/k]

[εm] ≤ ε.

To finish our proof, we note that to justify our applications of Corollary 2.6.8 it suffices to

ensure

λ2(G`1,`2
) ≤ c0 ·

(
ε

4k · qk

)2
= c0 ·

ε2

16 · k2 · q2k

for all `1, `2 occurring in T as a label. It can be verified that our choice of γ together with

Theorem 2.5.2 (and Remark 2.6.5) satisfies this, where the constant C′ ≥ 0 will account

for c0, c′, and the constants hidden within the O-notation in Theorem 2.5.2.

2.6.2 The Glorified Triangle Inequality: Proof of Lemma 2.6.6

In this Section, we will prove Lemma 2.6.6.

Proposition 2.6.9. Let Y, Z, U, W be random variables where Y and Z; and U and W are on the

same support. Then,

‖{Y}{U} − {Z}{W}‖1 ≤ ‖{Y} − {Z}‖1 + ‖{U} − {W}‖1 .
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Proof. Tensoring with the same probability distribution does not change the total varia-

tion distance, i.e.

‖{Y} − {Z}‖1 = ‖{Y}{U} − {Z}{U}‖1 and ‖{U} − {W}‖1 = ‖{Z}{U} − {Z}{W}‖1 .

Now, a simple application of the triangle inequality proves the Proposition.

A straightforward implication of Proposition 2.6.9 is the following, which will allow

us to bound the correlation along a face a ∈ X(k), using the correlation along sub-faces

s, t ⊆ a.

Corollary 2.6.10. Let a ∈ X(`) and s ∈ X(`1), t ∈ X(`2) be given such that a = s t t. Then

for any k-local PSD ensemble {Y1, . . . , Yn} we have

∥∥{Ya} −
{

Ya1

}
· · ·
{

Ya`
}∥∥

1 ≤ ‖{Ya} − {Ys}{Yt}‖1

+
∥∥∥{Ys} −

{
Ys1

}
· · · {Ys`1

}
∥∥∥

1
+
∥∥∥{Yt} − {Yt1} · · · {Yt`2

}
∥∥∥

1

With this, we can go ahead and prove Lemma 2.6.6

Proof of Lemma 2.6.6. Let a ∈ X(`) be a fixed face. By Corollary 2.6.10 and averaging over

all the (`=`1+`2
`1

) ways of splitting a into {s, t} such that s ∈ X(`1) and t ∈ X(`2) we have

∥∥∥∥∥{Ya} −
`=`1+`2

∏
i=1

{
Yai

}∥∥∥∥∥
1

≤ 1

(`1+`2
`1

)
∑
{s,t}

(
‖{Ya} − {Ys}{Yt}‖1 +

∥∥∥∥∥{Ys} −
`1

∏
i=1

{
Ysi

}∥∥∥∥∥
1

+

∥∥∥∥∥{Yt} −
`2

∏
i=1

{
Yti

}∥∥∥∥∥
)

.

Now, by taking an average over all the edges a ∈ X(`) (with respect to the measure Π`)
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we obtain,

E
a∼Π`

[∥∥∥∥∥{Ya} −
`

∏
i=1
{Yai}

∥∥∥∥∥
1

]

≤ 1

( ``1
)
· E
a∈Π`

[
∑
{s,t}

(
‖{Ya} − {Ys}{Yt}‖1 +

∥∥∥∥∥{Ys} −
k1

∏
i=1
{Ysi}

∥∥∥∥∥
1

+

∥∥∥∥∥{Yt} −
`2

∏
i=1
{Yti}

∥∥∥∥∥
1

)]

where the indices {s, t} run over the all the ways of splitting a into s and t as before.

We can now see that the RHS can be thought as an average over the (weighted) edges in

E(`1, `2) (q.v. Eq. (2.10)), i.e.,

E
a∼Π`

[∥∥∥∥∥{Ya} −
`

∏
i=1
{Yai}

∥∥∥∥∥
1

]

≤ E
{s,t}∼w`1,`2

[
‖{Ya} − {Ys}{Yt}‖1 +

∥∥∥∥∥{Ys} −
`1

∏
i=1
{Ysi}

∥∥∥∥∥
1

+

∥∥∥∥∥{Yt} −
`2

∏
i=1
{Yti}

∥∥∥∥∥
1

]

Now, note that since Π`1,`2
(q.v. Eq. (2.9)) is the stationary distribution of the walk defined

on G`1,`2
, i.e.,

2Π`1,`2
(a) = ∑

b:{a,b}∈E(`1,`2)

w`1,`2
(a, b),

the lemma follows. This is because, we have

E
a∈X(`)

[∥∥∥∥∥{Ya} −
`

∏
i=1
{Yai}

∥∥∥∥∥
1

]

≤ E
{s,t}∼w`1,`2

[‖{Ya} − {Ys}{Yt}‖1] + E
{s,t}∼w`1,`2

[∥∥∥∥∥{Ys} −
`1

∏
i=1
{Ysi}

∥∥∥∥∥
1

+

∥∥∥∥∥{Yt} −
`2

∏
i=1
{Yti}

∥∥∥∥∥
1

]

= E
{s,t}∼E(`1,`2)

[‖{Ya} − {Ys}{Yt}‖1]+ E
s∼Π`1

[∥∥∥∥∥{Ys} −
`1

∏
i=1
{Ysi}

∥∥∥∥∥
1

]
+ E

t∼Π`2

[∥∥∥∥∥{Yt} −
`2

∏
i=1
{Yti}

∥∥∥∥∥
1

]
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2.7 High-Dimensional Threshold Rank

In [BRS11], Theorem 2.6.2 was proven for a more general class of graphs than expander

graphs – namely, the class of low threshold rank graphs.

Definition 2.7.1 (Threshold Rank of Graphs (from [BRS11])). Let G = (V, E, w) be a weighted

graph on n vertices and A be its normalized random walk matrix. Suppose the eigenvalues of A

are 1 = λ1 ≥ · · · ≥ λn. Given a parameter τ ∈ (0, 1), we denote the threshold rank of G by

rank≥τ(A) (or rank≥τ(G)) and define it as

rank≥τ(A) := |{i|λi ≥ τ}| .

There [BRS11], the authors asked for the correct notion of threshold rank for k-CSPs.

In this section, we give a candidate definition of low threshold rank motivated by our

techniques.

To break k-wise correlations it is sufficient to assume that the involved swap graphs

in the foregoing discussion are low threshold rank since this is enough to apply a version

of Lemma 2.6.7, already described in the work of [BRS11].

Moreover, we have some flexibility as to which swap graphs to consider as long as

they satisfy some splitting conditions. To define a swap graph it is enough to have a

distributions on the hyperedges of a (constraint) hypergraph. Hence, the notion of swap

graph is independent of high-dimensional expansion. HDXs are just an interesting family

of objects for which the swap graphs are good expanders.

To capture the many ways of splitting the statistical distance over hyperedges into the

statistical distance over the edges of swap graphs, we first define the following notion. We

say that a binary tree T is a k-splitting tree if it has exactly k leaves. Thus, labeling every

vertex with the number of leaves on the subtree rooted at that vertex ensures,
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- the root of T is labeled with k and all other vertices are labeled with positive inte-

gers,

- the leaves are labeled with 1, and

- each non-leaf vertex satisfy the property that its label is the sum of the labels of its

two children.

Note that, we will think of each non-leaf node with left and right children labeled as

a and b as representing the swap graph from X(a) to X(b) for some simplicial complex

X(≤ k). Let Swap(T , X) be the set of all such swap graphs over X finding representation

in the splitting tree T . Indeed the tree T used in the proof of Theorem 2.6.3 is just one

special instance of a k-splitting tree.

Given a threshold parameter τ ≤ 1 and a set of normalized adjacency matrices A =

{A1, . . . ,As}, we define the threshold rank of A as

rank≥τ(A) := max
A∈A

rank≥τ(A),

where rank≥τ(A) is denotes usual threshold rank of A as in Definition 3.9.14.

Now, we are ready to define the notion of a k-CSP instance being (T , τ, r)-splittable

as follows.

Definition 2.7.2 ((T , τ, r)-splittability). A k-CSP instance I with the constraint complex X(≤

k) is said to be (T , τ, r)-splittable if T is a k-splitting tree and

rank≥τ(Swap(T , X)) ≤ r.

If there exists some k-splitting tree T such that I is (T , τ, r)-splittable, the instance I will be

called a (τ, r)-splittable instance.
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Now, using this definition we can show that whenever rankτ(I) is bounded for the

appropriate choice of τ, after conditioning on a random partial assignment as in Algo-

rithm 4.7.16 we will have small correlation over the faces a ∈ X(k), i.e.,

Theorem 2.7.3. Suppose a simplicial complex X(≤ k) with X(1) = [n] and an L-local PSD

ensemble Y = {Y1, . . . , Yn} are given. There exists some universal constants c4 ≥ 0 and C′′ ≥ 0

satisfying the following: If L ≥ C′′ · (q4k · k7 · r/ε5), Supp(Yj) ≤ q for all j ∈ [n], and I is

(c4 · (ε/(4k · qk))2, r)-splittable. Then, we have

E
a∈X(k)

[∥∥∥{Y′a} − {Y′a1

}
· · ·
{

Y′ak

}∥∥∥
1

]
≤ ε, (2.17)

where Y′ is as defined in Algorithm 4.7.16 on the input of {Y1, . . . , Yn} and Πk.

It is important to note that the specific knowledge of the k-splitting tree T that makes

I (T , τ, r)-splittable is only needed for the proof of Theorem 3.9.19. The conclusion of

Theorem 3.9.19 can be used without the knowledge of the specific k-splitting tree T . The

attentive reader might have noticed is that in the proof of Theorem 2.6.3, the choice of T is

not important, as all the splitting tree are guaranteed to have be expanders provided that

X is a γ-HDX. The proof of Theorem 3.9.19, in this light can be thought of an extension of

the proof of Theorem 2.6.3 to the case where not necessarily every tree is good, and where

we can bound the threshold rank instead of the spectral expansion.

This, will readily imply an algorithm

Corollary 2.7.4. Suppose I is a q-ary k-CSP instance whose constraint complex is X(≤ k). There

exists an absolute constant C′′ ≥ 0 and c4 ≥ 0 that satisfies the following: If I is (c4 · (ε/(4k ·

qk))2, r)-splittable, then there is an algorithm that runs in time n
O
(

q4k ·k7·r
ε5

)
and that is based

on (
C′′·k5·qk·r

ε4 )-levels of SoS-hierarchy and Algorithm 4.7.16 that outputs a random assignment

σ : [n]→ [q] that in expectation ensures SATI(σ) = OPT(I)− ε.
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Since the proof of Corollary 3.9.21 given Theorem 3.9.19, will be almost identical to

the proof of Corollary 2.6.4, given Theorem 2.6.3, we will omit the proof of this.

2.7.1 Breaking Correlations for Splittable CSPs: Proof of Theorem 3.9.19

We will need the more general version of Lemma 2.6.7, already proven in [BRS11].

Lemma 2.7.5 (Lemma 5.4 from [BRS11]). 7 Let G = (V, E, Π2) be a weighted graph, {Y1, . . . , Yn}

a local PSD ensemble, where we have Supp(Yi) ≤ q for every i ∈ V, and q ≥ 0. If ε ≥ 0 is

a lower bound on the expected statistical difference between independent and correlated sampling

along the edges,i.e.,

ε ≤ E
{i,j}∼Π2

[∥∥∥{Yij} − {Yi}{Yj}
∥∥∥

1

]
.

There exists absolute constants c3 ≥ 0 and c4 ≥ 0 that satisfy the following: Then, conditioning

on a random vertex decreases the variances,

E
i∼Π1

E
j∼Π1

E
{Yj}

[
Var

[
Yi | Yj

]]
≤ E

i∼Π1
[Var [Yi]]− c3 ·

ε4

q4 · rank≥c4ε2/q2(G)
.

Since we will use this lemma, only with the swap graphs G`1,`2
and (L/k)-local

PSD ensemble {Ya}a∈X obtained from the L-local PSD ensemble {Y1, . . . , Yn}, for conve-

nience we will write the corollary we will use more explicitly

Corollary 2.7.6. Let `1 ≥ `2 ≥ 0 satisfying `1 + `2 ≤ k be given parameters, and let G`1,`2
be

the swap graph defined for a γ-HDX X(≤ k). Let {Ya}a∈X be a local PSD ensemble; and suppose

we have Supp(Ya) ≤ qk for every a ∈ X(`1) ∪ X(`2) for some q ≥ 0. Suppose ε > 0 satisfies,

ε

4k
≤ E
{s,t}∈E(`1,`2)

[‖{Ys∪t} − {Ys}{Yt}‖1] .

7. We give a derivation of this lemma in Appendix A.1.
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There exists absolute constants c3 ≥ 0 and c5 ≥ 0 that satisfy the following:

If rank≥c4·(ε/(4k·qk))2(G`1,`2
) ≤ r, then conditioning on a random face a ∼ Π`1,`2

decreases the

variances, i.e.

2 · E
a,b∼Π`1,`2

[
E
{Ya}

[Var [Yb | Ya]]

]
= E

a∈Π`1,`2

[
E

s∼Π`1

[Var [Ys | Ya]] + E
t∼Π`2

[Var [Yt | Ya]]

]
,

≤ E
s∼Π`1

[Var [Ys]] + E
t∼Π`2

[Var [Yt]]− c5 ·
ε4

256 · k4 · q4k · r .

Here the constant c5 satisfies c5 = 2 · c3.

Proof. As the proof will mostly follow Theorem 2.6.3, we will only highlight the relevant

differences and carry out the relevant computations.

Let τ = c4 · (ε/(4k · qk))2, and let T be the k-splitting tree certifying that I is (T , τ, r)

splittable, i.e., the tree T satisfies rankτ(Swap(T , X)) ≤ r. This means that all the swap

graphs G`1,`2
finding representation in T satisfy rankτ(G`1,`2

) ≤ r.

Similarly, as in the proof of we will try to argue that the fraction of indices m ∈ [L/k]

such that εm that is large, say εm ≥ ε/2, is small by arguing about the potential Φm

with both quantities εm and Φm as defined as in the Proof of Theorem 2.6.3. We assume

similarly, that εm ≥ ε/2 for some m ∈ [L/k].

Analogously to Section 2.7.1 in the proof of Theorem 2.6.3, from Corollary 2.7.6 we

obtain

E
S∼Πm

k

E
{YS}

 ∑
`∈J(T )

E
{t1,t2}∈E(`1,`2)

[∥∥{Yt1tt2 | YS} − {Yt1 | YS}{Yt2 | YS}
∥∥

1
] ≥ ε

2
.

Notice that the assumption that Section 2.7.1 makes on the threshold rank is satisfied by

the assumption rankτ(I) ≤ r and where the set J(T ) contains all labels ` of internal nodes

v ∈ T , and we write `1 (resp. `2) for the label of the left (resp. right) child of the vertex

with the label `. Similarly, to the proof of Theorem 2.6.3, there exists some (`1, `2) ∈ J(T )
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that satisfies

E
S∼Πm

k

E
{YS}

E
{t1,t2}∼w`1,`2

∥∥{Yt1tt2 | YS} − {Yt1 | YS}{Yt2 | YS}
∥∥

1 ≥
ε

2k
.

Now, analogously to Eq. (2.15), using `1 ≤ k using we have

P
S∼Πm

k
{YS}

[
E

a∈Π`1,`2

[
Et1∈X(`1)[Var[Yt1 | YS]−Var[Yt1 | YS, Ya]]

+ Et2∈X(`2)[Var[Yt2 | | YS]−Var[Yt2 | YS, Ya]]

]
≥ c5 ·

ε4

256 · k4 · q4k · r

]
≥ ε

4k
,

(2.18)

Using the same arguments in the proof of Theorem 2.6.3, we can get that

Φm −Φm+1 ≥
1
k
· ε

4k
· c5 · ε4

512 · k6 · q4k · r
= c5 ·

ε5

2048 · k4 · q4k · r
.

Again, this would mean that there can be at most 2048 · k6 · q4k · r/(ε5 · c5) indices m such

that εm/2 ≥ ε/2. In particular,

E
m∈[L/k]

[εm] ≤ ε

2
+

k
L
· 2048 · k6 · q4k · r

ε5 · c5
.

i.e. there exists a universal constant C′′ ≥ 0, such that

L ≥ C′′ · k7 · q4k · r
ε5 ensures E

m∼[L/k]
εm ≤ ε.

2.8 Quantum k-local Hamiltonian

Our k-CSP results extend to the quantum setting generalizing the approximation scheme

for 2-local Hamiltonians on bounded degree low threshold rank graphs from Brandão

and Harrow [BH13] (BH). Before we can make the previous statement more precise we
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will need to introduce some notation. A well studied quantum analogue of classical k-

CSPs are the so-called quantum k-local Hamiltonians [AAV13].

Definition 2.8.1 (k-local Hamiltonian). We say that H = Es∼Πk
Hs is an instance of the k-local

Hamiltonian problem over q-qudits on ground set [n] if there is a distribution Πk on subsets of

size k of [n] such that for every s ∈ Supp(Πk) there is an Hermitian operator Hs on Cqn
with

‖Hs‖op ≤ 1 and acting (possibly) non-trivially on the q-qudits of s and trivially on [n] \ s.

Given an instance H = Es∼Πk
Hs of the k-local Hamiltonian problem on ground set

[n], the goal is to provide a good (additive) approximation to the ground state energy e0(H),

i.e., the smallest eigenvalue of H. Equivalently, the goal is to approximate

e0(H) = min
ρ∈D

(
Cqn

)Tr(Hρ),

where D
(

Cqn
)

is the set of density operators, PSD operators of trace one, on Cqn
. The

eigenspace of H associated to e0(H) is called the ground space of H.

Remark 2.8.2. The locality k of a k-local Hamiltonian has a similar role as the arity of k-CPSs

whereas the qudit dimension q has the role of alphabet size. Observe that for a k-CSP the goal

is to maximize the fraction of satisfied constrains while for a k-local Hamiltonian the goal is to

minimize the energy (constraint violations).

We will need an informationally complete measurement Λ modeled as a channel

Λ : D (Cq)→ D
(

Cq8)
,

and defined as

Λ(ρ) := ∑
y∈Y

Tr(Myρ) · eye†
y,
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where {My}y∈Y is a POVM 8 and {ey}y∈Y is an orthonormal basis (see Lemma 2.8.8

below for the properties of Λ). Recall that an informationally complete measurement is

an injective channel, i.e., the probability outcomes p(y) = Tr(Myρ) fully determine ρ. By

definition given this probability distribution {p(y)}y∈Y we can uniquely determine ρ. We

use the notation ρ = Λ−1
(
{p(y)}y∈Y

)
for the recovered state from probability outcomes

{p(y)}y∈Y .

BH using the informationally complete measurement Λ reduced the quantum 2-local

Hamiltonian problem to a classical problem involving PSD ensembles of indicator ran-

dom variables of outcomes Y of Λ. In this reduction, they had to ensure that the local

distributions encoded by these indicators random variables are indeed consistent with

probability distributions of outcomes arising from actual local density matrices. Note

that the channel Λ is only injective, an arbitrary probability distribution on Y may not

correspond to a valid quantum state. For this reason, they introduced a new SDP hierar-

chy to find this special kind of PSD ensemble, which we refer to as quantum PSD ensemble,

minimizing the value of the given input k-local Hamiltonian instance.

Using our k-CSP approximation scheme for low threshold rank hypergraphs, we

show that product state approximations close to the ground space of k-local Hamilto-

nians on bounded degree low threshold rank hypergraphs can be computed efficiently in

polynomial time by Algorithm 2.8.3. Our result is a generalization of the k = 2 case of

Brandão and Harrow [BH13] for 2-local Hamiltonians on bounded degree low threshold

rank graphs. Their algorithm is based on the 2-CSP result from [BRS11].

8. A POVM is a collection of operators {My}y∈Y such that ∑y∈Y My = I and (∀y ∈ Y)(My � 0).
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Algorithm 2.8.3 (Quantum Propagation Rounding Algorithm).

Input L-local quantum PSD ensemble a {Y1, . . . , Yn} and distribution Π on X(≤ `).

Output A random state ρ = ρ1 ⊗ . . .⊗ ρn where each ρi ∈ D (Cq).

1. Choose m ∈ {1, . . . , L/`} at random.

2. Independently sample m `-faces, sj ∼ Π for j = 1, . . . , m.

3. Write S =
⋃m

j=1 sj, for the set of the seed vertices.

4. Sample assignment σS : S→ [q] according to the local distribution, {YS}.

5. Set Y′ = {Y1, . . . Yn|YS = σS}, i.e. the local ensemble Y conditioned on agreeing with

σS.

6. For all j ∈ [n], set ρj = Λ−1({Y′j}).

7. Output ρ = ρ1 ⊗ . . .⊗ ρn.

a. We define the quantum ensemble as the PSD ensemble produced by the SDP hierarchy of [BH13]

The precise result is given in Theorem 2.8.4.

Theorem 2.8.4. Suppose I = (H = Es∼Πk
Hs) is a q-qudit k-local Hamiltonian instance whose

constraint complex 9 is X(≤ k) and has bounded normalized degree, i.e., Π1 ≤ δ. Let τ =

c4 · (ε2/(16k2q8k))2, for ε > 0. There exists an absolute constant C′ that satisfies the following:

Set L = (
C′·k5·q8k·rankτ(I)

ε4 ). Then there is an algorithm based on L-levels of SoS-hierarchy

and Algorithm 2.8.3 that outputs a random product state ρ = ρ1 ⊗ . . .⊗ ρn that in expectation

ensures

Tr(Hρ) ≤ e0(H) + (18q)k/2 · ε + L · k · δ,

where e0(H) is the ground state energy of H.

9. We define the constraint complex of a k-local Hamiltonian in the same way we define it for k-CSPs,
namely, by taking the downward closure of the support of Πk.
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Remark 2.8.5. Similarly to the classical case, Theorem 2.8.4 serves as a no-go barrier (in its pa-

rameter regime) to the quantum local-Hamiltonian version of the quantum PCP Conjecture [AAV13].

In particular, k-local Hamiltonians on bounded degree γ-HDXs for γ sufficiently small can be ef-

ficiently approximated in polynomial time.

Now we sketch a proof of Theorem 2.8.4. We provide a sketch rather than a full proof

since Theorem 2.8.4 easily follows from the BH analysis once the main result used by

them, Theorem 5.6 from [BRS11], is appropriately generalized to “break” k-wise correla-

tions as accomplished by our Theorem 3.9.19 (restated below for convenience). Further-

more, a full proof would require introducing more objects and concepts only needed in

this simple derivation (the reader is referred to [BH13] for the quantum terminology and

the omitted details).

Theorem 2.8.6 (Adaptation of Theorem 3.9.19). Suppose a simplicial complex X(≤ k) with

X(1) = [n] and an L-local PSD ensemble Y = {Y1, . . . , Yn} are given. There exists some

universal constants c4 ≥ 0 and C′′ ≥ 0 satisfying the following: If L ≥ C′′ · (q4k · k7 · r/ε5),

Supp(Yj) ≤ q for all j ∈ [n], and I is (c4 · (ε/(4k · q8k))4, r)-splittable. Then, we have

E
a∈X(k)

[∥∥∥{Y′a} − {Y′a1

}
· · ·
{

Y′ak

}∥∥∥
1

]
≤ ε, (2.19)

where Y′ is as defined in Algorithm 2.8.3 on the input of {Y1, . . . , Yn} and Πk.

Once in possession of the quantum PSD ensemble the problem becomes essentially clas-

sical. The key result in the BH approach is Theorem 5.6 from [BRS11] that brings (in ex-

pectation under conditioning on a random small seed set of qudits) the local distributions,

over the edges of the constraint graph of a 2-local Hamiltonian, close to product distri-

butions 10. Now, using the fact that they have an informationally complete measurement

10. For this to hold we need the underlying constraint graph to be low threshold rank and the SoS degree
to be sufficiently large
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Λ they can “lift” the conditioned marginal distribution on each qudit {Y′j} to an actual

quantum state as ρj = Λ−1({Y′j}) (see Algorithm 2.8.3). In this lifting process, they pay

an average distortion cost of 18q · ε (for using the marginal over the qudits). For k-local

Hamiltonians, the distortion of k q-qudits is given by Lemma 2.8.7 (stated next without

proof).

Lemma 2.8.7. Let Z1, . . . , Zk be random variables in an L-local quantum PSD ensemble with

L ≥ k. Suppose that

ε :=

∥∥∥∥∥{Z1, . . . , Zk} −
k

∏
i=1
{Zi}

∥∥∥∥∥
1

.

Then ∥∥∥∥∥(Λ⊗k
)−1

({Z1, . . . , Zk})−
(

Λ⊗k
)−1

(
k

∏
i=1
{Zi}

)∥∥∥∥∥
1

≤ (18q)k/2 · ε.

Note that Lemma 2.8.7 is a direct consequence of Lemma 2.8.8 from [BH13].

Lemma 2.8.8 (Informationally complete measurements (Lemma 16 [BH13])). For every

positive integer q there exists a measurement Λ with ≤ q8 outcomes such that for every posi-

tive integer k and every traceless operator ξ, we have

‖ξ‖1 ≤ (18q)k/2
∥∥∥Λ⊗k(ξ)

∥∥∥
1

.

BH also pay a full cost for each local term in the Hamiltonian that involves a seed

qudit since its state was not reconstructed using the full distribution of a qudit given

by the quantum ensemble but rather reconstructed from a single outcome y ∈ Y of Λ.

Naively, this means that the final state of this qudit may be far from the intended state

given by SDP relaxation. In our case, we assume that the normalized degree satisfies

Π1 ≤ δ. Therefore, the total error from constraints involving seed qudits is at most

L · k · δ.
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Putting the above pieces together we conclude the proof (sketch) of Theorem 2.8.4.
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CHAPTER 3

LIST DECODING OF DIRECT SUM CODES

3.1 Introduction

We consider the problem of list decoding binary codes obtained by starting with a binary

base code C and amplifying its distance by “lifting” C to a new code C ′ using an expanding

or pseudorandom structure. Examples of such constructions include direct products where

one lifts (say) C ⊆ Fn
2 to C ′ ⊆ (Fk

2)
nk

with each position in y ∈ C ′ being a k-tuple of bits

from k positions in z ∈ C. Another example is direct sum codes where C ′ ⊆ Fnk

2 and each

position in y is the parity of a k-tuple of bits in z ∈ C. Of course, for many applications, it

is interesting to consider a small “pseudorandom” set of k-tuples, instead of considering

the complete set of size nk.

This kind of distance amplification is well known in coding theory [ABN+92, IW97,

GI01, TS17] and it can draw on the vast repertoire of random and pseudorandom expand-

ing objects [HLW06, Lub18]. Such constructions are also known to have several applica-

tions to the theory of Probabilitically Checkable Proofs (PCPs) [IKW09, DS14, DDG+15,

Cha16, Aro02]. However, despite having several useful properties, it might not always be

clear how to decode the codes resulting from such constructions, especially when con-

structed using sparse pseudorandom structures. An important example of this phe-

nomenon is Ta-Shma’s explicit construction of binary codes of arbitrarily large distance

near the (non-constructive) Gilbert-Varshamov bound [TS17]. Although the construction

is explicit, efficient decoding is not known. Going beyond unique-decoding algorithms,

it is also useful to have efficient list-decoding algorithms for complexity-theoretic appli-

cations [Sud00, Gur01, STV01, Tre04].

The question of list decoding such pseudorandom constructions of direct-product
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codes was considered by Dinur et al. [DHK+19], extending a unique-decoding result

of Alon et al. [ABN+92]. While Alon et al. proved that the code is unique-decodable

when the lifting hypergraph (collection of k-tuples) is a good “sampler”, Dinur et al.

showed that when the hypergraph has additional structure (which they called being a

“double sampler”) then the code is also list decodable. They also posed the question

of understanding structural properties of the hypergraph that might yield even unique

decoding algorithms for the direct sum based liftings.

We develop a generic framework to understand properties of the hypergraphs under

which the lifted code C ′ admits efficient list decoding algorithms, assuming only efficient

unique decoding algorithms for the base code C. Formally, let X be a downward-closed

hypergraph (simplicial complex) defined by taking the downward closure of a k-uniform

hypergraph, and let g : Fk
2 → F2 be any boolean function. X(i) denotes the collection of

sets of size i in X and X(≤ d) the collection of sets of size at most d. We consider the lift

C ′ = dsumg
X(k)(C), where C ⊆ F

X(1)
2 and C ′ ⊆ F

X(k)
2 , and each bit of y ∈ C ′ is obtained

by applying the function g to the corresponding k bits of z ∈ C. We study properties of g

and X under which this lifting admits an efficient list decoding algorithm.

We consider two properties of this lifting, robustness and tensoriality, formally defined

later, which are sufficient to yield decoding algorithms. The first property (robustness)

essentially requires that for any two words in F
X(1)
2 at a moderate distance, the lifting

amplifies the distance between them. While the second property is of a more technical

nature and is inspired by the Sum-of-Squares (SOS) SDP hierarchy used for our decoding

algorithms, it is implied by some simpler combinatorial properties. Roughly speaking,

this combinatorial property, which we refer to as splittability, requires that the graph on

(say) X(k/2) defined by connecting s, t ∈ X(k/2) if s ∩ t = ∅ and s ∪ t ∈ X(k), is a suffi-

ciently good expander (and similarly for graphs on X(k/4), X(k/8), and so on). Splitta-

bility requires that the k-tuples can be (recursively) split into disjoint pieces such that at
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each step the graph obtained between the pairs of pieces is a good expander.

Expanding Structures. We instantiate the above framework with two specific struc-

tures: the collection of k-sized hyperedges of a high-dimensional expander (HDX) and

the collection of length k walks 1 on an expander graph. HDXs are downward-closed hy-

pergraphs satisfying certain expansion properties. We will quantify this expansion using

Dinur and Kaufman’s notion of a γ-HDX [DK17].

HDXs were proved to be splittable by some of the authors [AJT19]. For the expander

walk instantiation, we consider a variant of splittability where a walk of length k is split

into two halves, which are walks of length k/2 (thus we do not consider all k/2 size

subsets of the walk). The spectrum of the graphs obtained by this splitting can easily be

related to that of the underlying expander graph. In both cases, we take the function g

to be k-XOR which corresponds to the direct sum lifting. We also obtain results for direct

product codes via a simple (and standard) reduction to the direct sum case.

Our Results. Now we provide a quantitative version of our main result. For this, we

split the main result into two cases (due to their difference in parameters): HDXs and

length k walks on expander graphs. We start with the former expanding object.

Theorem 3.1.1 (Direct Sum Lifting on HDX (Informal)). Let ε0 < 1/2 be a constant and

ε ∈ (0, ε0). Suppose X(≤ d) is a γ-HDX on n vertices with γ ≤ (log(1/ε))−O(log(1/ε)) and

d = Ω
(
(log(1/ε))2/ε2

)
.

For every linear code C1 ⊂ Fn
2 with relative distance ≥ 1/2− ε0, there exists a direct sum

lifting Ck ⊂ F
X(k)
2 with k = O (log(1/ε)) and relative distance ≥ 1/2− εΩε0(1) satisfying the

following:

- [Efficient List Decoding] If ỹ is (1/2− ε)-close to Ck, then we can compute the list of all

1. Actually, we will be working with length k− 1 walks which can be represented as k-tuples, though this
is an unimportant technicality. The reason is to be consistent in the number of vertices (allowing repetitions)
with k-sized hyperedges.
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the codewords of Ck that are (1/2− ε)-close to ỹ in time nε−O(1) · f (n), where f (n) is the

running time of a unique decoding algorithm for C1.

- [Rate] The rate 2 rk of Ck is rk = r1 · |X(1)| / |X(k)|, where r1 is the rate of C1.

A consequence of this result is a method of decoding the direct product lifting on a

HDX via a reduction to the direct sum case.

Corollary 3.1.2 (Direct Product Lifting on HDX (Informal)). Let ε0 < 1/2 be a constant

and ε > 0. Suppose X(≤ d) is a γ-HDX on n vertices with γ ≤ (log(1/ε))−O(log(1/ε)) and

d = Ω((log(1/ε))2/ε2).

For every linear code C1 ⊂ Fn
2 with relative distance≥ 1/2− ε0, there exists a direct product

encoding C` ⊂ (F`
2)

X(`) with ` = O(log(1/ε)) that can be efficiently list decoded up to distance

(1− ε).

Remark 3.1.3. List decoding the direct product lifting was first established by Dinur et al. in

[DHK+19] using their notion of double samplers. Since constructions of double samplers are

only known using HDXs, we can compare some parameters. In our setting, we obtain d =

O(log(1/ε)2/ε2) and γ = (log(1/ε))−O(log(1/ε)) whereas in [DHK+19] d = O(exp(1/ε))

and γ = O(exp(−1/ε)).

Given a graph G, we denote by WG(k) the collection of all length k − 1 walks of G,

which plays the role of the local views X(k). If G is sufficiently expanding, we have the

following result.

Theorem 3.1.4 (Direct Sum Lifting on Expander Walks (Informal)). Let ε0 < 1/2 be a

constant and ε ∈ (0, ε0). Suppose G is a d-regular γ-two-sided spectral expander graph on n

vertices with γ ≤ εO(1).

2. In the rate computation, X(k) is viewed as a multi-set where each s ∈ X(k) is repeated a certain
number of times for technical reasons.
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For every linear code C1 ⊂ Fn
2 with relative distance ≥ 1/2− ε0, there exists a direct sum

encoding Ck ⊂ F
WG(k)
2 with k = O (log(1/ε)) and relative distance ≥ 1/2− εΩε0(1) satisfying

the following:

- [Efficient List Decoding] If ỹ is (1/2− ε)-close to Ck, then we can compute the list of all

the codewords of Ck that are (1/2− ε)-close to ỹ in time nε−O(1) · f (n), where f (n) is the

running time of a unique decoding algorithm for C1.

- [Rate] The rate rk of Ck is rk = r1/dk−1, where r1 is the rate of C1.

The results in Theorem 3.1.1, Corollary 3.1.2, and Theorem 3.1.4 can all be extended

(using a simple technical argument) to nonlinear base codes C1 with similar parameters.

We also note that applying Theorem 3.1.1 to explicit objects derived from Ramanujan

complexes [LSV05b, LSV05a] and applying Theorem 3.1.4 to Ramanujan graphs [LPS88]

yield explicit constructions of codes with constant relative distance and rate, starting from

a base code with constant relative distance and rate. With these constructions, the rate

of the lifted code satisfies rk ≥ r1 · exp
(
−(log(1/ε))O(log(1/ε))

)
in the HDX case and

rk ≥ r1 · εO(log(1/ε)) for expander walks. The precise parameters of these applications are

given in Corollary 3.7.2 of Section 3.7 and in Corollary 3.9.5 of Section 3.9, respectively.

Our techniques. We connect the question of decoding lifted codes to finding good solu-

tions for instances of Constraint Satisfaction Problems (CSPs) which we then solve using

the Sum-of-Squares (SOS) hierarchy. Consider the case of direct sum lifting, where for the

lifting y of a codeword z, each bit of y is an XOR of k bits from z. If an adversary corrupts

some bits of y to give ỹ, then finding the closest codeword to ỹ corresponds to finding

z′ ∈ C such that appropriate k-bit XORs of z′ agree with as many bits of ỹ as possible. If

the corruption is small, the distance properties of the code ensure that the unique choice

for z′ is z. Moreover, the distance amplification (robustness) properties of the lifting can

be used to show that it suffices to find any z′ (not necessarily in C) satisfying sufficiently
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many constraints. We then use results by a subset of the authors [AJT19] showing that

splittability (or the tensorial nature) of the hypergraphs used for lifting can be used to

yield algorithms for approximately solving the related CSPs. Of course, the above ar-

gument does not rely on the lifting being direct sum and works for any lifting function

g.

For list decoding, we solve just a single SOS program whose solution is rich enough

to “cover” the list of codewords we intend to retrieve. In particular, the solutions to the

CSP are obtained by “conditioning” the SDP solution on a small number of variables, and

we try to ensure that in the list decoding case, conditioning the SOS solution on different

variables yields solutions close to different elements of the list. To achieve this covering

property we consider a convex proxy Ψ for negative entropy measuring how concen-

trated (on a few codewords) the SOS solution is. Then we minimize Ψ while solving the

SOS program. A similar technique was also independently used by Karmalkar, Klivans,

and Kothari [KKK19] and Raghavendra–Yau [RY20] in the context of learning regression.

Unfortunately, this SOS cover comes with only some weak guarantees which are, a pri-

ori, not sufficient for list decoding. However, again using the robustness property of the

lifting, we are able to convert weak covering guarantees for the lifted code C ′ to strong

guarantees for the base code C, and then appeal to the unique decoding algorithm. We

regard the interplay between these two properties leading to the final list decoding ap-

plication as our main technical contribution. A more thorough overview is given in Sec-

tion 4.3 after introducing some objects and notation in Section 4.2. In Section 4.3, we also

give further details about the organization of the document.

Related work. The closest result to ours is the list decoding framework of Dinur et

al. [DHK+19] for the direct product encoding, where the lifted code is not binary but

rather over the alphabet Fk
2. Our framework instantiated for the direct sum encoding on

HDXs (c.f. Theorem 3.1.1) captures and strengthens some of their parameters in Corol-
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lary 3.1.2. While Dinur et al. also obtain list decoding by solving an SDP for a specific

CSP (Unique Games), the reduction to CSPs in their case uses the combinatorial nature

of the double sampler instances and is also specific to the direct product encoding. They

recover the list by iteratively solving many CSP instances, where each newly found so-

lution is pruned from the instance by reducing the alphabet size by one each time. On

the other hand, the reduction to CSPs is somewhat generic in our framework and the re-

covery of the list is facilitated by including an entropic proxy in the convex relation. As

mentioned earlier, a similar entropic proxy was also (independently) used by Karmalkar

et al. [KKK19] and Raghavendra–Yau [RY20] in the context of list decoding for linear re-

gression and mean estimation. Direct products on expanders were also used as a building

block by Guruswami and Indyk [GI03] who used these to construct linear time list decod-

able codes over large alphabets. They gave an algorithm for recovering the list based on

spectral partitioning techniques.

3.2 Preliminaries

3.2.1 Simplicial Complexes

It will be convenient to work with hypergraphs satisfying a certain downward-closed

property (which is straightforward to obtain).

Definition 3.2.1. A simplicial complex X with ground set [n] is a downward-closed collection of

subsets of [n], i.e., for all sets s ∈ X and t ⊆ s, we also have t ∈ X. The sets in X are referred

to as faces of X. We use the notation X(i) for the set of all faces of a simplicial complex X with

cardinality i and X(≤ d) for the set of all faces of cardinality at most d. 3 By convention, we take

3. Note that it is more common to associate a geometric representation to simplicial complexes, with
faces of cardinality i being referred to as faces of dimension i− 1 (and the collection being denoted by X(i− 1)
instead of X(i)). However, we prefer to index faces by their cardinality to improve readability of related
expressions.
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X(0) := {∅}.

A simplicial complex X(≤ d) is said to be a pure simplicial complex if every face of X is

contained in some face of size d. Note that in a pure simplicial complex X(≤ d), the top slice X(d)

completely determines the complex.

Simplicial complexes are equipped with the following probability measures on their

sets of faces.

Definition 3.2.2 (Probability measures (Π1, . . . , Πd)). Let X(≤ d) be a pure simplicial com-

plex and let Πd be an arbitrary probability measure on X(d). We define a coupled array of random

variables (s(d), . . . , s(1)) as follows: sample s(d) ∼ Πd and (recursively) for each i ∈ [d], take

s(i−1) to be a uniformly random subset of s(i) of size i− 1. The distributions Πd−1, . . . , Π1 are

then defined to be the marginal distributions of the random variables s(d−1), . . . , s(1). We also

define the joint distribution of (s(d), . . . , s(1)) as Π. Note that the choice of Πd determines each

other distribution Πi on X(i).

In order to work with the HDX and expander walk instantiations in a unified manner,

we will use also use the notation X(k) to indicate the set of all length k − 1 walks on a

graph G. In this case, X(k) is a set of k-tuples rather than subsets of size k. This distinction

will be largely irrelevant, but we will use WG(k) when referring specifically to walks

rather than subsets. The set of walks WG(k) has a corresponding distribution Πk as well

(see Definition 3.9.1).

3.2.2 Codes and Lifts

Codes

We briefly recall some standard code terminology. Let Σ be a finite alphabet with q ∈ N

symbols. We will be mostly concerned with the case Σ = F2. Given z, z′ ∈ Σn, recall that
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the relative Hamming distance between z and z′ is ∆(z, z′) :=
∣∣{i | zi 6= z′i}

∣∣ /n. Any set

C ⊂ Σn gives rise to a q-ary code. The distance of C is defined as ∆(C) := minz 6=z′ ∆(z, z′)

where z, z′ ∈ C. We say that C is a linear code 4 if Σ = Fq and C is a linear subspace of Fn
q .

The rate of C is logq(|C|)/n.

Instead of discussing the distance of a binary code, it will often be more natural to

phrase results in terms of its bias.

Definition 3.2.3 (Bias). The bias of a word 5 z ∈ Fn
2 is bias(z) :=

∣∣∣Ei∈[n](−1)zi
∣∣∣. The bias of a

code C is the maximum bias of any non-zero codeword in C.

Lifts

Starting from a code C1 ⊂ ΣX(1)
1 , we amplify its distance by considering a lifting operation

defined as follows.

Definition 3.2.4 (Lifting Function). Let g : Σk
1 → Σk and X(k) be a collection of k-uniform

hyperedges or walks of length k− 1 on the set X(1). For z ∈ ΣX(1)
1 , we define dsumg

X(k)(z) = y

such that ys = g(z|s) for all s ∈ X(k), where z|s is the restriction of z to the indices in s.

The lifting of a code C1 ⊆ ΣX(1)
1 is

dsumg
X(k)(C1) = {dsumg

X(k)(z) | z ∈ C1},

which we will also denote Ck. We will omit g and X(k) from the notation for lifts when they are

clear from context.

We will call liftings that amplify the distance of a code robust.

4. In this case, q is required to be a prime power.

5. Equivalently, the bias of z ∈ {±1}n is bias(z) :=
∣∣∣Ei∈[n]zi

∣∣∣.
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Definition 3.2.5 (Robust Lifting). We say that dsumg
X(k) is (δ0, δ)-robust if for every z, z′ ∈

ΣX(1)
1 we have

∆(z, z′) ≥ δ0 ⇒ ∆(dsum(z), dsum(z′)) ≥ δ.

For us the most important example of lifting is when the function g is k-XOR and

Σ1 = Σk = F2, which has been extensively studied in connection with codes and other-

wise [TS17, STV01, GNW95, ABN+92]. In our language of liftings, k-XOR corresponds to

the direct sum lifting.

Definition 3.2.6 (Direct Sum Lifting). Let C1 ⊆ Fn
2 be a base code on X(1) = [n]. The direct

sum lifting of a word z ∈ Fn
2 on a collection X(k) is dsumX(k)(z) = y such that ys = ∑i∈s zi

for all s ∈ X(k).

We will be interested in cases where the direct sum lifting reduces the bias of the base

code; in [TS17], structures with such a property are called parity samplers, as they emulate

the reduction in bias that occurs by taking the parity of random samples.

Definition 3.2.7 (Parity Sampler). Let g : Fk
2 → F2. We say that dsumg

X(k) is an (β0, β)-

parity sampler if for all z ∈ F
X(1)
2 with bias(z) ≤ β0, we have bias(dsum(z)) ≤ β.

3.2.3 Constraint Satisfaction Problems (CSPs)

A k-CSP instance I(H,P , w) with alphabet size q consists of a k-uniform hypergraph H,

a set of constraints

P = {Pa ⊆ [q]a : a ∈ H},

and a non-negative weight function w ∈ RH
+ on the constraints satisfying ∑a∈H w(a) = 1.

We will think of the constraints as predicates that are satisfied by an assignment σ if

we have σ|a ∈ Pa, i.e., the restriction of σ on a is contained in Pa. We write SATI(σ) for
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the (weighted) fraction of the constraints satisfied by the assignment σ, i.e.,

SATI(σ) = ∑
a∈H

w(a) · 1[σ|a ∈ Pa] = E
a∼w

[1[σ|a ∈ Pa]] .

We denote by OPT(I) the maximum of SATI(σ) over all σ ∈ [q]V(H).

A particularly important class of k-CSPs for our work will be k-XOR: here the input

consists of a k-uniform hypergraph H with weighting w, and a (right-hand side) vector

r ∈ FH
2 . The constraint for each a ∈ H requires

∑
i∈a

σ(i) = ra (mod 2).

In this case we will use the notation I(H, r, w) to refer to the k-XOR instance. When the

weighting w is implicitly clear, we will omit it and just write I(H, r).

Any k-uniform hypergraph H can be associated with a pure simplicial complex in a

canonical way by setting XI = {b : ∃ a ∈ H with a ⊇ b}; notice that XI(k) = H. We will

refer to this complex as the constraint complex of the instance I. The probability distribu-

tion Πk on XI(k) will be derived from the weight function w of the constraint:

Πk(a) = w(a) ∀a ∈ XI(k) = H.

3.2.4 Sum-of-Squares Relaxations and t-local PSD Ensembles

The Sum-of-Squares (SOS) hierarchy gives a sequence of increasingly tight semidefinite

programming relaxations for several optimization problems, including CSPs. Since we

will use relatively few facts about the SOS hierarchy, already developed in the analysis

of Barak, Raghavendra, and Steurer [BRS11], we will adapt their notation of t-local dis-

tributions to describe the relaxations. For a k-CSP instance I = (H,P , w) on n variables,
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we consider the following semidefinite relaxation given by t-levels of the SOS hierarchy,

with vectors v(S,α) for all S ⊆ [n] with |S| ≤ t, and all α ∈ [q]S. Here, for α1 ∈ [q]S1 and

α2 ∈ [q]S2 , α1 ◦ α2 ∈ [q]S1∪S2 denotes the partial assignment obtained by concatenating

α1 and α2.

maximize E
a∼w

[
∑

α∈Pa

‖v(a,α)‖2

]
=: SDP(I)

subject to
〈

v(S1,α1), v(S2,α2)

〉
= 0 ∀ α1|S1∩S2 6= α2|S1∩S2〈

v(S1,α1), v(S2,α2)

〉
=
〈

v(S3,α3), v(S4,α4)

〉
∀ S1 ∪ S2 = S3 ∪ S4, α1 ◦ α2 = α3 ◦ α4

∑
j∈[q]
‖v({i},j)‖2 = 1 ∀i ∈ [n]

‖v(∅,∅)‖2 = 1

For any set S with |S| ≤ t, the vectors v(S,α) induce a probability distribution µS over

[q]S such that the assignment α ∈ [q]S appears with probability ‖v(S,α)‖2. Moreover, these

distributions are consistent on intersections: for T ⊆ S ⊆ [n], we have µS|T = µT, where

µS|T denotes the restriction of the distribution µS to the set T. We use these distributions

to define a collection of random variables Z1, . . . , Zn taking values in [q], such that for any

set S with |S| ≤ t, the collection of variables {Zi}i∈S has a joint distribution µS. Note that

the entire collection (Z1, . . . , Zn) may not have a joint distribution: this property is only

true for sub-collections of size t. We will refer to the collection (Z1, . . . , Zn) as a t-local

ensemble of random variables.

We also have that that for any T ⊆ [n] with |T| ≤ t − 2, and any ξ ∈ [q]T, we can

define a (t− |T|)-local ensemble (Z′1, . . . , Z′n) by “conditioning” the local distributions on

the event ZT = ξ, where ZT is shorthand for the collection {Zi}i∈T. For any S with |S| ≤

t− |T|, we define the distribution of Z′S as µ′S := µS∪T|{ZT = ξ}. Finally, the semidefinite
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program also ensures that for any such conditioning, the conditional covariance matrix

M(S1,α1)(S2,α2)
= Cov

(
1[Z′S1

= α1], 1[Z′S2
= α2]

)

is positive semidefinite, where |S1| , |S2| ≤ (t − |T|)/2. Here, for each pair S1, S2 the

covariance is computed using the joint distribution µ′S1∪S2
. In this paper, we will only

consider t-local ensembles such that for every conditioning on a set of size at most t− 2,

the conditional covariance matrix is PSD. We will refer to these as t-local PSD ensembles.

We will also need a simple corollary of the above definitions.

Fact 3.2.8. Let (Z1, . . . , Zn) be a t-local PSD ensemble, and let X be any collection with X(1) =

[n]. Then, for all s ≤ t/2, the collection {Za}a∈X(≤s) is a (t/s)-local PSD ensemble, where

X(≤ s) =
⋃s

i=1 X(i).

For random variables ZS in a t-local PSD ensemble, we use the notation {ZS} to de-

note the distribution of ZS (which exists when |S| ≤ t). We also define Var[ZS] as

Var [ZS] := ∑
α∈[q]S

Var [1 [ZS = α]] .

Pseudo-expectation Formulation

An equivalent way of expressing this local PSD ensemble is through the use of a pseudo-

expectation operator, which is also a language commonly used in the SOS literature (e.g.,

[BHK+16, BKS17]). The exposition of some of our results is cleaner in this equivalent

language. Each variable Zi with i ∈ [n] is modeled by a collection of indicator local

random variables 6 {Zi,a}a∈[q] with the intent that Zi,a = 1 iff Zi = a. To ensure they

6. Note that {Zi,a}i∈[n],a∈[q] are formal variables in the SOS formulation.
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behave similarly to indicators we add the following restrictions to the SOS formulation:

Z2
i,a = Zi,a ∀i ∈ [n], a ∈ [q]

∑
a∈[q]

Zi,a = 1 ∀i ∈ [n]

Let R = R[Z1,1, . . . , Zn,q] be the ring of polynomials on {Zi,a}i∈[n],a∈[q]. We will write

R≤d for the restriction of R to polynomials of degree at most d. A feasible solution

at the (2t)-th level of the SOS hierarchy is a linear operator Ẽ : R≤2t → R called the

pseudo-expectation operator. This operator satisfies the following problem-independent

constraints: (i) Ẽ[1] = 1 (normalization) and (ii) Ẽ[P2] ≥ 0 for every P ∈ R≤t (non-

negative on Sum-of-Squares) 7. It also satisfies the problem-dependent constraints

Ẽ
[
Z2

i,a · P
]
= Ẽ

[
Zi,a · P

]
and Ẽ

 ∑
a∈[q]

Zi,a

 ·Q
 = Ẽ [Q] ,

for every i ∈ [n], a ∈ [q], P ∈ R≤2t−2, and Q ∈ R≤2t−1. Note that for any collection of

local random variables Zi1 , . . . , Zij
with j ≤ 2t we have the joint distribution

P(Zi1 = a1, . . . , Zij
= aj) = Ẽ

[
Zi1,a1

. . . Zij,aj

]
.

Even though we may not have a global distribution we can implement a form of pseudo-

expectation conditioning on a random variable Zi taking a given value a ∈ [q] as long as

P [Zi = a] = Ẽ[Zi,a] > 0. This can be done by considering the new operator

Ẽ|Zi=a : R≤2t−2 → R

7. From condition (ii), we can recover the PSD properties from the local PSD ensemble definition.

104



defined as Ẽ|Zi=a[·] = Ẽ[Z2
i,a·]/Ẽ[Z2

i,a], which is a valid pseudo-expectation operator at

the (2t− 2)-th level. This conditioning can be naturally generalized to a set of variables

S ⊆ [n] with |S| ≤ t satisfying ZS = α for some α ∈ [q]S.

Notation

We make some systematic choices for our parameters in order to syntactically stress their

qualitative behavior.

- 1/2− ε0 is a lower bound on the distance of the base code C1.

- 1/2− ε is a lower bound on the distance of the lifted code Ck.

- κ is a parameter that will control the list-decodability of the lifted code Ck.

- µ, θ, η are parameters that can be made arbitrarily small by increasing the SOS de-

gree and/or the quality of expansion.

- β, δ are arbitrary error parameters.

- λ1 ≥ λ2 ≥ · · · are the eigenvalues of a graph’s adjacency matrix (in [−1, 1]).

- σ1 ≥ σ2 ≥ · · · are the singular values of a graph’s adjacency matrix (in [0, 1]).

SOS is an analytic tool so we will identify 8 words over F2 with words over {±1}.

We also make some choices for words and local variables to distinguish the ground space

F
X(1)
2 or {±1}X(1) form the lifted space F

X(k)
2 or {±1}X(k).

- z, z′, z′′, . . . are words in the ground space F
X(1)
2 or {±1}X(1).

- y, y′, y′′, . . . are words in the lifted space F
X(k)
2 or {±1}X(k)

- Z := {Z1, . . . , Zn} is a local PSD ensemble on the ground set X(1).

- Y := {Ys := (dsum(Z))s | s ∈ X(k)} is a local ensemble on X(k).

8. For this, we can use any bijection from F2 → {±1}.
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3.3 Proof Strategy and Organization

As discussed earlier, we view the problem of finding the closest codeword(s) as that of

finding suitable solution(s) to an instance of a CSP (which is k-XOR in the case of direct

sum). We now discuss some of the technical ingredients required in the decoding proce-

dure.

Unique Decoding. Given Ck = dsumX(k)(C1) with the lifting function as k-XOR, we can

view the problem of finding the closest codeword to a given ỹ ∈ F
X(k)
2 as that of finding

the unique z ∈ C1 satisfying the maximum number of equations of the form ∑i∈s zi = ỹs

(mod 2), with one equation for each s ∈ X(k). By this property, y = dsum(z) is the

unique codeword of Ck closest to ỹ. Using the results of [AJT19], it is indeed possible

to find z′ ∈ Fn
2 such that ∆(dsum(z′), ỹ) ≤ ∆(dsum(z), ỹ) + β for any β > 0. We then

argue that z′ or its complement z′ must be close to z ∈ C1, which can then be recovered

by unique decoding.

If this is not the case, then z− z′ must have bias bounded away from 1, which would

imply by robustness (parity sampling property of the hypergraph) that dsum(z− z′) has

bias close to zero, i.e., ∆(dsum(z), dsum(z′)) ≈ 1/2. However, if ∆(ỹ, Ck) ≤ η, then we

must have

∆(dsum(z), dsum(z′)) ≤ ∆(dsum(z), ỹ) + ∆(dsum(z′), ỹ) ≤ 2η + β ,

which leads to a contradiction if η is significantly below 1/4 and β is sufficiently small.

List Decoding. We start by describing an abstract list decoding framework which only

assumes two general properties of a lifting dsumg
X(k): (i) it is distance amplifying (robust)

and (ii) it is amenable to SOS rounding (tensorial).
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Suppose ỹ ∈ F
X(k)
2 is a word promised to be (1/2−

√
ε)-close to a lifted code Ck =

dsum(C1) where Ck has distance at least 1/2− ε and C1 has distance at least 1/2− ε0. By

list decoding ỹ, we mean finding a list L ⊆ Ck of all codewords (1/2−
√

ε)-close to ỹ.

Our framework for list decoding ỹ consists of three stages. In the first stage, we set

up and solve a natural SOS program which we treat abstractly in this discussion 9. One

issue with using a rounding algorithm for this relaxation to do list decoding is that this

natural SOS program may return a solution that is “concentrated”, e.g., a SOS solution

corresponding to single codeword in L. Such a solution will of course not have enough

information to recover the entire list. To address this issue we now ask not only for fea-

sibility in our SOS program but also to minimize a convex function Ψ measuring how

concentrated the SOS solution is. Specifically, if Z is the PSD ensemble corresponding

to the solution of the SOS program and if Y is the lifted ensemble, then we minimize

Ψ := Es,t∈X(k)

[(
Ẽ[YsYt]

)2
]

.

The key property of the function Ψ is that if the SOS solution “misses” any element in

the list L then it is possible to decrease it. Since our solution is a minimizer 10 of Ψ, this is

impossible. Therefore, our solution does “cover” the list L. Even with this SOS cover of

L, the list decoding task is not complete. So far we have not talked about rounding, which

is necessary to extract codewords out of the (fractional) solution. For now, we will simply

assume that rounding is viable (this is handled by the second stage of the framework)

and resume the discussion.

Unfortunately, the covering guarantee is somewhat weak, namely, for y ∈ L we are

only able to obtain a word y′ ∈ F
X(k)
2 with weak agreement

∣∣〈y′, y
〉∣∣ ≥ 2 · ε. Convert-

ing a word y′ from the cover into an actual codeword y is the goal of the third and final

stage of the list decoding framework, dubbed Cover Purification. At this point we resort

9. The precise SOS program used is given in Section 3.6.2.

10. Actually an approximate minimizer is enough in our application.
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to the robustness properties of the lifting and the fact that we actually have “coupled”

pairs (z, y = dsum(z)) and (z′, y′ = dsum(z′)) for some z, z′ ∈ F
X(1)
2 . Due to this ro-

bustness (and up to some minor technicalities) even a weak agreement between y and

y′ in the lifted space translates into a much stronger agreement between z and z′ in the

ground space. Provided the latter agreement is sufficiently strong, z′ will lie in the unique

decoding ball centered at z in C1. In this case, we can uniquely recover z and thus also

y = dsum(z). Furthermore, if C1 admits an efficient unique decoder, we can show that

this step in list decoding ỹ can be done efficiently.

Now we go back to fill in the rounding step, which constitutes the second stage of

the framework, called Cover Retrieval. We view the SOS solution as composed of several

“slices” from which the weak pairs (z′, y′) are to be extracted. Note that the framework

handles, in particular, k-XOR liftings where it provides not just a single solution but a

list of them. Hence, some structural assumption about X(k) is necessary to ensure SOS

tractability. Recall that random k-XOR instances are hard for SOS [Gri01, KMOW17]. For

this reason, we impose a sufficient tractability condition on X(k) which we denote the

two-step tensorial property. This notion is a slight strengthening of a tensorial property

which was (implicitly) first investigated by Barak et al. [BRS11] when k = 2 and later

generalized for arbitrary k ≥ 2 in [AJT19]. Roughly speaking, if X(k) is tensorial then

the SOS local random variables in a typical slice of the solution behave approximately as

product variables from the perspective of the local views s ∈ X(k). A two-step tensorial

structure is a tensorial structure in which the local random variables between pairs of local

views s, t ∈ X(k) are also close to product variables, which is an extra property required to

perform rounding in this framework. With the two-step tensorial assumption, we are able

to round the SOS solution to obtain a list of pairs (z′, y′) weakly agreeing with elements

of the code list that will be refined during cover purification.

To recapitulate, the three stages of the abstract list decoding framework are summa-
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rized in Fig. 3.1 along with the required assumptions on the lifting.

SOS minimizing Ψ Cover Retrieval Cover Purification
SOS solution code cover

Tensorial Assumption Robustness Assumption

Code List

Figure 3.1: List decoding framework with the assumptions required in each stage.

Finding suitable hypergraphs. Fortunately, objects satisfying the necessary tensorial

and robustness assumptions do exist. HDXs were shown to be tensorial in [AJT19], and

here we strengthen this result to two-step tensorial as well as prove that HDXs possess the

particular robustness property of parity sampling. Walks on expander graphs are already

known to be robust [TS17], and we use a modified version of the methods in [AJT19] to

show they are also two-step tensorial. For both HDXs and expander walks, we describe

how to use known constructions of these objects to get explicit direct sum encodings that

can be decoded using our abstract framework.

Reduction from direct product to direct sum. Finally, we describe how to use list de-

coding results for direct sum codes to obtain results for direct product codes. Given a

direct product lifting Ck on the hypergraph X(k), if ∆(ỹ, y) ≤ 1− ε for y ∈ Ck, then we

must have that

P
s∈X(k)

[ys = ỹs] = E
s∈X(k)

[
E
t⊆s

[χt(ys + ỹs)]
]
≥ ε .

Since χt(ys) can be viewed as part of a direct sum lifting, we get by grouping subsets t by

size that there must exist a size i such that the direct sum lifting using X(i) has correlation

at least ε with the word y′ defined as y′t = χt(ỹs) for all t ∈ X(i). We can then apply the

list decoding algorithm for direct sum codes on X(i). A standard concentration argument
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can also be used to control the size i to be approximately k/2.

Organization of Results

In Section 3.4, we show how the direct sum lifting on HDXs can be used to reduce bias,

establishing that HDXs are parity samplers. This will give a very concrete running ex-

ample of a lifting that can be used in our framework. Before addressing list decoding,

we remark in Section 3.5 how this lifting can be used in the simpler regime of unique

decoding using a k-CSP algorithm on expanding instances [AJT19]. The abstract list de-

coding framework is given in Section 3.6. Next, we instantiate the framework with the

direct sum lifting on HDXs in Section 3.7. As an interlude between the first and second

instantiation, Section 3.8 describes how the first concrete instantiation of Section 3.7 cap-

tures the direct product lifting on HDXs via a reduction to the direct sum lifting. Finally,

in Section 3.9, we show how to instantiate the framework with the direct sum lifting on

the collection of length k− 1 walks of an expander graph.

3.4 Pseudorandom Hypergraphs and Robustness of Direct Sum

The main robustness property we will consider is parity sampling applied to the case of

the direct sum lifting. As this section focuses on this specific instance of a lifting, here

we will say that a collection X(k) is a parity sampler if its associated direct sum lifting

dsumX(k) is a parity sampler. Recall that for such a parity sampler, the direct sum lifting

brings the bias of a code close to zero, which means it boosts the distance almost to 1/2.
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3.4.1 Expander Walks and Parity Sampling

A known example of a parity sampler is the set X(k) of all walks of length k in a suffi-

ciently expanding graph, as shown by Ta-Shma.

Theorem 3.4.1 (Walks on Expanders are Parity Samplers [TS17]). Suppose G is a graph with

second largest singular value at most λ, and let X(k) be the set of all walks of length k on G. Then

X(k) is a (β0, (β0 + 2λ)bk/2c)-parity sampler.

Our goal in this section is to prove a similar result for high-dimensional expanders,

where X(k) is the set of k-sized faces.

3.4.2 High-dimensional Expanders

A high-dimensional expander (HDX) is a particular kind of simplicial complex satisfying

an expansion requirement. We recall the notion of high-dimensional expansion consid-

ered in [DK17]. For a complex X(≤ d) and s ∈ X(i) for some i ∈ [d], we denote by Xs the

link complex

Xs := {t\s | s ⊆ t ∈ X} .

When |s| ≤ d− 2, we also associate a natural weighted graph G(Xs) to a link Xs, with

vertex set Xs(1) and edge set Xs(2). The edge weights are taken to be proportional to the

measure Π2 on the complex Xs, which is in turn proportional to the measure Π|s|+2 on

X. The graph G(Xs) is referred to as the skeleton of Xs.

Dinur and Kaufman [DK17] define high-dimensional expansion in terms of spectral

expansion of the skeletons of the links.

Definition 3.4.2 (γ-HDX from [DK17]). A simplicial complex X(≤ d) is said to be γ-High

Dimensional Expander (γ-HDX) if for every 0 ≤ i ≤ d − 2 and for every s ∈ X(i), the graph

G(Xs) satisfies σ2(G(Xs)) ≤ γ.
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We will need the following theorem relating γ to the spectral properties of the graph

between two layers of an HDX.

Theorem 3.4.3 (Adapted from [DK17]). Let X be a γ-HDX and let M1,d be the weighted bipar-

tite containment graph between X(1) and X(d), where each edge ({i}, s) has weight (1/d)Πd(s).

Then the second largest singular value σ2 of M1,d satisfies

σ2
2 ≤

1
d
+ O(dγ).

We will be defining codes using HDXs by associating each face in some X(i) with a

position in the code. The distance between two codewords does not take into account any

weights on their entries, which will be problematic when decoding since the distributions

Πi are not necessarily uniform. To deal with this issue, we will work with HDXs where

the distributions Πi satisfy a property only slightly weaker than uniformity.

Definition 3.4.4 (Flatness (from [DHK+19])). We say that a distribution Π on a finite prob-

ability space Ω is D-flat if there exits N such that each singleton ω ∈ Ω has probability in

{1/N, . . . , D/N}.

Using the algebraically deep construction of Ramanujan complexes by Lubotzky, Samuels,

and Vishne [LSV05b, LSV05a], Dinur and Kaufman [DK17] showed that sparse γ-HDXs

do exist, with flat distributions on their sets of faces. The following lemma from [DHK+19]

is a refinement of [DK17].

Lemma 3.4.5 (Extracted from [DHK+19]). For every γ > 0 and every d ∈ N there exists

an explicit infinite family of bounded degree d-sized complexes which are γ-HDXs. Furthermore,

there exists a D ≤ (1/γ)O(d2/γ2) such that

|X(d)|
|X(1)| ≤ D,
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the distribution Π1 is uniform, and the other distributions Πd, . . . , Π2 are D-flat.

For a D-flat distribution Πi, we can duplicate each face in X(i) at most D times to

make Πi the same as a uniform distribution on this multiset. We will always perform

such a duplication implicitly when defining codes on X(i).

3.4.3 HDXs are Parity Samplers

To prove that sufficiently expanding HDXs are parity samplers, we establish some proper-

ties of the complete complex and then explore the fact that HDXs are locally complete 11.

We first show that the expectation over k-sized faces of a complete complex X on t vertices

approximately splits into a product of k expectations over X(1) provided t� k2.

Claim 3.4.6 (Complete complex and near independence). Suppose X is the complete complex

of dimension at least k with Πk uniform over X(k) and Π1 uniform over X(1) = [t]. For a

function f : X(1)→ R, let

µk = Es∼Πk

[
∏
i∈s

f (i)

]
and µ1 = Ei∼Π1

[ f (i)] .

Then ∣∣∣µk − µk
1

∣∣∣ ≤ k2

t
‖ f ‖k

∞ .

Proof. Let E = {(i1, . . . , ik) ∈ X(1)k | i1, . . . , ik are distinct}, δ = Pi1,...,ik∼Π1
[(i1, . . . , ik) /∈

E ], and η = E(i1,...,ik)∈X(1)k\E [ f (i1) · · · f (ik)]. Then

µk
1 = Ei1,...,ik∼Π1

[ f (i1) · · · f (ik)]

= (1− δ) ·E(i1,...,ik)∈E [ f (i1) · · · f (ik)] + δ ·E(i1,...,ik)∈X(1)k\E [ f (i1) · · · f (ik)]

= (1− δ) · µk + δ · η,

11. This a recurring theme in the study of HDXs [DK17].
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where the last equality follows since Πk is uniform and the product in the expectation

is symmetric. As i1, . . . , ik are sampled independently from Π1, which is uniform over

X(1),

δ = 1−∏
j<k

(
1− j

t

)
≤ ∑

j<k

j
t
=

k(k− 1)
2t

,

so we have ∣∣∣µk − µk
1

∣∣∣ = δ |µk − η| ≤ k2

2t

(
2 ‖ f ‖k

∞

)
.

We will derive parity sampling for HDXs from their behavior as samplers. A sampler

is a structure in which the average of any function on a typical local view is close to its

overall average. More precisely, we have the following definition.

Definition 3.4.7 (Sampler). Let G = (U, V, E) be a bipartite graph with a probability distribu-

tion ΠU on U. Let ΠV be the distribution on V obtained by choosing u ∈ U according to ΠU ,

then a uniformly random neighbor v of u. We say that G is an (η, δ)-sampler if for every function

f : V → [0, 1] with µ = Ev∼ΠV f (v),

P
u∼ΠU

[|Ev∼u[ f (v)]− µ| ≥ η] ≤ δ.

To relate parity sampling to spectral expansion, we use the following fact establish-

ing that samplers of arbitrarily good parameters (η, δ) can be obtained from sufficiently

expanding bipartite graphs. This result is essentially a corollary of the expander mixing

lemma.

Fact 3.4.8 (From Dinur et al. [DHK+19]). A weighted bipartite graph with second singular

value σ2 is an (η, σ2
2 /η2)-sampler.

Using Claim 3.4.6, we show that the graph between X(1) and X(k) obtained from a
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HDX is a parity sampler, with parameters determined by its sampling properties.

Claim 3.4.9 (Sampler bias amplification). Let X(≤ d) be a HDX such that the weighted bi-

partite graph M1,d between X(1) = [n] and X(d) is an (η, δ)-sampler. For any 1 ≤ k ≤ d, if

z ∈ Fn
2 has bias at most β0, then

bias(dsumX(k)(z)) ≤ (β0 + η)k +
k2

d
+ δ.

Proof. By downward closure, the subcomplex X|t obtained by restricting to edges con-

tained within some t ∈ X(d) is a complete complex on the ground set t. Since M1,d is an

(η, δ)-sampler, the bias of z|t must be within η of bias(z) on all but δ fraction of the edges

t. Hence

bias(dsumX(k)(z)) =
∣∣∣E{i1,...,ik}∼Πk

(−1)zi1
+···+zik

∣∣∣
=
∣∣∣Et∼Πd

E{i1,...,ik}∈X|t(k)(−1)zi1
+···+zik

∣∣∣
≤
∣∣∣Et∼Πd

E{i1,...,ik}∈X|t(k)(−1)zi1
+···+zik 1[bias(z|t)≤β0+η]

∣∣∣
+ P

t∼Πd
[bias(z|t) > β0 + η]

≤ Et∼Πd
1[bias(z|t)≤β0+η]

∣∣∣E{i1,...,ik}∈X|t(k)(−1)zi1
+···+zik

∣∣∣+ δ.

By Claim 3.4.6, the magnitude of the expectation of (−1)zi over the edges of size k in

the complete complex X|t is close to
∣∣∣Ei∼X|t(1)(−1)zi

∣∣∣, which is just the bias of z|t. Then

bias(dsumX(k)(z)) ≤ Et∼X(d)1[bias(z|t)≤β0+η] bias(z|t)k +
k2

d
+ δ

≤ (β0 + η)k +
k2

d
+ δ
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Now we can compute the parameters necessary for a HDX to be an (β0, β)-parity

sampler for arbitrarily small β.

Lemma 3.4.10 (HDXs are parity samplers). Let 0 < β ≤ β0 < 1, 0 < θ < (1/β0) − 1,

and k ≥ log(1+θ)β0
(β/3). If X(≤ d) is a γ-HDX with d ≥ max{3k2/β, 6/(θ2β2

0β)} and

γ = O
(

1/d2
)

, then X(k) is a (β0, β)-parity sampler.

Proof. Suppose the graph M1,d between X(1) and X(d) is an (η, δ)-sampler. We will

choose d and γ so that η = θβ0 and δ = β/3. Using Fact 3.4.8 to obtain a sampler

with these parameters, we need the second singular value σ2 of M1,d to be bounded as

σ2 ≤ θβ0

√
β

3
.

By the upper bound on σ2
2 from Theorem 3.4.3, it suffices to have

1
d
+ O (dγ) ≤

θ2β2
0β

3
,

which is satisfied by taking d ≥ 6/
(

θ2β2
0β
)

and γ = O
(

1/d2
)

.

By Claim 3.4.9, X(k) is a (β0, (β0 + η)k + k2/d + δ)-parity sampler. The first term in

the bias is (β0 + η)k = ((1 + θ)β0)
k, so we require (1 + θ)β0 < 1 to amplify the bias by

making k large. To make this term smaller than β/3, k must be at least log(1+θ)β0
(β/3).

We already chose δ = β/3, so ensuring d ≥ 3k2/β gives us a (β0, β)-parity sampler.

3.4.4 Rate of the Direct Sum Lifting

By applying the direct sum lifting on a HDX to a base code C1 with bias β0, parity sam-

pling allows us to obtain a code Ck = dsumX(k)(C1) with arbitrarily small bias β at the

cost of increasing the length of the codewords. The following lemma gives a lower bound

on the rate of the lifted code Ck.
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Lemma 3.4.11 (Rate of direct sum lifting for a HDX). Let β0 ∈ (0, 1) and θ ∈ (0, (1/β0)− 1)

be constants, and let C1 be an β0-biased binary linear code with relative rate r1. For β ∈ (0, β0],

suppose k, d, and γ satisfy the hypotheses of Lemma 3.4.10, with k and d taking the smallest

values that satisfy the lemma. The relative rate rk of the code Ck = dsumX(k)(C1) with bias β

constructed on a HDX with these parameters satisfies

rk ≥ r1 · γO((log(1/β))4/(β2γ2)).

If γ = C/d2 for some constant C, then this becomes

rk ≥ r1 ·
(

β2

(log(1/β))4

)O((log(1/β))12/β6)

.

Proof. Performing the lifting from C1 to Ck does not change the dimension of the code,

but it does increase the length of the codewords from n to |X(k)|, where |X(k)| is the

size of the multiset of edges of size k after each edge has been copied a number of times

proportional to its weight. Using the bound and flatness guarantee from Lemma 3.4.5,

we can compute

rk =
r1n
|X(k)| ≥

r1
D2 ,

where D ≤ (1/γ)O(d2/γ2). Treating β0 and θ as constants, the values of k and d necessary

to satisfy Lemma 3.4.10 are

k = log(1+θ)β0
(β/3) = O(log(1/β))

and

d = max

{
3k2

β
,

6
θ2β2

0β

}
= O

(
(log(1/β))2

β

)
.
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Putting this expression for d into the inequality for D yields

D ≤ (1/γ)O((log(1/β))4/(β2γ2)),

from which the bounds in the lemma statement follow.

From Lemma 3.4.11, we see that if C1 has constant rate, then Ck has a rate which is

constant with respect to n. However, the dependence of the rate on the bias β is quite

poor. This is especially striking in comparison to the rate achievable using Ta-Shma’s

expander walk construction described in Section 3.4.1.

Lemma 3.4.12 (Rate of direct sum lifting for expander walks [TS17]). Let β0 ∈ (0, 1) be

a constant and C1 be an β0-biased binary linear code with relative rate r1. Fix β ∈ (0, β0].

Suppose G is a graph with second largest singular value λ = β0/2 and degree d ≤ 4/λ2. Let

k = 2 log2β0
(β) + 1 and X(k) be the set of all walks of length k on G. Then the direct sum lifting

Ck = dsumX(k)(C1) has bias β and rate rk ≥ r1 · βO(1).

Proof. From Theorem 3.4.1 with this choice of λ and k, the direct sum lifting Ck has bias β.

For the rate, observe that the lifting increases the length of the codewords from n to the

number of walks of length k on G, which is ndk. Thus the rate of Ck is

rk =
r1n
ndk =

r1
dk

As d ≤ 16/β0, which is a constant, and k = O(log(1/β)), the rate satisfies rk ≥ r1 · βO(1).
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3.5 Unique Decoding

In this section, we will show how parity sampling and the ability to solve k-XOR instances

with X(k) as their constraint complex allow us to decode the direct sum lifting Ck =

dsumX(k)(C1) of a linear base code C1 ∈ Fn
2 . With a more technical argument, we can

also handle different kinds of liftings and non-linear codes, but for clarity of exposition

we restrict our attention to the preceding setting.

3.5.1 Unique Decoding on Parity Samplers

Our approach to unique decoding for Ck is as follows. Suppose a received word ỹ ∈ F
X(k)
2

is close to y? ∈ Ck, which is the direct sum lifting of some z? ∈ C1 on X(k). We first find

an approximate solution z ∈ Fn
2 to the k-XOR instance I(X(k), ỹ) with predicates

∑
i∈s

zi = ỹs (mod 2)

for every s ∈ X(k). Note that z being an approximate solution to I(X(k), ỹ) is equivalent

to its lifting dsumX(k)(z) being close to ỹ. In Lemma 3.5.1, we show that if dsumX(k)

is a sufficiently strong parity sampler, either z or its complement z will be close to z?.

Running the unique decoding algorithm for C1 on z and z will recover z?, from which we

can obtain y? by applying the direct sum lifting.

Lemma 3.5.1. Let 0 < ε < 1/2 and 0 < β < 1/4− ε/2. Suppose C1 is a linear code that is

efficiently uniquely decodable within radius 1/4− µ0 for some µ0 > 0, and Ck = dsumX(k)(C1)

where dsumX(k) is a (1/2 + 2µ0, 2ε)-parity sampler. Let ỹ ∈ F
X(k)
2 be a word that has distance

strictly less than (1/4− ε/2− β) from Ck, and let y? = dsumX(k)(z
?) ∈ Ck be the word closest

to ỹ.
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Then, for any z ∈ Fn
2 satisfying

∆(dsumX(k)(z), ỹ) <
1
4
− ε

2
,

we have either

∆(z?, z) ≤ 1
4
− µ0 or ∆(z?, z) ≤ 1

4
− µ0.

In particular, either z or z can be efficiently decoded in C1 to obtain z? ∈ C1.

Remark 3.5.2. Since dsumX(k) is a (1/2 + 2µ0, 2ε)-parity sampler, the code Ck has distance

∆(Ck) ≥ 1/2− ε. This implies that z? ∈ C1 is unique, since its direct sum lifting y? is within

distance ∆(Ck)/2 of ỹ.

Proof. Let y = dsumX(k)(z). We have

∆(y?, y) ≤ ∆(y?, ỹ) + ∆(y, ỹ) <
1
2
− ε.

By linearity of dsumX(k), ∆(dsumXk
(z? − z), 0) < 1/2− ε, so bias(dsumk(z

? − z)) > 2ε.

From the (1/2 + 2µ0, 2ε)-parity sampling assumption, bias(z? − z) > 1/2 + 2µ0. Trans-

lating back to distance, either ∆(z?, z) < 1/4− µ0 or ∆(z?, z) > 3/4 + µ0, the latter being

equivalent to ∆(z?, z) < 1/4− µ0.

To complete the unique decoding algorithm, we need only describe how a good

enough approximate solution z ∈ Fn
2 to a k-XOR instance I(X(k), ỹ) allows us to recover

z? ∈ C1 provided ỹ is sufficiently close to Ck.

Corollary 3.5.3. Suppose C1, X(k), z?, y? and ỹ are as in the assumptions of Lemma 3.5.1. If

z ∈ Fn
2 is such that

SATI(X(k),ỹ)(z) ≥ OPTI(X(k),ỹ) − β,
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then unique decoding either z or z gives z? ∈ C1. Furthermore, if such a z can be found efficiently,

so can z?.

Proof. By the assumption on z, we have

1− ∆(dsumX(k)(z), ỹ) = SATI(X(k),ỹ)(z)

≥ OPTI(X(k),ỹ) − β

≥ SATI(X(k),ỹ)(z
?)− β

= 1− ∆(y?, ỹ)− β,

implying ∆(dsumX(k)(z), ỹ) ≤ ∆(y?, ỹ) + β. Using the assumption that ỹ has distance

strictly less than (1/4− ε/2− β) from Ck, we get that ∆(dsumX(k)(z), ỹ) < 1/4− ε/2, in

which case we satisfy all of the conditions required for Lemma 3.5.1.

3.5.2 Concrete Instantiations

High Dimensional Expanders

If X(k) is the collection of k-faces of a sufficiently expanding γ-HDX, we can use the

following algorithm to approximately solve the k-XOR instance I(X(k), ỹ) and obtain

z ∈ Fn
2 .

Theorem 3.5.4 ([AJT19]). Let I be an instance of MAX k-CSP on n variables taking values

over an alphabet of size q, and let β > 0. Let the simplicial complex XI be a γ-HDX with

γ = βO(1) · (1/(kq))O(k).

There is an algorithm based on (k/β)O(1) · qO(k) levels of the Sum-of-Squares hierarchy which

produces an assignment satisfying at least an (OPTI − β) fraction of the constraints in time

n(k/β)O(1)·qO(k)
.
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If X is a HDX with the parameters necessary to both satisfy this theorem and be a

(1/2 + 2µ0, 2ε) parity sampler, we can combine this with Corollary 3.5.3 to achieve effi-

cient unique decodability of Ck = dsumX(k)(C1).

Corollary 3.5.5. Let X(≤ d) be a d-dimensional γ-HDX satisfying the premises of Lemma 3.4.10

that would guarantee that X(k) is a (1/2 + 2µ0, 2ε)-parity sampler, and let C1 ⊆ Fn
2 be a lin-

ear code which is efficiently unique decodable within radius 1/4− µ0 for some µ0 > 0. Then

the code Ck = dsumX(k)(C1) can be unique decoded within distance 1/4 − ε/2 − β in time

n(k/β)O(1)·2O(k)
,12 where we have

β = (γ · (2k)O(k))
1

O(1) .

Proof. By Lemma 3.4.10, we can achieve (1/2 + 2µ0, 2ε)-parity sampling by taking 0 <

θ < 2
1+4µ0

− 1, k ≥ log
(1+θ)·( 1

2+2µ0)
(2ε/3), d ≥ max

{
3k2

2ε , 3
θ2(1/2+2µ0)2ε

}
, and γ =

O(1/d2). Let ỹ ∈ F
X(k)
2 be a received word with distance less than (1/4− ε/2− β) from

Ck. Applying Theorem 3.5.4 to I(X(k), ỹ) with q = 2 and the given value of β, we obtain

a z ∈ Fn
2 with SATI(X(k),ỹ)(z) ≥ OPTI(X(k),ỹ) − β. This z can be used in Corollary 3.5.3

to find z∗ and uniquely decode ỹ as y∗ = dsumX(k)(z
∗).

Expander Walks

In Section 3.9, we will show that the algorithmic results of [AJT19] can be modified

to work when X(k) is a set of tuples of size k which is sufficiently splittable (Corol-

lary 3.9.21), which occurs when X(k) is a set of walks on on a suitably strong expander

(Corollary 3.9.18). In particular, we have the following.

Theorem 3.5.6. Let G = (V, E) be a graph with σ2(G) = λ and k be a given parameter. Let I

12. Here we are assuming that uniquely decoding C1 within radius 1/4− µ0 takes time less than this.
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be a k-CSP instance over an alphabet of size q whose constraint graph is the set of walks on G of

length k. Let β > 0 be such that λ = O(β2/(k2 · q2k)).

There exists an algorithm based on O
(

q4kk7

β5

)
levels of the Sum-of-Squares hierarchy which

produces an assignment satisfying at least an (OPTI − β) fraction of the constraints in time

nO(q4k·k7/β5).

Using this result, one can efficiently unique decode Ck = dsumX(k)(C1) when X(k) is

the set of walks of length k on an expander strong enough to achieve the necessary parity

sampling property.

Corollary 3.5.7. Let X(k) be the set of walks on a graph G with σ2(G) = λ such that dsumX(k)

is a (1/2 + 2µ0, 2ε) parity sampler, and let C1 ⊆ Fn
2 be a linear code which is efficiently unique

decodable within radius 1/4− µ0 for some µ0 > 0. Then the code Ck = dsumX(k)(C1) can be

unique decoded within radius 1/4− ε/2− β in time nO(24k·k7/β5), where we have

β = O(λ · k2 · 2k).

Proof. By Theorem 3.4.1, we can obtain a (1/2 + 2µ0, 2ε)-parity sampler by ensuring

1/2+µ0 + 2λ < 1 and k ≥ 2 log1/2+µ0+2λ(2ε)+ 1. Let ỹ ∈ F
X(k)
2 be a received word with

distance less than (1/4− ε/2− β) from Ck. Applying Theorem 3.5.6 to I(X(k), ỹ) with

q = 2 and the given value of β, we obtain a z ∈ Fn
2 with SATI(X(k),ỹ)(z) ≥ OPTI(X(k),ỹ)−

β. This z can be used in Corollary 3.5.3 to find z∗ and uniquely decode ỹ as y∗ =

dsumX(k)(z
∗).

Remark 3.5.8. In both Corollary 3.5.5 and Corollary 3.5.7, when µ0 and ε are constants, k can be

constant, which means we can decode Ck from a radius arbitrarily close to 1/4− ε/2 if we have

strong enough guarantees on the quality of the expansion of the high-dimensional expander or the

graph, respectively.

Notice, however, that the unique decodability radius of the code Ck is potentially larger than
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1/4− ε/2. Our choice of (1/2 + 2µ0, 2ε)-parity sampling is needed to ensure that the approx-

imate k-CSP solutions lie within the unique decoding radius of C1. Since the bias of the code C1

will generally be smaller than the parity sampling requirement of 1/2 + 2µ0, the bias of the code

Ck will be smaller than 2ε. In this case, the maximum distance at which our unique decoding

algorithm works will be smaller than ∆(Ck)/2.

3.6 Abstract List Decoding Framework

In this section, we present the abstract list decoding framework with its requirements

and prove its guarantees. We introduce the entropic proxy Ψ in Section 3.6.1 and use it

to define the SOS program for list decoding in Section 3.6.2. In Section 3.6.3, we establish

key properties of Ψ capturing its importance as a list decoding tool. We recall the Propa-

gation Rounding algorithm in Section 3.6.4 and formalize the notion of a slice as a set of

assignments to variables in the algorithm. Then, considerations of SOS tractability of the

lifting related to tensorial properties are dealt with in Section 3.6.5. Now, assuming we

have a fractional SOS solution to our program, the analysis of its covering properties and

the precise definition and correctness of the two later stages of the framework are given

in Section 3.6.6. This abstract framework will be instantiated using the direct sum lifting:

on HDXs in Section 3.7 and on expander walks in Section 3.9.

3.6.1 Entropic Proxy

In our list decoding framework via SOS, we will solve a single optimization program

whose resulting pseudo-expectation will in a certain sense be rich enough to cover all

intended solutions at once. To enforce this covering property we rely on an analytical

artifice, namely, we minimize a convex function Ψ that provides a proxy to how con-

centrated the SOS solution is. More precisely, we use Ψ from Definition 3.6.1. A similar
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list decoding technique was also (independently) used by Karmalkar et al. [KKK19] and

Raghavendra–Yau [RY20], but in the context of learning.

Definition 3.6.1 (Entropic Proxy). Let Y = {Ys}s∈X(k) be a t-local PSD ensemble with t ≥ 2.

We define Ψ = Ψ
(
{Ys}s∈X(k)

)
as

Ψ := Es,t∼Πk

(
Ẽ [YsYt]

)2
.

We also denote Ψ equivalently as Ψ = Ψ
(

Ẽ
)

where Ẽ is the pseudo-expectation operator associ-

ated to the ensemble Y.

3.6.2 SOS Program for List Decoding

Let ỹ ∈ {±1}X(k) be a word promised to be (1/2 −
√

ε)-close to a lifted code Ck =

dsum(C1). The word ỹ is to be regarded as a (possibly) corrupted codeword for which

we want to do list decoding. We consider the following SOS program.

minimize Ψ
(
{Ys}s∈X(k)

)
(List Decoding Program)

subject to

Es∼Πk Ẽ [ỹs · Ys] ≥ 2
√

ε (Agreement Constraint)

Z1, . . . , Zn being (L + 2k)-local PSD ensemble

Table 3.1: List decoding SOS formulation for ỹ.

3.6.3 Properties of the Entropic Proxy

We establish some key properties of our negative entropic function Ψ. First, we show that

Ψ is a convex function. Since the feasible set defined by the SOS List Decoding Program
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is convex and admits an efficient separation oracle 13, the convexity of Ψ implies that

the List Decoding Program can be efficiently solved within η-optimality in time nO(t) ·

polylog(η−1) where t is the SOS degree.

Lemma 3.6.2 (Convexity). Ψ is convex, i.e., for every pair of pseudo-expectations Ẽ1 and Ẽ2

and α ∈ [0, 1],

Ψ
(

α · Ẽ1 + (1− α) · Ẽ2

)
≤ α ·Ψ

(
Ẽ1

)
+ (1− α) ·Ψ

(
Ẽ2

)
.

Proof. Suppose s ∪ t = {i1, . . . , it}. By definition YsYt = dsum(Z)s · dsum(Z)t, i.e., YsYt

is a function f on input Zi1 , . . . , Zit ∈ {±1}. Let

f (Zi1 , . . . , Zit) = ∑
S⊆s∪t

f̂ (S) ·∏
i∈S

Zi,

be the Fourier decomposition of f . Then

Ẽ [YsYt] = Ẽ [ f ] = ∑
S⊆s∪t

f̂ (S) · Ẽ
[
∏
i∈S

Zi

]
.

Since Ẽ [YsYt] is a linear function of Ẽ, we obtain
(

Ẽ [YsYt]
)2

is convex. Now, the con-

vexity of Ψ follows by noting that Ψ is a convex combination of convex functions.

The (sole) problem-specific constraint appearing in the SOS List Decoding Program

allows us to deduce a lower bound on Ψ. This lower bound will be important later to

show that a feasible solution that does not cover all our intended solutions must have Ψ

bounded away from 0 so that we still have room to decrease Ψ. We note that an improve-

ment in the conclusion of the following lemma would directly translate to stronger list

decoding parameters in our framework.

13. In our setting the pseudo-expectation has trace bounded by nO(t) in which case semidefinite program-
ming can be solved efficiently [GM12, RW17].
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Lemma 3.6.3 (Correlation⇒ entropic bound). Let {Ys}s∈X(k) be t-local PSD ensemble with

t ≥ 2. If there is some y ∈ {±1}X(k) such that

∣∣∣Es∼Πk
Ẽ [ys · Ys]

∣∣∣ ≥ β,

then

Ψ
(
{Ys}s∈X(k)

)
≥ β4.

Proof. We calculate

Es,t∼Πk

(
Ẽ [YsYt]

)2
= Es,t∼Πk

(
Ẽ [(ysYs) (ytYt)]

)2

≥
(

Es,t∼Πk
Ẽ [(ysYs) (ytYt)]

)2
(Jensen’s Inequality)

=
(

Ẽ
[
(Es∼Πk

ys · Ys)
2
])2

≥
(

Ẽ
[
Es∼Πk

[ys · Ys]
])4

(Cauchy–Schwarz Inequality)

=
(

Es∼Πk
Ẽ [ys · Ys]

)4
≥ β4.

We now show the role of Ψ in list decoding: if an intended solution is not represented

in the pseudo-expectation Ẽ, we can get a new pseudo-expectation Ẽ
′

which attains a

smaller value of Ψ.

Lemma 3.6.4 (Progress lemma). Suppose there exist z ∈ {±1}X(1) and y = dsum(z) ∈

{±1}X(k) satisfying

Ẽ

[(
Es∼Πk

ys · Ys

)2
]
≤ δ2.
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If Ψ ≥ δ2, then there exists a pseudo-expectation Ẽ′ such that

Es,t∼Πk

(
Ẽ′ [YsYt]

)2
≤ Ψ−

(
Ψ− δ2

)2

2
.

In particular, if Ψ ≥ 2δ2, then

Es,t∼Πk

(
Ẽ′ [YsYt]

)2
≤ Ψ− δ4

2
.

Proof. Let Ẽ′ be the pseudo-expectation 14

Ẽ′ := (1− α) · Ẽ + α ·Eδz ,

where Eδz is the expectation of the delta distribution on z and α ∈ (0, 1) is to be defined

later. We have

Es,t∼Πk

(
Ẽ′ [YsYt]

)2
= Es,t∼Πk

(
(1− α) · Ẽ [YsYt] + α · ysyt

)2

= (1− α)2 ·Ψ + α2 ·Es,t∼Πk
(ysyt)2 + 2α(1− α) ·Es,t∼Πk

[
Ẽ[YsYt]ysyt

]
≤ (1− α)2 ·Ψ + α2 + 2α(1− α) · δ2.

The value of α minimizing the quadratic expression of the RHS above is

α? =
Ψ− δ2

1 + Ψ− 2δ2 .

14. By summing the pseudo-expectation Ẽ and actual expectation Eδz , we mean that we are summing Ẽ

to pseudo-expectation of the same dimensions obtained from operator Eδz .
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Using this value yields

Es,t∼Πk

(
Ẽ′ [YsYt]

)2
≤ Ψ−

(
Ψ− δ2

)2

1 + Ψ− 2δ2

≤ Ψ−

(
Ψ− δ2

)2

2
,

where in the last inequality we used Ψ ≤ 1.

3.6.4 Propagation Rounding

A central algorithm in our list decoding framework is the Propagation Rounding Algo-

rithm 4.7.16. It was studied by Barak et al. [BRS11] in the context of approximating 2-CSPs

on low threshold rank graphs and it was later generalized to HDXs (and low threshold

rank hypergraphs) in the context of k-CSPs [AJT19].

Given an (L + 2k)-local PSD ensemble {Z1, . . . , Zn}, the Propagation Rounding Al-

gorithm 4.7.16 chooses a subset of variables S ⊆ [n] at random. Then it samples a joint

assignment σ to the variables in S according to {ZS}. The value of the remaining variables

Zi are sampled according to the conditional marginal distributions {Zi|ZS = σ}. An im-

portant byproduct of this algorithm is the 2k-local PSD ensemble Z′ = {Z1, . . . , Zn|ZS =

σ}.

The precise description of the Propagation Rounding Algorithm 4.7.16 follows.
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Algorithm 3.6.5 (Propagation Rounding Algorithm).

Input An (L + 2k)-local PSD ensemble {Z1, . . . , Zn} and some distribution Πk on X(k).

Output A random assignment (σ1, . . . , σn) ∈ [q]n and 2k-local PSD ensemble Z′.

1. Choose m ∈ {1, . . . , L/k} uniformly at random.

2. Independently sample m k-faces, sj ∼ Πk for j = 1, . . . , m.

3. Write S =
⋃m

j=1 sj, for the set of the seed vertices.

4. Sample assignment σ : S→ [q] according to the local distribution {ZS}.

5. Set Z′ = {Z1, . . . , Zn|ZS = σ}, i.e. the local ensemble Z conditioned on agreeing with σ.

6. For all j ∈ [n], sample independently σj ∼ {Z′j}.

7. Output (σ1, . . . , σn) and Z′.

To our list decoding task we will show that an ensemble minimizing Ψ covers the

space of possible solutions in the sense that for any intended solution there will be a

choice of S and σ such that the conditioned ensemble Z′ enables the sampling of a word

within the unique decoding radius in C1 of this intended solution.

An execution of the Algorithm 4.7.16 is completely determined by the tuple (m, S, σ)

which we will refer to as a slice of the PSD ensemble.

Definition 3.6.6 (Slice). We call a tuple (m, S, σ) obtainable by Algorithm 4.7.16 a slice and let

Ω denote the set of all slices obtainable by Algorithm 4.7.16.

We can endow Ω with a natural probability distribution, where the measure of each

(m, S, σ) is defined as the probability that this slice is picked during an execution of Algo-

rithm 4.7.16. We also define a pseudo-expectation operator for each slice.

Definition 3.6.7 (Pseudo-Expectation Slice). Given a slice (m, S, σ), we define the pseudo-
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expectation operator Ẽ|S,σ
which is the pseudo-expectation operator of the conditioned local PSD

ensemble {Z1, . . . , Zn|Zs = σ}.

3.6.5 Tensorial Structures

In general, a local PSD ensemble Z′ = {Z′1, . . . , Z′n} output by the Propagation Round-

ing Algorithm 4.7.16 may be far from corresponding to any underlying joint global dis-

tribution 15. In our application, we will be interested in the case where the ensemble

approximately behaves as being composed of independent random variables over the

collection of “local views” given by the hyperedges in X(k). In such case, rounding the

SOS solution via independent rounding is straightforward. A collection of local views ad-

mitting this property with a given SOS degree parameter L is denoted tensorial (variables

behave as products over the local views).

Definition 3.6.8 (Tensorial Hypergraphs). Let X(k) be a collection of k-uniform hyperedges

endowed with a distribution Πk, µ ∈ [0, 1], and L ∈ N. We say that X(k) is (µ, L)-tensorial if

the local PSD ensemble Z′ returned by Propagation Rounding Algorithm 4.7.16 with SOS degree

parameter L satisfies

E
Ω

E
a∼Πk

∥∥∥{Z′a} − {Z′a1

}
· · ·
{

Z′ak

}∥∥∥
1
≤ µ. (3.1)

To analyze the potential Ψ we will need that the variables between pairs of local

views, i.e., pairs of hyperedges, behave as product.

Definition 3.6.9 (Two-Step Tensorial Hypergraphs). Let X(k) be a collection of k-uniform

hyperedges endowed with a distribution Πk, µ ∈ [0, 1], and L ∈ N. We say that X(k) is

(µ, L)-two-step tensorial if it is (µ, L)-tensorial and the PSD ensemble Z′ returned by Propa-

15. In fact, if this was the case, then we would be able to approximate any k-CSP with SOS degree (L+ 2k).
However, even for L as large as linear in n this is impossible for SOS [Gri01, KMOW17].
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gation Rounding Algorithm 4.7.16 with SOS degree parameter L satisfies

E
Ω

E
s,t∼Πk

∥∥{Z′sZ′t} −
{

Z′s
}{

Z′t
}∥∥

1 ≤ µ.

In Section 3.7.1, we establish the relationship between the parameters µ and L and the

expansion that will ensure HDXs are (µ, L)-two-step tensorial. Similarly, in Section 3.9.1

we provide this relationship when X(k) is the collection of walks of an expander graph.

Tensorial over Most Slices

By choosing µ sufficiently small it is easy to show that most slices (m, S, σ) satisfy the ten-

sorial (or two-step tensorial) statistical distance condition(s) with a slightly worse param-

eter µ̃ such that µ̃ → 0 as µ → 0. If we could construct tensorial (or two-step tensorial)

objects for arbitrarily small parameter µ with L = Ok,q,µ(1), then we would be able to

obtain µ̃ arbitrarily small. Lemma 3.7.4 establishes that HDXs of appropriate expansion

satisfy this assumption, and Lemma 3.9.20 does the same for walks on expanders.

We introduce two events. The first event captures when a slice (m, S, σ) leads to the

conditioned local variables Z′1, . . . , Z′n being close to k-wise independent over the k-sized

hyperedges.

Definition 3.6.10 (Ground Set Close to k-wise Independent). Let µ ∈ (0, 1]. We define the

event Kµ as

Kµ :=
{
(m, S, σ) ∈ Ω | E

a∼Πk

∥∥{Za|ZS = σ} −
{

Za1 |ZS = σ
}
· · ·
{

Zak |ZS = σ
}∥∥

1 < µ2/2
}

.

The second event captures when the variables between pairs of hyperedges are close

to independent.
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Definition 3.6.11 (Lifted Variables Close to Pairwise Independent). Let µ ∈ (0, 1]. We

define the event Pµ as

Pµ :=
{
(m, S, σ) ∈ Ω | E

s,t∼Πk
‖{ZsZt|ZS = σ} − {Zs|ZS = σ}{Zt|ZS = σ}‖1 < µ2/2

}
.

These events satisfy a simple concentration property.

Claim 3.6.12 (Concentration). Suppose a simplicial complex X(≤ k) with X(1) = [n] and an

(L + 2k)-local PSD ensemble Z = {Z1, . . . , Zn} are given as input to Propagation Rounding Al-

gorithm 4.7.16. Let µ ∈ (0, 1]. If X(k) is (µ4/4, L)-two-step tensorial, then

P
(m,S,σ)∼Ω

[
Kc

µ

]
≤ µ2

2
, (3.2)

and

P
(m,S,σ)∼Ω

[
Pc

µ

]
≤ µ2

2
. (3.3)

Proof. We only prove Eq. (3.2) since the proof of Eq. (3.3) is similar. Define the random

variable R := Ea∼Πk

∥∥∥{Z′a} − {Z′a1

}
· · ·
{

Z′ak

}∥∥∥
1

on the sample space Ω = {(m, S, σ)}.

From our (µ4/4, L)-two-step tensorial assumption we have

EΩ [R] ≤ µ4

4
.

Now, we can conclude

P
(m,S,σ)∼Ω

[
Kc

µ

]
= P

(m,S,σ)∼Ω

[
R ≥ µ2

2

]
≤ µ2

2
,

using Markov’s inequality.
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3.6.6 Further Building Blocks and Analysis

Before we delve into further phases of the list decoding framework, we introduce some

notation for the list of codewords we want to retrieve.

Definition 3.6.13 (Code list). Given ỹ ∈ {±1}X(k) and a code C on X(k) with relative distance

at least 1/2− ε, we define the list L(ỹ, C) as

L(ỹ, C) :=
{

y ∈ C | ∆(y, ỹ) ≤ 1
2
−
√

ε

}
.

Under these assumptions the Johnson bound establishes that the list size is constant

whenever ε > 0 is constant.

Remark 3.6.14. The Johnson bound [GRS19] guarantees that

|L(ỹ, C)| ≤ 1
2 · ε

provided the relative distance of C is at least 1/2− ε.

In the case of lifted codes, it is more appropriate to consider a list of pairs L(ỹ, C1, Ck)

defined as follows.

Definition 3.6.15 (Coupled code list). Given ỹ ∈ {±1}X(k) and a lifted code Ck on X(k) with

relative distance at least 1/2− ε, we define the coupled code list L(ỹ, C1, Ck) as

L(ỹ, C1, Ck) :=
{
(z, dsum(z)) | z ∈ C1 and ∆(dsum(z), ỹ) ≤ 1

2
−
√

ε

}
.

Recovering this list L(ỹ, C1, Ck) is the main goal of this section. This task will be accom-

plished by Algorithm 3.6.16 stated below whose building blocks and analysis we develop

in this section.
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Algorithm 3.6.16 (List Decoding Algorithm).

Input A word ỹ ∈ {±1}X(k) which is (1/2−
√

ε)-close to Ck = dsum(C1).

Output Coupled code list L(ỹ, C1, Ck).

1. Solve the List Decoding Program with η-accuracy, obtaining Z, where η = ε8/222

2. LetM be the output of the Cover Retrieval Algorithm 3.6.29 on Z

3. Let L′ be the output of the Cover Purification Algorithm 3.6.36 onM

4. Let L′′ = {(z, y) ∈ L′ | ∆(ỹ, y) ≤ 1/2−
√

ε}

5. Output L′′

As shown in Fig. 3.1 of Section 4.3, the first step is to solve the List Decoding Program

which results in a pseudo-expectation “covering” the list L(ỹ, C) as we will make pre-

cise. A precursor property to covering and some considerations about SOS rounding are

treated in Section 3.6.6. Next, the formal definition of cover is presented in Section 3.6.6

and we have all the elements to present the Cover Retrieval Algorithm 3.6.29 with its cor-

rectness in Section 3.6.6. Then, we use the robustness properties of the lifting to purify the

cover in Section 3.6.6. Finally, in Section 3.6.6, we assemble the building blocks and prove

the main technical result, Theorem 3.6.17, whose proof follows easily once the properties

of the building blocks are in place.

Note that Theorem 3.6.17 embodies an abstract list decoding framework which relies

only on the robustness and tensorial properties of the lifting. We provide a concrete instan-

tiation of the framework to the direct sum lifting on HDXs in Section 3.7 and to the direct

sum lifting on expander walks in Section 3.9.2.

Theorem 3.6.17 (List Decoding Theorem). Suppose that dsum is a (1/2− ε0, 1/2− ε)-robust

(ε8/222, L)-two-step tensorial lifting from C1 to Ck which is either

135



- linear and a (1/2 + ε0, 2 · ε)-parity sampler; or

- (1/4− ε0, 1/2− ε/2)-robust and odd.

Let ỹ ∈ {±1}X(k) be (1/2−
√

ε)-close to Ck. Then w.v.h.p. the List Decoding Algorithm 3.6.16

returns the coupled code list L(ỹ, C1, Ck). Furthermore, the running time is

nO(L+k)
(

polylog(ε−1) + f (n)
)

,

where n = |X(1)| and f (n) is the running time of a unique decoding algorithm of C1.

Remark 3.6.18. Regarding Theorem 3.6.17, we stress that although the lifting is (1/2− ε0, 1/2−

ε)-robust and we can perform list decoding at least up to distance 1/2 −
√

ε, our framework

does not recover the Johnson bound. The issue is that our framework requires one of the addi-

tional amplification guarantees of Theorem 3.6.17, which both make the distance of Ck become

1/2− εΩε0(1) > 1/2− ε. Efficiently recovering the Johnson bound remains an interesting open

problem.

We observe that the algorithms themselves used in this framework are quite sim-

ple (although their analyses might not be). Moreover, the tasks of cover retrieval and

purification are reasonably straightforward. However, Section 3.6.6 combines tensorial

properties of the lifting with properties of Ψ, requiring a substantial analysis. The list

decoding framework is divided into stages to make it modular so that key properties are

isolated and their associated functionality can be presented in a simple manner. Most of

the power of this framework comes from the combination of these blocks and the concrete

expanding objects capable of instantiating it.
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SOS Rounding and Recoverability

We show that if a slice (m, S, σ) “captures” an intended solution y ∈ {±1}X(k) (this notion

is made precise in the assumptions of Lemma 3.6.20), then we can retrieve a z ∈ {±1}X(1)

such that dsum(z) has some agreement with y. This agreement is somewhat weak, but

combined with the robustness of the lifting, it will be enough for our purposes. In this

subsection, we first explore how to recover such words within a slice, which can be seen

as local rounding in the slice. Next, we establish sufficient conditions for an intended

solution to be recoverable, now not restricted to a given slice but rather with respect to

the full pseudo-expectation. Finally, we use all the tools developed so far to show that

by minimizing Ψ in a two-step tensorial structure we end up with a pseudo-expectation

in which all intended solutions are recoverable. The interplay between weak agreement

and robustness of the lifting is addressed in Section 3.6.6.

We will be working with two-step tensorial structures where the following product

distribution associated to a slice naturally appears.

Definition 3.6.19 (Product Distribution on a Slice). We define {Z⊗|(S,σ)} to be the product

distribution on the marginals {Zi|ZS = σ}i∈X(1), i.e., {Z⊗|(S,σ)} := ∏i∈X(1){Zi|ZS = σ}.

Under appropriate conditions, Lemma 3.6.20 shows how to round the pseudo-expectation

in a slice.

Lemma 3.6.20 (From fractional to integral in a slice). Let (m, S, σ) ∈ Ω be a slice. Suppose

E
a∼Πk

∥∥{Za|ZS = σ} −
{

Za1 |ZS = σ
}
· · ·
{

Zak |ZS = σ
}∥∥

1 ≤ µ, (3.4)

and

E
s,t∼Π2

k

‖{ZsZt|ZS = σ} − {Zs|ZS = σ}{Zt|ZS = σ}‖1 ≤ µ. (3.5)
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For β ∈ (0, 1), if µ ≤ β · κ2/6 and y ∈ {±1}X(k) is such that

Es,t∼Π2
k
Ẽ|S,σ [ysytYsYt] ≥ κ2,

then

P
z∼{Z⊗|(S,σ)}

[∣∣∣Es∼Πk
ys · dsum(z)s

∣∣∣ ≥ √1− β · κ
]
≥ β · κ2

4
. (3.6)

Proof. Let µs,t := ‖{ZsZt|Zs = σ} −∏i∈s{Zi|Zs = σ}∏i∈t{Zi|Zs = σ}‖1. Using triangle

inequality and simplifying, we get

µs,t ≤‖{ZsZt|Zs = σ} − {Zs|Zs = σ}{Zt|Zs = σ}‖1

+

∥∥∥∥∥{Zs|Zs = σ} −∏
i∈s
{Zi|Zs = σ}

∥∥∥∥∥
1

+

∥∥∥∥∥{Zt|Zs = σ} −∏
i∈t
{Zi|Zs = σ}

∥∥∥∥∥
1

.

From our assumptions Eq. (3.4) and Eq. (3.5), it follows that Es,t∼Π2
k

µs,t ≤ 3 · µ. Using

the fact that |ysyt| = 1 and Hölder’s inequality, we get

Es,t∼Π2
k
E{Z⊗|(S,σ)} [ysytYsYt] ≥ Es,t∼Π2

k
Ẽ|S,σ [ysytYsYt]−Es,t∼Π2

k
µs,t

≥ Es,t∼Π2
k
Ẽ|S,σ [ysytYsYt]− 3 · µ ≥

(
1− β

2

)
· κ2.

Alternatively,

Es,t∼Π2
k
E{Z⊗|(S,σ)} [ysytYsYt] = Ez∼{Z⊗|(S,σ)}

(
Es∼Πk

ys · dsum(z)s
)2
≥
(

1− β

2

)
· κ2.

Define the random variable R :=
(

Es∼Πk
[ys · dsum(z)s]

)2
. Using Fact B.1.1 with ap-

proximation parameter β/2, we get

E [R] ≥
(

1− β

2

)
· κ2 ⇒ P

[
R ≥ (1− β) · κ2

]
≥ β · κ2

4
,
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from which Eq. (3.6) readily follows.

To formalize the notion of a word being recoverable with respect to the full pseudo-

expectation rather than in a given slice we will need two additional events. The first event

captures correlation as follows.

Definition 3.6.21 (y-Correlated Event). Let κ ∈ (0, 1] and y ∈ {±1}X(k). We define the event

Cκ(y) as

Cκ(y) :=
{
(m, S, σ) ∈ Ω | Es,t∼Π2

k
Ẽ|S,σ [ysytYsYt] ≥ κ2

}
.

The second event is a restriction of the first where we also require the slice to satisfy

the two-step tensorial condition from Definition 4.7.18.

Definition 3.6.22 (y-Recoverable Event). Let κ, µ ∈ (0, 1] and y ∈ {±1}X(k). We define the

event Rκ,µ(y) as

Rκ,µ(y) := Kµ ∩ Pµ ∩ Cκ(y).

Lemma 3.6.20 motivates the following “recoverability” condition.

Definition 3.6.23 (Recoverable Word). Let κ, µ ∈ (0, 1] and y ∈ {±1}X(k). We say that y is

(κ, µ)-recoverable provided

P
(m,S,σ)∼Ω

[
Rκ,µ(y)

]
> 0.

One of the central results in our framework is the following “recoverability” lemma.

It embodies the power SOS brings to our framework.

Lemma 3.6.24 (Recoverability lemma). Let Ck be a lifted code on X(≤ k) with X(1) = [n]

and distance at least 1/2− ε. Let ỹ ∈ {±1}X(k) be a word promised to be (1/2−
√

ε)-close to

Ck and let L = L(ỹ, Ck) be its code list.

Let θ ∈ (0, 1] be arbitrary and set µ = κ · θ/2 and κ = (4 − θ) · ε. Suppose Z =

{Z1, . . . , Zn} is an (L+ 2k)-local PSD ensemble which is a solution to the List Decoding Program
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with objective value Ψ within η additive value from the optimum where 0 ≤ η ≤ θ2 · ε4.

If X(k) is (µ4/4, L)-two-step tensorial, then every y ∈ L is (κ, µ)-recoverable. In partic-

ular, for every θ ∈ (0, 1) and under the preceding assumptions, we have that every y ∈ L is

((4− θ) · ε, θ)-recoverable.

Proof. First observe that since ỹ is (1/2−
√

ε)-close to Ck the List Decoding Program is fea-

sible and so the solution Z is well defined. Towards a contradiction with the η-optimality

of the SOS solution Z, suppose there exists a word y ∈ L that is not (κ, µ)-recoverable.

Let z ∈ {±1}X(1) be such that y = dsum(z). Then

1 = P
(m,S,σ)∼Ω

[
Rκ,µ(y)c] ≤ P

(m,S,σ)∼Ω

[
Kc

µ

]
+ P

(m,S,σ)∼Ω

[
Pc

µ

]
+ P

(m,S,σ)∼Ω
[Cκ(y)c] .

Using Claim 3.6.12, we get

P
(m,S,σ)∼Ω

[Cκ(y)c] ≥ 1− µ2. (3.7)

Since Ẽ is a valid solution to the List Decoding Program, Lemma 3.6.3 implies the

lower bound

Ψ
(
{Ys}s∈X(k)

)
≥ 16 · ε2. (3.8)

By definition, for (m, S, σ) ∈ Cκ(y)c we have

Es,t∼Π2
k
Ẽ|S,σ [ysytYsYt] ≤ κ2,

implying

Ẽ
[
(Es∼Πk ys · Ys)

2
]
≤ Em,S,σẼ|S,σ

[
(Es∼Πk ys · Ys)

2 · 1Cc
κ(y)

]
+ P

(m,S,σ)∼Ω
[Cκ(y)] ≤ κ2 + µ2.
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Let Ẽ be the pseudo-expectation of the ground set ensemble Z and let E′ be the ex-

pectation on the delta distribution δz. Note that the pseudo-expectation obtained from E′

is a valid solution to the List Decoding Program. Since

κ2 + µ2 ≤
(

1 +
θ2

4

)
· κ2 =

(
1 +

θ2

4

)
· (4− θ)2 · ε2 ≤ (16− 2 · θ) · ε2,

and θ ≥ 0, Lemma C.1.1 gives that there is a convex combination of Ẽ and E′ such that

the new Ψ, denoted Ψ′, can be bounded as

Ψ′ ≤ Ψ−

(
Ψ−

(
κ2 + µ2

))2

2
≤ Ψ− 2 · θ2 · ε4,

contradicting the η-optimality of the SOS solution Z since η ≤ θ2 · ε4.

Coupled Pairs, Coupled Lists, and Covers

The List Decoding Program minimizing Ψ was instrumental to ensure that every y′ ∈

L(ỹ, Ck) is recoverable in the sense of the conclusion of Lemma 3.6.24. Unfortunately, this

guarantee is somewhat weak, namely, associated to every y′ ∈ L(ỹ, Ck) there is a slice

(m, S, σ) from which we can sample y (our approximation of y′) satisfying

|Es∼Πk
ys · y′s| > C · ε, (3.9)

where C is a constant strictly smaller than 4. A priori this seems insufficient for our list

decoding task. However, there are two properties which will help us with list decoding.

The first is that SOS finds not only y but also z ∈ {±1}X(1) such that y = dsum(z). The

second property is that the lifting is robust: even the weak agreement given by Eq. (3.9)
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translates into a much stronger agreement in the ground set between z and z′ ∈ C1 where

y′ = dsum(z′). This stronger agreement on the ground set can be used to ensure that z

(or −z) lies inside the unique decoding ball of z′ in the base code C1.

To study this coupling phenomenon between words in the lifted space {±1}X(k) and

on the ground space {±1}X(1) we introduce some terminology. The most fundamental

one is a coupled pair.

Definition 3.6.25 (Coupled Pair). Let z ∈ {±1}X(1) and y ∈ {±1}X(k). We say that (z, y) is

a coupled pair with respect to a lift function dsum provided y = dsum(z).

Remark 3.6.26. If the function dsum is clear in the context, we may assume that the coupled pair

is with respect to this function.

Coupled pairs can be combined in a list.

Definition 3.6.27 (Coupled List). We say that a list M = {(z(1), y(1)), . . . , (z(h), y(h))} is

coupled with respect to lift function dsum provided (z(i), y(i)) is a coupled pair for every i in [h].

A coupled list can “cover” a list of words in the lifted space {±1}X(k) as defined next.

Definition 3.6.28 (Coupled Bias Cover). LetM = {(z(1), y(1)), . . . , (z(h), y(h))} be a cou-

pled list and L ⊂ {±1}X(k). We say thatM is a δ-bias cover of L provided

(
∀y′ ∈ L

)
(∃(z, y) ∈ M)

(
|Es∼Πk

y′s · ys| > δ
)

.

A δ-bias cover for “small” δ might seem a rather weak property, but as alluded to,

when combined with enough robustness of the lifting, it becomes a substantial guarantee

enabling list decoding.
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Cover Retrieval

When the code list L(ỹ, Ck) becomes recoverable in the SOS sense as per Lemma 3.6.24,

we still need to conduct local rounding on the slices to collect a bias cover. Recall that this

local rounding is probabilistic (c.f. Lemma 3.6.20), so we need to repeat this process a few

times to boost our success probability16. This is accomplished by Algorithm 3.6.29.

Algorithm 3.6.29 (Cover Retrieval Algorithm).

Input An (L + 2k)-local PSD ensemble Z which is a (θ2ε4)-optimal solution.

Output A 2ε-bias coverM for L(ỹ, Ck).

1. LetM = ∅

2. Let T = 4 · ln(|Ω|) · n/(β · ε2)

3. For (m, S, σ) ∈ Ω do

4. If (m, S, σ) ∈ Kµ ∩ Pµ then

5. Run Propagation Rounding T times conditioned on (m, S, σ)

6. LetM|m,S,σ = {(z(1), y(1)), . . . , (z(T), y(T))} be the coupled list

7. SetM =M∪M|m,S,σ

8. OutputM.

The correctness of Algorithm 3.6.29 follows easily given the properties established so

far.

Lemma 3.6.30 (Cover lemma). Let β ∈ (0, 1). Suppose that dsum is a (1/2− ε0, 1/2− ε)-

robust (β4 · ε8/218, L)-two-step tensorial lifting from C1 to Ck. Let ỹ ∈ {±1}X(k) be (1/2−

16. In fact, this process can be derandomized using standard techniques in our instantiations.
See Lemma B.3.1 for detais.
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√
ε)-close to Ck. If θ ≤ β · ε/24, then w.v.h.p.17 the Cover Retrieval algorithm 3.6.29 returns a

δ-bias coverM of the code list L(ỹ, Ck) where δ = (4− β) · ε. Furthermore, the running time is

at most nO(L+k)/(β · ε2) where n = |X(1)|.

Proof. Let Z = {Z1, . . . , Zn} be an η-optimum solution to the List Decoding Program

where η ≤ θ2 · ε4 and θ = β · ε/24. By our (β4 · ε8/218, L)-two-step tensorial assumption

and our choice of SOS degree for the List Decoding Program, we can apply Lemma 3.6.24

to conclude that every y ∈ L = L(ỹ, Ck) is ((4− θ) · ε, (4− θ) · ε · θ/2)-recoverable. Then

for y ∈ L, there exists (m, S, σ) ∈ Ω such that Lemma 3.6.20 yields

P
z∼{Z⊗|(S,σ)}

[∣∣∣Es∼Πk
ys · dsum(z)

∣∣∣ ≥ (4− β) · ε
]
≥ β · (4− θ)2 · ε2

32
≥ β · ε2

4
.

where {Z⊗|(S,σ)} (c.f. Definition 3.6.19) is the product distribution of the marginal distri-

butions after conditioning the ensemble on slice (m, S, σ). By sampling {Z⊗|(S,σ)} inde-

pendently T times we obtain z(1), . . . , z(T) and thus also the coupled list

M|m,S,σ = {(z(1), y(1)), . . . , (z(T), y(T))},

where y(i) = dsum(z(i)). Then

P
z(1),...,z(T)∼{Z⊗|(S,σ)}⊗T

[
∀i ∈ [T] :

∣∣∣Es∼Πk ys · dsum
(

z(i)
)∣∣∣ < (4− β) · ε

]
≤ exp

(
−β · ε2 · T

4

)
≤ exp (−n)

|Ω| ,

where the last inequality follows from our choice of T. Then by union bound

P [M is not a 2ε-bias cover of L] ≤ |L| · exp (−n)
|Ω| ≤ exp (−n),

17. The abbreviation w.v.h.p. stand for with very high probability and means with probability 1 −
exp(−Θ(n)).
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concluding the proof.

Cover Purification and Robustness

Now we consider the third and final stage of the list decoding framework. We show

how despite the weak guarantee of the bias cover returned by the Cover Retrieval Al-

gorithm 3.6.29 we can do a further processing to finally obtain the coupled code list

L(ỹ, C1, Ck) provided the lifting admits some robustness properties. We first develop these

properties and later present this process, denoted Cover Purification.

Further Lifting Properties

Given two coupled pairs (z, y = dsum(z)) and (z′, y′ = dsum(z′)) (where z ∈ C1), we

show how weak agreement between y and y′ on the lifted space is enough to provide non-

trivial guarantees between z and z′ as long as the lifting admits appropriate robustness.

Claim 3.6.31 (Coupled unique decoding from distance). Suppose that dsum is a (1/4 −

ε0/2, 1/2− ε)-robust lifting from C1 to Ck. Let (z, y) and (z′, y′) be coupled pairs. If y ∈ Ck

(equivalently z ∈ C1) and ∆(y, y′) < 1/2− ε, then ∆
(
z, z′

)
≤ 1/4− ε0/2, i.e., z′ is within the

unique decoding radius of z.

Proof. Towards a contradiction suppose that ∆(z, z) ≥ 1/4 − ε0/2. Since the lifting is

(1/4− ε0/2, 1/2− ε)-robust, this implies that ∆
(
y, y′

)
≥ 1/2− ε contradicting our as-

sumption.

From bias amplification (i.e., parity sampling), we deduce Claim 3.6.32.

Claim 3.6.32 (Coupled unique decoding from bias I). Suppose dsum is a (1/2− ε0, 1/2−

ε)-robust linear lifting from C1 to Ck which is also a (1/2 + ε0, 2 · ε)-parity sampler. Let (z, y)
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and (z′, y′) be coupled pairs. If y ∈ Ck (equivalently z ∈ C1) and |Es∼Πk
[ys · y′s]| > 2 · ε, then

|Ei∼Π1
[zi · z′i]| ≥ 1/2 + ε0,

i.e., either z′ or −z′ is within the unique decoding radius of z.

Proof. The verification follows easily from our assumptions. Towards a contradiction sup-

pose that |Ei∼Π1
[zi · z′i]| < 1/2 + ε0, i.e., the word z′′ = z · z′ has bias at most 1/2 + ε0.

Using the assumption that the lift is linear, we have dsum(z′′) = dsum(z) · dsum(z′).

Since the lifting takes bias 1/2 + ε0 to 2 · ε, we have

bias(dsum(z) · dsum(z′)) = bias(dsum(z′′)) ≤ 2 · ε,

or equivalently |Es∼Πk
[ys · y′s]| ≤ 2 · ε contradicting our assumption.

If the lifting function is odd, then we obtain Claim 3.6.33.

Claim 3.6.33 (Coupled unique decoding from bias II). Suppose dsum is a (1/4− ε0/2, 1/2−

ε)-robust lifting from C1 to Ck which is odd, i.e., dsum(−z) = −dsum(z). Let (z, y) and (z′, y′)

be coupled pairs. If y ∈ Ck (equivalently z ∈ C1) and |Es∼Πk
[ys · y′s]| > 2 · ε, then either z′ or

−z′ is within the unique decoding radius of z.

Proof. Since |Es∼Πk
[ys · y′s]| > 2 · ε and the lifting is odd, either

Es∼Πk
[ys · dsum(z′)s] > 2 · ε,

or

Es∼Πk
[ys · dsum(−z′)s] = Es∼Πk

[
−ys · dsum(z′)s

]
> 2 · ε.

Then either ∆(y, dsum(z′)) ≤ 1/2− ε or ∆(y, dsum(−z′)) ≤ 1/2− ε. Using Claim 3.6.31
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we conclude the proof.

Cover Purification

A δ-bias cover M of L for small δ may require further processing in order to actu-

ally retrieve L. Provided the lifting is sufficiently robust, trying to unique decode z for

(z, y) ∈ M±, whereM± is the sign completion as defined next, and then lifting the de-

coded word yields a new coupled list that contains L. This process is referred to as cover

purification and its formalization is the object of this section.

Definition 3.6.34 (Sign Completion). LetM be coupled list. We say thatM± defined as

M± := {(z, dsum(z)), (−z, dsum(−z)) | (z, y) ∈ M} ,

is the sign completion ofM.

The correctness of the cover purification process is established next.

Lemma 3.6.35 (Purification lemma). Suppose dsum is a (1/2 − ε0, 1/2 − ε)-robust lifting

from C1 to Ck which is either

- linear and a (1/2 + ε0, 2 · ε)-parity sampler; or

- (1/4− ε0/2)-robust and odd.

Let ỹ ∈ {±1}X(k) be (1/2 −
√

ε)-close to Ck and L = L(ỹ, Ck) be its code list. If M =

{(z(i), y(i))|i ∈ [h]} is a 2ε-bias cover of L, then

L ⊆
{

dsum(z) | z ∈ DecC1

(
P1

(
M±

))}
=: L′,

where P1 is the projection on the first coordinate and DecC1
is a unique decoder for C1. Further-

more, L′ can be computed in time O (|M| · f (n)) where f (n) is the running time of a unique
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decoding algorithm of C1.

Proof. Let y ∈ L. By the 2ε-cover property, there exists a coupled pair (z′, y′) ∈ M

satisfying |Es∼Πk
[ys · y′s]| > 2 · ε. Combining this bound with the appropriate robustness

assumptions, Claim 3.6.32 or Claim 3.6.33 yields that either z′ or −z′ can be uniquely

decoded in C1. Then

y ∈
{

dsum(z) | z ∈ DecC1

(
P1

(
M±

))}
.

Finally, observe that computing L′ with the claimed running time is straightforward.

Algorithmically, cover purification works by running the unique decoding algorithm

of C1 on every element of the sign completionM±, described below in Algorithm 3.6.36.

Algorithm 3.6.36 (Cover Purification Algorithm).

Input A 2ε-bias coverM for L(ỹ, Ck).

Output Coupled List L′ s.t. P2(L′) ⊇ L(ỹ, Ck).

1. Let L′ = ∅

2. For (z′, y′) ∈ M± do

3. If z′ is uniquely decodable in C1 then

4. Let z = UniqueDecodeC1
(z′)

5. Let y = dsum(z)

6. Set L′ = L′ ∪ {(z, y)}

7. Output L′.
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Correctness of the List Decoding Algorithm

The building blocks developed so far are assembled to form the final list decoding algo-

rithm (Algorithm 3.6.16), which is restated below for convenience.

Algorithm 3.6.37 (List Decoding Algorithm).

Input A word ỹ ∈ {±1}X(k) (1/2−
√

ε)-close to Ck = dsum(C1)

Output Coupled code list L(ỹ, C1, Ck).

1. Solve the List Decoding Program with η-accuracy obtaining Z where η = ε8/222

2. LetM be the output of the Cover Retrieval Algorithm 3.6.29 on Z

3. Let L′ be the output of the Cover Purification Algorithm 3.6.36 onM

4. Let L′′ = {(z, y) ∈ L′ | ∆(ỹ, y) ≤ 1/2−
√

ε}

5. Output L′′.
We are ready to prove the main theorem of the abstract list decoding framework

which follows easily from the properties developed so far.

Theorem 3.6.38 (List Decoding Theorem (Restatement of Theorem 3.6.17)). Suppose that

dsum is a (1/2− ε0, 1/2− ε)-robust (ε8/222, L)-two-step tensorial lifting from C1 to Ck which

is either

- linear and a (1/2 + ε0, 2 · ε)-parity sampler; or

- (1/4− ε0, 1/2− ε/2)-robust and odd.

Let ỹ ∈ {±1}X(k) be (1/2−
√

ε)-close to Ck. Then w.v.h.p. the List Decoding Algorithm 3.6.16

returns the coupled code list L(ỹ, C1, Ck). Furthermore, the running time is

nO(L+k)
(

polylog(ε−1) + f (n)
)

,
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where n = |X(1)| and f (n) is the running time of a unique decoding algorithm of C1.

Proof. Under the assumptions of the theorem, Lemma 3.6.30 establishes that the Cover

Retrieval Algorithm 3.6.29 returns w.v.h.p. a 2ε-bias cover. Then, Lemma 3.6.35 states

that providing this 2ε-bias cover as input to the Cover Purification Algorithm 3.6.36 yields

a coupled list containing the code list L(ỹ, C1, Ck). Finally, the last step in Algorithm 3.6.16

ensures the output is precisely L(ỹ, C1, Ck).

3.7 Instantiation I: Direct Sum on HDXs

We instantiate the list decoding framework to the direct sum lifting on HDXs obtain-

ing Theorem 3.7.1, which is the main result in this section. For this instantiation we need

to establish that HDXs are two-step tensorial which will be done in Section 3.7.1.

Theorem 3.7.1 (Direct Sum Lifting on HDX). Let ε0 < 1/2 be a constant and ε ∈ (0, ε0).

There exist universal constants c, C > 0 such that for any γ-HDX X(≤ d) on ground set X(1) =

[n] and Π1 uniform, if

γ ≤ (log(1/ε))−C·log(1/ε) and d ≥ c · (log(1/ε))2

ε
,

then the following holds:

For every binary code C1 with ∆(C1) ≥ 1/2− ε0 on X(1) = [n], there exists a binary lifted

code Ck = dsumX(k)(ϕ(C1)) with ∆(Ck) ≥ 1/2− εΩε0(1) on X(k) where k = O (log(1/ε)),

ϕ is an explicit linear projection, and

- [Efficient List Decoding] If ỹ is (1/2 −
√

ε)-close to Ck, then we can compute the list

L(ỹ, C1, Ck) (c.f. Definition 3.6.15) in time

nε−O(1) · f (n),
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where f (n) is the running time of a unique decoding algorithm for C1.

- [Rate] The rate rk of Ck satisfies rk = r1 · |X(1)| / |X(k)| where r1 is the relative rate of C1.

- [Linearity] If C1 is linear, then ϕ is the identity and Ck = dsumX(k)(C1) is linear.

In particular, invoking Theorem 3.7.1 on HDXs extracted from Ramanujan complexes

(as in Lemma 3.4.5), we obtain Corollary 3.7.2.

Corollary 3.7.2. Let ε0 < 1/2 be a constant and ε ∈ (0, ε0). There is an infinite sequence of

HDXs X1, X2, . . . on ground sets of size n1, n2, . . . such that the following holds:

For every sequence of binary codes C(i)1 on [ni] with rate and distance uniformly bounded by r1

and (1/2− ε0) respectively, there exists a sequence of binary lifted codes C(i)k = dsumX(k)(ϕ(C(i)1 ))

on a collection Xi(k) with ∆(C(i)k ) ≥ 1/2− εΩε0(1) where ϕ is an explicit linear projection and

- [Efficient List Decoding] If ỹ is (1/2 −
√

ε)-close to Ck, then we can compute the list

L(ỹ, C1, Ck) (c.f. Definition 3.6.15) in time nε−O(1) · f (n), where f (n) is the running time

of a unique decoding algorithm of C1.

- [Explicit Construction] The collection Xi(k) is part of an explicit γ-HDX Xi(≤ d) where

k = O (log(1/ε)), d = O
(
(log(1/ε))2/ε

)
, and γ = (log(1/ε))−O(log(1/ε)).

- [Rate] The rate r(i)k of C(i)k satisfies r(i)k ≥ r1 · exp
(
−(log(1/ε))O(log(1/ε))

)
.

- [Linearity] If C(i)1 is linear, then ϕ is the identity and C(i)k = dsumX(k)(C
(i)
1 ) is linear.

Proof. Efficient list decoding and linearity follow directly from Theorem 3.7.1, and the

parameters of the explicit construction match the requirements of the theorem. The only

thing left to do is to calculate the rate. Since the lifting dsumXi(k) needs to be a (2ε0, 2ε)-

parity sampler to achieve the promised distance, by Lemma 3.4.11 the rate r(i)k of C(i)k

satisfies

r(i)k ≥ r1 · γO((log(1/ε))4/(ε2γ))
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Since γ = (log(1/ε))−O(log(1/ε)), this reduces to

r(i)k ≥ r1 · (log(1/ε))−O((log(1/ε))5/(ε2·γ)) = r1 · exp(1/γO(1)) = r1 · exp
(
−(log(1/ε))O(log(1/ε))

)
.

3.7.1 HDXs are Two-Step Tensorial

Theorem 3.7.3 proven in [AJT19] establishes that HDXs of appropriate expansion param-

eter are tensorial objects for constant L = Ok,q,µ(1).

Theorem 3.7.3 (HDXs are Tensorial). There exist some universal constants c′ ≥ 0 and C′ ≥ 0

satisfying the following: If L ≥ c′ · (qk · k5/µ4), Supp(Zj) ≤ q for all j ∈ [n], and X is a

γ-HDX for γ ≤ C′ · µ4/(k8+k · 26k · q2k) and size ≥ k, then X(k) endowed with a distribution

Πk is (µ, L)-tensorial.

The next result shows that HDXs are also two-step tensorial objects with the same

parameters as above.

Lemma 3.7.4 (HDXs are two-step tensorial). There exist some universal constants c′ ≥ 0 and

C′ ≥ 0 satisfying the following: If L ≥ c′ · (qk · k5/µ4), Supp(Zj) ≤ q for all j ∈ [n], and X is

a γ-HDX for γ ≤ C′ · µ4/(k8+k · 26k · q2k) and size ≥ k, then X(k) is (µ, L)-two-step tensorial.

Proof. Under our assumptions the (µ, L)-tensorial property follows from Theorem 3.7.3

(this is the only place where the assumption on γ is used), so we only need to show

E
s,t∼Πk

∥∥{Z′sZ′t} −
{

Z′s
}{

Z′t
}∥∥

1 ≤ µ,

which can be proven by adapting a potential argument technique from [BRS11]. First, set
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the potential

Φm = E
S∼Πm

k

E
σ∼{ZS}

E
s∼Πk

Var [Zs | ZS = σ], (3.10)

and consider the error term

µm := E
S∼Πm

k

E
σ∼{ZS}

D(S, σ), (3.11)

where D(S, σ) := Es,t∼Πk
[‖{ZsZt | ZS = σ} − {Zs|ZS = σ}{Zt|ZS = σ}‖1]. If µm ≥

µ/2, then

P
S∼Πm

k ,σ∼{ZS}
[D(S, σ) ≥ µm/2] ≥ µ

4
.

Let G = (V = X(k), E) be the weighted graph where E = {{s, t} | s, t ∈ X(k)}

and each edge {s, t} receives weight Πk(s) · Πk(t). Local correlation (expectation over

the edges) on this graph G is the same as to global correlation (expectation over two

independent copies of vertices). Then, we obtain 18

Φm −Φm+1 ≥ P
S∼Πm

k ,σ∼{ZS}
[D(S, σ) ≥ µm/2] · µ2

2q2k .

Since 1 ≥ Φ1 ≥ · · · ≥ ΦL/k ≥ 0, there can be at most 8q2k/µ3 indices m ∈ [L/k] such that

µm ≥ µ/2. In particular, since the total number of indices is L/k, we have

E
m∈[L/k]

µm ≤
µ

2
+

k
L
· 8q2k

µ3 .

Our choice of L is more than enough to ensure Em∈[L/k][µm] ≤ µ.

18. See [AJT19] or [BRS11] for the details.
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3.7.2 Instantiation to Linear Base Codes

First, we instantiate the list decoding framework to the seemingly simpler case of binary

linear base codes in Lemma 3.7.5. As we show later, with a simple observation we can

essentially use the proof of Lemma 3.7.5 to obtain Theorem 3.7.1 for general codes.

Lemma 3.7.5 (Direct sum lifting of linear biased codes). Let ε0 < 1/2 be a constant and

ε ∈ (0, ε0). There exist universal constants c, C > 0 such that for any γ-HDX X(≤ d) on

ground set X(1) = [n] and Π1 uniform, if

γ ≤ log(1/ε)−C·(log(1/ε)) and d ≥ c · (log(1/ε))2

ε
,

then the following holds:

For every binary 2ε0-biased linear code C1 on X(1) = [n], there exists a 2ε-biased binary

lifted linear code Ck = dsumX(k)(C1) on X(k) where k = O (log(1/ε)) and

- [Efficient List Decoding] If ỹ is (1/2 −
√

ε)-close to Ck, then we can compute the list

L(ỹ, C1, Ck) (c.f. Definition 3.6.15) in time

nε−O(1) · f (n),

where f (n) is the running time of a unique decoding algorithm for C1.

- [Rate] The rate 19 rk of Ck satisfies rk = r1 · |X(1)| / |X(k)| where r1 is the relative rate of

C1.

- [Linear] The lifted code Ck is linear.

Proof. We show that under our assumption on the γ-HDX X(≤ d) we obtain sufficient

19. For the rate computation, we assume that X(k) can be expressed as a multi-set such that the uniform
distribution on it coincides with Πk, which is true in the case that Πk is D-flat.
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robustness and tensorial parameters to apply Theorem 3.6.17. In this application, we will

rely on parity sampling for robustness. If dsumX(k) is a (2ε0, 2ε)-parity sampler, using

the linearity of C1 we obtain a lifted code Ck = dsumX(k)(C1) which is linear and has

bias 2ε; thus the lifting is indeed (1/2− ε0, 1/2− ε)-robust. If we want to fully rely on

parity sampling in Theorem 3.6.17, the lifting must be a (β0 = 1/2 + ε0, β = 2ε)-parity

sampler, which is more stringent than the first parity sampling requirement. 20 To in-

voke Lemma 3.4.10 and obtain this (β0, β)-parity sampler, we need to choose a parameter

θ (where 0 < θ < (1− β0)/β0) and

k ≥ log(1+θ)β0
(β/3),

d ≥ max

(
3 · k2

β
,

6
θ2β2

0β

)
, and

γ = O
(

1
d2

)
.

To get a (µ, L)-tensorial HDX, Theorem 3.7.3 requires

L ≥ c′ · 2k · k5

µ4 and γ ≤ C′ · µ4

k8+k · 28k .

where we used that our alphabet is binary (i.e., q = 2) and c′, C′ > 0 are constants.

Finally, Theorem 3.6.17 requires µ ≤ ε8/222. The conceptual part of the proof is essentially

complete and we are left to compute parameters. Set ζ0 = 3/4 + ε0 − ε2
0. We choose

θ = 1/2− ε0 which makes (1 + θ)β0 equal to ζ0 (provided ε0 < 1/2 we have ζ0 < 1).

This choice results in

k ≥ dlogζ0
(2ε/3)e and d = O

(
max

(
logζ0

(2ε/3)

ε
,

1
(1/4− ε2

0)
4 · ε

))
.

20. Recall that this strengthening is used in our list decoding framework.

155



Combining the parity sampling and tensorial requirements and after some simplification,

the expansion γ is constrained as

γ ≤ C′′ ·min

(
ε32

k8+k · 28k ,
ε2

k4 ,
(

1/4− ε2
0

)4
· ε2

)
,

where C′′ > 0 is a constant. We deduce that taking γ as

γ ≤ C′′ ·

(
1/4− ε2

0

)4
· ε32

k8+k · 28k ,

is sufficient. Further simplifying the above bound gives

γ = O


(

1/4− ε2
0

)4
· ε32(

logζ0
(2ε/3)

)8+logζ0
(2ε/3)

· (2ε/3)8/ log(ζ0)

 .

Now, we turn to the SOS-related parameter L which is constrained to be

L ≥ c′′ · 2k · k5

ε32 ,

where c′′ > 0. Note that in this case the exponent O(L + k) appearing in the running time

of Theorem 3.6.17 becomes O(L). Similarly, further simplification leads to

L = O


(

logζ0
(2ε/3)

)5
· (3/2ε)−1/ log(ζ0)

ε32

 .

Taking ε0 to be a constant and simplifying yields the claimed parameters.
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3.7.3 Instantiation to General Base Codes

We can extend Lemma 3.7.5 to an arbitrary (not necessarily linear) binary base code C1

with the natural caveat of no longer obtaining linear lifted code Ck = dsumX(k)(C1).

However, even if C1 has small bias, it might not be the case that the difference of any

two codewords will have small bias, which is required for list decoding. To this end

we modify the code C1 by employing a projection ϕ which converts a condition on the

distance of the code to a condition on the bias of the difference of any two codewords.

Claim 3.7.6. If C1 is binary code on [n] with relative distance δ and rate r, then there exists an

explicit linear projection ϕ : Fn
2 → Fn

2 such that the code C ′1 = ϕ(C1) has relative distance at

least δ/2 and rate r. Furthermore, for every z, z′ ∈ C ′1 we have

bias(z− z′) ≤ 1− δ

2
.

Proof. Take ϕ to be the projector onto Fn−s
2 ⊕ {0}s where s = bδn/2c. Then

C ′1 := ϕ(C1) = {(z1, . . . , zn−s, 0, . . . , 0︸ ︷︷ ︸
s

) | (z1, . . . , zn) ∈ C1},

and the claim readily follows.

With this modification in mind, we can now restate and prove Theorem 3.7.1.

Theorem 3.7.7 (Direct Sum Lifting on HDX (Restatement of Theorem 3.7.1)). Let ε0 < 1/2

be a constant and ε ∈ (0, ε0). There exist universal constants c, C > 0 such that for any γ-HDX

X(≤ d) on ground set X(1) = [n] and Π1 uniform, if

γ ≤ (log(1/ε))−C·log(1/ε) and d ≥ c · (log(1/ε))2

ε
,

then the following holds:
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For every binary code C1 with ∆(C1) ≥ 1/2− ε0 on X(1) = [n], there exists a binary lifted

code Ck = dsumX(k)(ϕ(C1)) with ∆(Ck) ≥ 1/2− εΩε0(1) on X(k) where k = O (log(1/ε)),

ϕ is an explicit linear projection, and

- [Efficient List Decoding] If ỹ is (1/2 −
√

ε)-close to Ck, then we can compute the list

L(ỹ, C1, Ck) (c.f. Definition 3.6.15) in time

nε−O(1) · f (n),

where f (n) is the running time of a unique decoding algorithm for C1.

- [Rate] The rate rk of Ck satisfies rk = r1 · |X(1)| / |X(k)| where r1 is the relative rate of C1.

- [Linearity] If C1 is linear, then ϕ is the identity and Ck = dsumX(k)(C1) is linear.

Proof. By virtue of Lemma 3.7.5, it is enough to consider when C1 is not linear. Note

that in the proof of Lemma 3.7.5 the only assumption about linearity of C1 we used to

obtain (1/2− ε0, 1/2− ε)-robustness was that the sum of two codewords is in the code

and hence it has small bias. For a general code C1 of constant distance 1/2− ε0, apply-

ing Claim 3.7.6 we obtain a new code C ′1 with this guarantee at the expense of a distance

1/2 times the original one. Naturally, in the current proof we no longer obtain a linear

lifted code Ck = dsumX(k)(C ′1). Excluding the two previous remarks the proof of Theo-

rem 3.7.1 is now the same as the proof of Lemma 3.7.5.

3.8 List Decoding Direct Product Codes

3.8.1 Direct Product Codes

Having developed a decoding algorithm for direct sum, a promising strategy for list de-

coding other lifted codes on expanding objects is reducing them to instances of direct
158



sum list decoding. One such reduction involves the direct product lifting, which was first

studied in the context of samplers by Alon et al. in [ABN+92]. The direct product lifting

collects the entries of a code on each subset of size `.

Definition 3.8.1 (Direct Product Lifting). Let C1 ⊆ Fn
2 be a base code on X(1) = [n]. The

direct product lifting of a word z ∈ Fn
2 on a collection X(`) is dprodX(`)(z) = (xt)t∈X(`), where

xt = (zi)i∈t. The direct product lifting of the entire code is dprodX(`)(C1) = {dprodX(`)(z) |

z ∈ C1}, which is a code of length |X(`)| over the alphabet F`
2.

If X is a HDX, its sampling properties ensure that the direct product lifting has very

high distance. It follows from the definition that if the bipartite graph between X(1) and

X(k) is an (η, δ)-sampler and the code C1 has minimum distance η, then the direct product

lifting dprodX(`)(C1) has minimum distance at least (1− δ). Recalling from Fact 3.4.8 that

the bipartite graph between two levels of a HDX can be a sampler with arbitrarily small

parameters if the expansion is good enough, we can reasonably hope to list decode the

direct product lifting on a HDX up to a distance close to 1. In fact, Dinur et al. [DHK+19]

provided a list decoding algorithm accomplishing exactly that. We offer a very different

approach to the same list decoding problem.

3.8.2 Direct Product List Decoding

We will reduce direct product decoding on X(`) to direct sum decoding on X(k), where

k ≈ `/2. This requires converting a received word x̃ ∈ (F`
2)

X(`) to a word ỹ ∈ F
X(k)
2

that we will decode using the direct sum algorithm. If we knew that x̃ = dprodX(`)(z̃)

for some z̃ ∈ F
X(1)
2 , we would do so by simply taking ỹs = ∑i∈s z̃i to be the direct sum

lifting on each edge s; that is, ỹ = dsumX(k)(z̃).

Unfortunately, performing list decoding also involves dealing with words x̃ that might

not have arisen from the direct product lifting. To construct a corrupted instance of direct
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sum ỹ from x̃, we need to assign values to each face s ∈ X(k) based only on the informa-

tion we have on the faces X(`), as there is no word on the ground set to refer to. Since

different faces t, t′ ∈ X(`) containing s might not agree on s, there could be ambiguity as

to what value to assign for the sum on s.

This is where the D-flatness of the distribution Π` (which holds for the γ-HDX con-

struction described in Lemma 3.4.5) comes in. Recall that to obtain codewords in the

direct product code dprodX(`)(C1) without weights on their entries, we duplicate each

face t ∈ X(`) at most D times to make the distribution Π` uniform. To perform the same

kind of duplication on X(k) that makes Πk uniform, note that each face s ∈ X(k) has

Πk(s) proportional to |{t ∈ X(`) | t ⊃ s}| (where X(`) is thought of as a multiset), so we

will create one copy of s for each t containing it. Thus we can assign a unique t ⊃ s to each

copy. By downward closure, the distribution on X(`) obtained by choosing s uniformly

from the multiset X(k) and then selecting its associated face t will be uniform, just like

Π`. With this careful duplication process, we are ready to define the function ρk that takes

a corrupted direct product word x̃ to a corrupted direct sum word ỹ.

Definition 3.8.2 (Reduction Function). Let k < ` and X be a HDX where the distribution

Π` is D-flat. Duplicate faces in X(k) so that Πk is uniform, and assign a face ts ∈ X(`) to

each s ∈ X(k) (after duplication) such that ts is distributed according to Π` when s is selected

uniformly from X(k). The function ρk : (F`
2)

X(`) → F
X(k)
2 is defined as

(ρk(x̃))s = ∑
i∈s

(x̃ts)i.

The reduction function ρk resolves the ambiguity of which face t ⊃ s to sample the

sum from by assigning a different face to each copy of s in a manner compatible with

the distribution Π`. Observe that if x̃ = dprodX(`)(z̃) for some z̃ ∈ F
X(1)
2 , then ρk(x̃) =

dsumX(k)(z̃).
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The following lemma shows that performing this reduction from direct product to

direct sum maintains agreement between words. It essentially says that if a received word

x̃ exhibits some agreement with x ∈ dprodX(`)(C1), then there is a k for which ρk(x̃) and

ρk(x) have agreement larger than 1/2.

Lemma 3.8.3 (Product-to-sum agreement). Fix ε > 0 and C′ > 2. Let z ∈ C1, x =

dprodX(`)(z), and x̃ ∈ (F`
2)

X(`). If ∆(x, x̃) ≤ 1− ε, then there exists a k satisfying

|k− `/2| < 1
2

√
C′` log(1/ε)

such that

∆(y, ỹ) ≤ 1/2− ε/2 + εC′/2,

where y = ρk(x) and ỹ = ρk(x̃) are words in F
X(k)
2 .

Proof. For t ∈ X(`) and s ⊆ t, define the function χs,t : Ft
2 → {−1, 1} by

χs,t(w) = ∏
i∈s

(−1)wi .

For each face t ∈ X(`), consider the expectation Es⊆t[χs,t(xt − x̃t)], where s is a subset of

t of any size chosen uniformly. If xt = x̃t, which happens for at least ε fraction of faces

t, the expression in the expectation is always 1. Otherwise, this expectation is zero, so

taking the expectation over the faces yields

Et∼Π`
Es⊆t[χs,t(xt − x̃t)] = P

t∼Π`

[xt = x̃t] ≥ ε.

We would like to restrict to a fixed size of faces s for which this inequality holds; as this

will be the size of the direct sum faces, we need to make sure it’s large enough to give

us the expansion required for decoding later. Using a Chernoff bound (Fact B.1.2 with
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a =
√

C′` log(1/ε)), we see that the size of the faces is highly concentrated around `/2:

P
s⊆t

[∣∣∣∣|s| − `

2

∣∣∣∣ ≥ 1
2

√
C′` log(1/ε)

]
≤ 2e−C′ log(1/ε)/2 ≤ 2εC′/2.

Let I be the interval

I =
(
`

2
− 1

2

√
C′` log(1/ε),

`

2
+

1
2

√
C′` log(1/ε)

)
.

The expectation inequality becomes

ε ≤ Et∼Π`
[Es⊆t[1|s|∈I · χs,t(xt − x̃t)] + Es⊆t[1|s|/∈I · χs,t(xt − x̃t)]]

≤ Et∼Π`
Es⊆t,|s|∈I [χs,t(xt − x̃t)] + 2εC′/2.

Thus there exists a k ∈ I such that

ε− 2εC′/2 ≤ Et∼Π`
Es⊆t,|s|=k[χs,t(xt − x̃t)].

Choosing a face t and then a uniformly random s ⊆ t of size k results in choosing s

according to Πk. Moreover, the edge ts containing s from Definition 3.8.2 is distributed

according to Π`. Bearing in mind the definitions of ys and ỹs, we have

ε− 2εC′/2 ≤ Et∼Π`
Es⊆t,|s|=k[χs,t(xt − x̃t)]

= Es∼Πk
[χs,ts(xts − x̃ts)]

= Es∼Πk
[(−1)(ρk(x))s−(ρk(x̃))s ]

= bias(y− ỹ)

which translates to a Hamming distance of ∆(y, ỹ) ≤ 1/2− ε/2 + εC′/2.
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With Lemma 3.8.3 in hand to reduce a direct product list decoding instance to a direct

sum list decoding instance, we can decode by using a direct sum list decoding algorithm

as a black box.
Algorithm 3.8.4 (Direct Product List Decoding Algorithm).

Input A word x̃ ∈ (F`
2)

X(`) with distance at most (1− ε) from dprodX(`)(C1)

Output The list L′ = {z ∈ Fn
2 | ∆(dprodX(`)(z), x̃) ≤ 1− ε}

1. Let I be the interval
(
`/2−

√
C′` log(1/ε)/2, `/2 +

√
C′` log(1/ε)/2

)
.

2. For each integer k ∈ I, run the direct sum list decoding algorithm on the input ỹ =

ρk(x̃) ∈ F
X(k)
2 to obtain a coupled list Lk of all pairs (z, y) with ∆(y, ỹ) ≤ 1/2− ε/2 +

εC′/2.

3. Let L = ∪k∈I{z ∈ C1 | (z, y) ∈ Lk}.

4. Let L′ = {z ∈ L | ∆(dprodX(`)(z), x̃) ≤ 1− ε}.

5. Output L′.

Theorem 3.8.5 (Product-to-sum Reduction). Let ε > 0 and C′ > 2. Let dprodX(`)(C1) be

the direct product lifting of a base code C1 on a simplicial complex X. If the direct sum lifting

dsumX(k)(C1) is list decodable up to distance
(

1/2− ε/2 + εC′/2
)

in time f̃ (n) for all k sat-

isfying |k− `/2| <
√

C′` log(1/ε)/2, then Algorithm 3.8.4 list decodes dprodX(`)(C1) up to

distance (1− ε) in running time

√
C′` log(1/ε) f̃ (n) + |X(`)||L|.

Proof. Let x̃ ∈ (F`
2)

X(`) be a received word and let z ∈ C1 satisfy ∆(dprodX(`)(z), x̃) ≤

1− ε. By Lemma 3.8.3, there exists a k ∈ I such that ∆(y, ỹ) ≤ 1/2− ε/2 + εC′/2. Thanks

to this distance guarantee, the pair (z, y) will appear on the list Lk when the direct sum

list decoding algorithm is run for this k. Then z will be on the combined list L and the
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trimmed list L′, with the trimming ensuring that no elements of C1 appear on this list

beyond those with the promised distance. The set {dprodX(`)(z) | z ∈ L′} thus contains

all words in dprodX(`)(C1) with distance at most (1− ε) from x̃.

To obtain the promised the running time, note that Algorithm 3.8.4 runs the direct

sum list decoding algorithm
√

C′` log(1/ε) times and then computes the direct product

lifting of each element of L in the trimming step.

Combining the parameters in the reduction with those required for our direct sum list

decoding algorithm, we obtain the following. Note that for very small values of ε, we can

choose the constant C′ to be close to 2, and we will be list decoding the direct sum code

up to distance 1/2−
√

β ≈ 1/2− ε/4.

Corollary 3.8.6 (Direct Product List Decoding). Let ε0 < 1/2 be a constant, and let ε > 0,

C′ ≥ 2 + 4/ log(1/ε), and β = (ε/2− εC′/2)2. There exist universal constants c, C > 0 such

that for any γ-HDX X(≤ d) on ground set [n] and Π1 uniform, if

γ ≤ log(1/β)−C log(1/β) and d ≥ c · log(1/β)2

β
,

then the following holds:

For every binary code C1 with ∆(C1) ≥ 1/2− ε0 on X(1) = [n], there exists a lifted code

C` = dprodX(`)(ϕ(C1)) on C` where ` = O(log(1/β)), ϕ is an explicit linear projection, and

- [Efficient List Decoding] If x̃ is (1 − ε)-close to C`, then we can compute the list of all

codewords of C` that are (1− ε)-close to x̃ in time nε−O(1) · f (n), where f (n) is the running

time of the unique decoding algorithm for C1.

- [Rate] The rate r` of C` satisfies r` = r1 · |X(1)| /(` |X(`)|), where r1 is the relative rate of

C1.

- [Linearity] If C1 is linear, then ϕ is the identity and C` is linear.
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Proof. Let k = `/2−
√

C′` log(1/ε)/2. The choice of parameters ensures that the direct

sum code dsumX(k)(C1) is list decodable up to distance 1/2−
√

β = 1/2− ε/2+ εC′/2 in

running time g(n) = nβ−O(1)
f (n) by Theorem 3.7.1 (noting that the bound on C′ implies

β ≥ ε2/16). Since increasing k increases the list decoding radius of the direct sum lifting,

this holds for any value of k with |k− `/2| ≤
√

C′` log(1/ε)/2. By Theorem 3.8.5, the

direct product lifting dprodX(`)(C1) is list decodable up to distance (1 − ε) in running

time √
C′` log(1/ε)nβ−O(1)

f (n) + |X(`)| |L| .

The HDX has |X(`)| ≤ (n
`) = nO(log(1/β)), and the list size |L| is bounded by the

sum of the sizes of the lists Lk obtained from each direct sum decoding. Each of these

lists has |Lk| ≤ 1/(2β) by the Johnson bound (see Remark 3.6.14) and the number of lists

is constant with respect to n, so the overall running time is dominated by the first term,

nβ−O(1)
f (n) = nε−O(1)

f (n).

The rate and linearity guarantees follow in the same manner as they do in Theo-

rem 3.7.1, where the rate calculation requires a slight modification for dealing with the

increased alphabet size and ϕ is the projection from Claim 3.7.6.

Using Corollary 3.8.6 with HDXs obtained from Ramanujan complexes as in Corol-

lary 3.7.2, we can perform list decoding with an explicit construction up to distance (1− ε)

with HDX parameters d = O(log(1/ε)2/ε2) and γ = (log(1/ε))−O(log(1/ε)). The direct

product list decoding algorithm of Dinur et al. [DHK+19] is based on a more general

expanding object known as a double sampler. As the only known double sampler con-

struction is based on a HDX, we can compare our parameters to their HDX requirements

of d = O(exp(1/ε)) and γ = O(exp(−1/ε)).
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3.9 Instantiation II: Direct Sum on Expander Walks

We instantiate the list decoding framework to the direct sum lifting where the sum is

taken over the collection X(k) of length k walks of a sufficiently expanding graph G. To

stress the different nature of this collection and its dependence on G we equivalently

denote X(k) by WG(k) and endow it with a natural measure in Definition 3.9.1.

Definition 3.9.1 (Walk Collection). Let G = (V, E, w) be a weighted graph with weight distri-

bution w : E→ [0, 1]. For k ∈ N+, we denote by WG(k) the collection of all walks of length k in

G, i.e.,

WG(k) := {w = (w1, . . . , wk) | w is a walk of length k in G}.

We endow WG(k) with the distribution Πk arising from taking a random vertex w1 according to

the stationary distribution on V and then taking k− 1 steps according to the normalized random

walk operator of G.

One simple difference with respect to the HDX case is that now we are working

with a collection of (ordered) tuples instead of subsets. The Propagation Rounding Algo-

rithm 4.7.16 remains the same, but we need to establish the tensorial properties of WG(k)

which is done in Section 3.9.1.

The main result of this section follows.

Theorem 3.9.2 (Direct Sum Lifting on Expander Walks). Let ε0 < 1/2 be a constant and

ε ∈ (0, ε0). There exists a universal constant C > 0 such that for any d-regular γ-two-sided

expander graph G on ground set WG(1) = [n], if γ ≤ εC, then the following holds:

For every binary code C1 with ∆(C1) ≥ 1/2− ε0 on WG(1) = [n], there exists a binary lifted

code Ck = dsumX(k)(ϕ(C1)) with ∆(Ck) ≥ 1/2− εΩε0(1) on WG(k) where k = O (log(1/ε)),

ϕ is an explicit linear projection, and

- [Efficient List Decoding] If ỹ is (1/2 −
√

ε)-close to Ck, then we can compute the list
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L(ỹ, C1, Ck) (c.f. Definition 3.6.15) in time

nε−O(1) · f (n),

where f (n) is the running time of a unique decoding algorithm for C1.

- [Rate] The rate rk of Ck satisfies rk = r1/dk−1 where r1 is the relative rate of C1.

- [Linearity] If C1 is linear, then ϕ is the identity and Ck = dsumX(k)(C1) is linear.

In particular, we apply Theorem 3.9.2 to the explicit family of Ramanujan expanders

of Lubotzky et al. from Theorem 3.9.3.

Theorem 3.9.3 (Lubotzky-Phillips-Sarnak abridged [LPS88]). Let p ≡ 1 (mod 4) be a

prime. Then there exists an explicit infinite family of (p+ 1)-regular Ramanujan graphs G1, G2, . . .

on n1 < n2 < · · · vertices, i.e., σ2(Gi) ≤ 2 · √p/(p + 1).

In order to construct Ramanujan expanders with arbitrarily good expansion, we will

use the following lemma for finding primes.

Lemma 3.9.4 (From [TS17]). For every α > 0 and sufficiently large n, there exists an algorithm

that given a and m relatively prime, runs in time poly(n) and outputs a prime number p with

p ≡ a (mod m) in the interval [(1− α)n, n].

This results in Corollary 3.9.5.

Corollary 3.9.5. Let ε0 < 1/2 be a constant and ε ∈ (0, ε0). There is an infinite sequence of

explict Ramanujan expanders G1, G2, . . . on ground sets of size n1 < n2 < · · · such that the

following holds:

For every sequence of binary codes C(i)1 on [ni] with rate and distance uniformly bounded by

r(i)1 and (1/2 − ε0) respectively, there exists a sequence of binary lifted codes C(i)k of the form
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C(i)k = dsumX(k)(ϕ(C(i)1 )) on a collection Xi(k) with distance
(

1/2− εΩε0(1)
)

where ϕ is an

explicit linear projection and

- [Efficient List Decoding] If ỹ is (1/2 −
√

ε)-close to Ck, then we can compute the list

L(ỹ, C1, Ck) (c.f. Definition 3.6.15) in time nε−O(1) · f (n), where f (n) is the running time

of a unique decoding algorithm of C1.

- [Explicit Construction] The collection WGi
(k) is obtained from length k walks on a Ra-

manujan d-regular expander Gi where k = O (log(1/ε)), d = 8 · ε−O(1) and γ = εO(1).

- [Rate] The rate r(i)k of C(i)k satisfies r(i)k ≥ r(i)1 · ε
O(log(1/ε)).

- [Linearity] If C(i)1 is linear, then ϕ is the identity and C(i)k = dsumX(k)(C
(i)
1 ) is linear.

Proof. Using Lemma 3.9.4 with a = 1 and m = 4, we see that given n, α, a prime p such

that p ≡ 1 (mod 4) may be found in the interval [(1− α)n, n] for large enough n. For

Ramanujan expanders, the condition that γ ≤ εC translates to p ≥ 4 · ε−2C. Choose

α = 1/2 and n > 8 · ε−2C so that we find a prime greater than 4 · ε−2C, but at most

8 · ε−2C.

Based on this prime, we use the above Theorem 3.9.3 to get a family of Ramanujan

graphs G1, G2, . . . with n1 < n2 < · · · vertices, such that the degree is bounded by 8ε−2C.

Using the parameters of this family in Theorem 3.9.2, we obtain the desired claims.

3.9.1 Expander Walks are Two-Step Tensorial

To apply the list decoding framework we need to establish the tensorial parameters of

expander walks WG(k) for a γ-two-sided expander graph G. Although the tensorial

property is precisely what the abstract list decoding framework uses, when faced with

a concrete object such as WG(k) it will be easier to prove that it satisfies a splittable prop-

erty defined in [AJT19] for complexes which implies the tensorial property. In turn, this
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splittable property is defined in terms of some natural operators denoted Swap opera-

tors whose definition is recalled in Section 3.9.1 in a manner tailored to the present case

X(k) = WG(k). Then, in Section 3.9.1, we formally define the splittable property and

show that the expansion of the Swap operator is controlled by the expansion parameter γ

of G allowing us to deduce the splittable parameters of WG(k). Finally, in Section 3.9.1, we

show how WG(k) being splittable gives the tensorial parameters. Some results are quite

similar to the hypergraph case in [AJT19] (which built on [BRS11]). The key contribution

in this new case of WG(k) is observing the existence of these new Swap operators along

with their expansion properties.

Emergence of Swap Operators

To motivate the study of Swap operators on WG(k), we show how they naturally emerge

from the study of k-CSPs. The treatment is quite similar to the hypergraph case developed

in [AJT19], but this will give us the opportunity to formalize the details that are specific

to WG(k). Suppose that we solve a k-CSP instance as defined in Section 3.2.4 whose con-

straints were placed on the tuples corresponding to walks in WG(k). The result is a local

PSD ensemble {Z}which can then be fed to the Propagation Rounding Algorithm 4.7.16.

It is easy to show that the tensorial condition of Eq. (3.12) (below) is sufficient to guarantee

an approximation to this k-CSP on WG(k) within µ additive error. The precise parameters

are given in Section 3.9.1. For now, we take this observation for granted and use it to

show how the Swap operators emerge in obtaining the inequality

E
Ω

E
w∼WG(k)

∥∥∥{Z′w} − {Z′w1

}
· · ·
{

Z′wk

}∥∥∥
1
≤ µ (3.12)

present in the definition of tensoriality.

The following piece of notation will be convenient when referring to sub-walks of a
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given walk.

Definition 3.9.6 (Sub-Walk). Given 1 ≤ i ≤ j ≤ k and w = (w1, . . . , wk) ∈WG(k), we define

the sub-walk w(i, j) from wi to wj as

w(i, j) := (wi, wi+1, . . . , wj).

We will need the following simple observation about marginal distributions of Πk on

sub-walks.

Claim 3.9.7 (Marginals of the walk distribution). Let k ∈ N+ and 1 ≤ i ≤ j ≤ k. Then

sampling w ∼ Πk in WG(k) and taking w(i, j) induces the distribution Πj−i+1 on WG(j− i +

1).

Proof. Let w = (w1, . . . , wi, . . . , wj, . . . , wk) ∼ Πk. Since w1 ∼ Π1 where Π1 is the sta-

tionary measure of G and w2, . . . , wi are obtained by (i− 1) successive steps of a random

walk on G, the marginal distribution on wi is again the stationary measure Π1. Then by

taking (j− i) successive random walk steps from wi on G, we obtain a walk (wi, . . . , wj)

distributed according to Πj−i+1.

We also need the notion of a splitting tree as follows.

Definition 3.9.8 (Splitting Tree [AJT19]). We say that a binary tree T is a k-splitting tree if it

has exactly k leaves and

- the root of T is labeled with k and all other vertices are labeled with positive integers,

- the leaves are labeled with 1, and

- each non-leaf vertex satisfies the property that its label is the sum of the labels of its two

children.
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The Swap operators arise naturally from the following triangle inequality where the

quantity Ew∼WG(k)

∥∥∥{Z′w} −∏k
i=1

{
Z′w(i)

}∥∥∥
1

is upper bounded by a sum of terms of the

form

E
w∼WG(k1+k2)

∥∥∥{Z′w} − {Z′w(1,k1)

}{
Z′w(k1+1,k2)

}∥∥∥
1
.

We view the above expectation as taking place over the edges WG(k1 + k2) of a bipartite

graph on vertex bipartition (WG(k1), WG(k2)). This graph gives rise to a Swap operator

which we formally define later in Section 3.9.1. The following claim shows how a splitting

tree defines all terms (and hence also their corresponding graphs and operators) that can

appear in this upper bound.

Claim 3.9.9 (Triangle inequality). Let k ∈N+ and T be a k-splitting tree. Then

E
w∼WG(k)

∥∥∥∥∥{Z′w} − k

∏
i=1

{
Z′w(i)

}∥∥∥∥∥
1

≤ ∑
(k1,k2)

E
w∼WG(k1+k2)

∥∥∥{Z′w} − {Z′w(1,k1)

}{
Z′w(k1+1,k2)

}∥∥∥
1
,

where the sum ∑(k1,k2)
is taken over all pairs of labels of the two children of each internal node of

T .

Proof. We prove the claim by induction on k. Let (k1, k2) be the labels of the children of the

root of the splitting tree T . Suppose T1 and T2 are the corresponding splitting trees rooted

at these children with labels k1 and k2, respectively. By this choice, we have k = k1 + k2.

Applying the triangle inequality yields

E
w∼WG(k)

∥∥∥∥∥{Z′w} − k

∏
i=1

{
Z′wi

}∥∥∥∥∥
1

≤ E
w∼WG(k)

∥∥∥{Z′w} − {Z′w(1,k1)

}{
Z′w(k1+1,k2)

}∥∥∥
1
+

E
w∼WG(k)

∥∥∥∥∥{Z′w(1,k1)

}{
Z′w(k1+1,k2)

}
−

k1

∏
i=1

{
Z′wi

}{
Z′w(k1+1,k2)

}∥∥∥∥∥
1

+

E
w∼WG(k)

∥∥∥∥∥ k1

∏
i=1

{
Z′wi

}{
Z′w(k1+1,k2)

}
−

k

∏
i=1

{
Z′wi

}∥∥∥∥∥
1

.

Using the marginalization given by Claim 3.9.7 on the second and third terms and sim-
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plifying, we get

E
w∼WG(k)

∥∥∥∥∥{Z′w} − k

∏
i=1

{
Z′wi

}∥∥∥∥∥
1

≤ E
w∼WG(k)

∥∥∥{Z′w} − {Z′w(1,k1)

}{
Z′w(k1+1,k2)

}∥∥∥
1
+

E
w∼WG(k1)

∥∥∥∥∥{Z′w
}
−

k1

∏
i=1

{
Z′wi

}∥∥∥∥∥
1

+ E
w∼WG(k2)

∥∥∥∥∥{Z′w
}
−

k2

∏
i=1

{
Z′wi

}∥∥∥∥∥
1

.

Applying the induction hypothesis to the second term with tree T1 and to the third term

with tree T2 finishes the proof.

Swap Operators Arising from Expander Walks

We define the Swap operator associated to walks on a given graph G as follows.

Definition 3.9.10 (Graph Walk Swap Operator). Let G = (V, E, w) be a weighted graph. Let

k1, k2 ∈N+ be such that k = k1 + k2. We define the graph walk Swap operator

S◦k1,k2
: RWG(k2) → RWG(k1)

such that for every f ∈ RWG(k2),

(
S◦k1,k2

( f )
)
(w) := Ew′:ww′∈W(k)[ f (w′)],

where ww′ denotes the concatenation of the walks w and w′. The operator S◦k1,k2
can be defined

more concretely in matrix form such that for every w ∈WG(k1) and w′ ∈WG(k2),

(
S◦k1,k2

)
w,w′

:=
Πk(ww′)
Πk1

(w)
.

Remark 3.9.11. Swap operators are Markov operators, so the largest singular value of a Swap

operator is bounded by 1.
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Unlike the Swap operators for HDXs described in [AJT19], which are defined using

unordered subsets of hyperedges, the Swap operators S◦k1,k2
use sub-walks and are thus

directed operators. Instead of analyzing such an operator directly, we will examine the

symmetrized version

U (S◦k1,k2
) =

 0 S◦k1,k2(
S◦k1,k2

)†
0


and show that U (S◦k1,k2

) is the normalized random walk operator of an undirected graph.

In particular, U (S◦k1,k2
) defines an undirected weighted bipartite graph on the vertices

WG(k1) ∪WG(k2), where each edge ww′ in this graph is weighted according to the tran-

sition probability from one walk to the other whenever one of w, w′ is in WG(k1) and the

other is in WG(k2). This becomes clear when taking a closer look at the adjoint operator

(S◦k1,k2
)†.

Claim 3.9.12. Let k1, k2 ∈ N and k = k1 + k2. Define the operator Sk1,k2, : RWG(k1) →

RWG(k2) such that for every f ∈ RWG(k1),

(
Sk1,k2,( f )

)
(w′) := Ew:ww′∈W(k)[ f (w)]

for every w′ ∈WG(k2). Then (
S◦k1,k2

)†
= Sk1,k2,.

Proof. Let f ∈ CWG(k1) and g ∈ CWG(k2). We show that
〈

f , S◦k1,k2
g
〉
=
〈
Sk1,k2, f , g

〉
. On
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one hand we have

〈
f , S◦k1,k2

g
〉
= Ew∈WG(k1)

[
f (w)Ew′:ww′∈WG(k)[g(w

′)]
]

= Ew∈WG(k1)

 f (w) ∑
w′∈WG(k2)

Πk(ww′)
Πk1

(w)
g(w′)


= ∑

w∈WG(k1)

Πk1
(w) f (w) ∑

w′∈WG(k2)

Πk(ww′)
Πk1

(w)
g(w′)

= ∑
ww′∈WG(k)

f (w)g(w′)Πk(ww′).

On the other hand we have

〈
Sk1,k2, f , g

〉
= Ew′∈WG(k2)

[
Ew:ww′∈WG(k)[ f (w)]g(w′)

]
= Ew′∈WG(k2)

 ∑
w∈WG(k1)

Πk(ww′)
Πk2

(w′)
f (w)g(w′)


= ∑

w′∈WG(k2)

Πk2
(w′) ∑

w∈WG(k1)

Πk(ww′)
Πk2

(w′)
f (w)g(w′)

= ∑
ww′∈WG(k)

f (w)g(w′)Πk(ww′).

Hence, Sk1,k2,=(S
◦
k1,k2

)† as claimed.

Swap Operators are Splittable

At a high level, the expansion of a certain collection of Swap walks S◦k1,k2
ensures that we

can round the SOS solution and this gives rise to the splittable notion, which we tailor to

the WG(k) case after recalling some notation.

Remark 3.9.13. We establish the definitions in slightly greater generality than needed for our

coding application since this generality is useful for solving k-CSP instances on WG(k) for more
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general graphs G that are not necessarily expanders (c.f. Section 3.9.1). Solving these kinds of

k-CSPs might be of independent interest. For the coding application, the threshold rank (Defini-

tion 3.9.14) will be one, i.e., we will be working with expander graphs.

Definition 3.9.14 (Threshold Rank of Graphs (from [BRS11])). Let G = (V, E, w) be a

weighted graph on n vertices and A be its normalized random walk matrix. Suppose the eigenval-

ues of A are 1 = λ1 ≥ · · · ≥ λn. Given a parameter τ ∈ (0, 1), we denote the threshold rank of

G by rank≥τ(A) (or rank≥τ(G)) and define it as

rank≥τ(A) := |{i | λi ≥ τ}| .

Let Swap(T , WG(≤ k)) be the set of all swap graphs over WG(≤ k) finding represen-

tation in the splitting tree T , i.e., for each internal node with leaves labeled k1 and k2 we

associate the undirected Swap operator U (S◦k1,k2
).

Given a threshold parameter τ ≤ 1 and a set of normalized adjacency matrices A =

{A1, . . . ,As}, we define the threshold rank rank≥τ(A) of A as

rank≥τ(A) := max
A∈A

rank≥τ(A),

where rank≥τ(A) denotes the usual threshold rank of A as in Definition 3.9.14.

Definition 3.9.15 ((T , τ, r)-splittability [AJT19]). A collection WG(≤ k) is said to be (T , τ, r)-

splittable if T is a k-splitting tree and

rank≥τ(Swap(T , WG)) ≤ r.

If there exists some k-splitting tree T such that WG(≤ k) is (T , τ, r)-splittable, the instance

WG(≤ k) will be called a (τ, r)-splittable instance.
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We show that the expansion of U (S◦k1,k2
) is inherited from the expansion of its defin-

ing graph G. To this end we will have to overcome the hurdle that WG(k) ⊆ Vk is not

necessarily a natural product space, but it can be made so with the proper representation.

Lemma 3.9.16. Let G = (V = [n], E) be a d-regular graph with normalized random walk

operator AG. Then for every k1, k2 ∈ N+, there are representations of S◦k1,k2
and AG as matrices

such that

S◦k1,k2
= AG ⊗ J/dk2−1,

where J ∈ R[d]k1−1×[d]k2−1
is the all ones matrix.

Proof. Partition the set of walks WG(k1) into the sets W1, . . . , Wn, where w ∈Wi if the last

vertex of the walk is wk1
= i. Similarly, partition WG(k2) into the sets W′1, . . . , W′n, where

w′ ∈ W′j if the first vertex of the walk is w′1 = j. Note that |Wi| = dk1−1 for all i and∣∣∣W′j ∣∣∣ = dk2−1 for all j.

Now order the rows of the matrix S◦k1,k2
so that all of the rows corresponding to walks

in W1 appear first, followed by those for walks in W2, and so on, with an arbitrary order

within each set. Do a similar re-ordering of the columns for the sets W′1, . . . , W′n. Observe

that (
S◦k1,k2

)
w,w′

=
Πk1+k2

(ww′)
Πk1

(w)
=

1
[
wk1

is adjacent to w′1
]

dk2−1 ,

which only depends on the adjacency of the last vertex of w and the first vertex of w′.

If the vertices i and j are adjacent, then
(
S◦k1,k2

)
w,w′

= 1/dk2−1 for every w ∈ Wi and

w′ ∈W′j ; otherwise,
(
S◦k1,k2

)
w,w′

= 0. Since the walks in the rows and columns are sorted

according to their last and first vertices, respectively, the matrix S◦k1,k2
exactly matches the

tensor product AG ⊗ J/dk2−1, where the rows and columns of AG are sorted according to

the usual ordering on [n].

Corollary 3.9.17. Let G = (V, E) be a γ-two-sided spectral expander with normalized random
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walk operator AG. Then for every k1, k2 ∈N+,

λ2(U (S◦k1,k2
)) ≤ γ.

Proof. To make the presentation reasonably self-contained, we include the proof of the

well-known connection between the singular values of S◦k1,k2
and the eigenvalues of U (S◦k1,k2

).

Using Lemma D.1.10 and the fact that σi(AG ⊗ J/dk2−1) = σi(AG), we have σi(S
◦
k1,k2

) =

σi(AG). Since

(
U (S◦k1,k2

)†
)
U (S◦k1,k2

) =

S◦k1,k2

(
S◦k1,k2

)†
0

0
(
S◦k1,k2

)†
S◦k1,k2

 ,

the nonzero singular values of U (S◦k1,k2
) are the same as the nonzero singular values of

S◦k1,k2
. As U (S◦k1,k2

) is the random walk operator of a bipartite graph, the spectrum of

U (S◦k1,k2
) is symmetric around 0 implying that its nonzero eigenvalues are

±σ1(S
◦
k1,k2

),±σ2(S
◦
k1,k2

), . . . = ±σ1(AG),±σ2(AG), . . .

Hence, the second-largest of these is λ2(U (S◦k1,k2
)) = σ2(AG) ≤ γ.

Applying this spectral bound on U (S◦k,k) to each internal node of any splitting tree

readily gives the splittability of WG(k).

Corollary 3.9.18. If G is a γ-two-sided spectral expander, then for every k ∈ N+ the collection

WG(k) endowed with Πk is (γ, 1)-splittable (for all choices of splitting trees).
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Splittable Implies Tensorial

By a simple adaptation of an argument in [AJT19] for hypergraphs which built on [BRS11],

we can use the splittable property to obtain tensorial properties for WG(k). More pre-

cisely, we can deduce Theorem 3.9.19.

Theorem 3.9.19 (Adapted from [AJT19]). Suppose WG(≤ k) with WG(1) = [n] and an (L +

2k)-local PSD ensemble Z = {Z1, . . . , Zn} are given. There exist some universal constants

c4 ≥ 0 and C′′ ≥ 0 satisfying the following: If L ≥ C′′ · (q4k · k7 · r/µ5), Supp(Zj) ≤ q for all

j ∈ [n], and WG(≤ k) is (c4 · (µ/(4k · qk))2, r)-splittable, then

E
Ω

E
w∼WG(k)

∥∥∥{Z′w} − {Z′w1

}
· · ·
{

Z′wk

}∥∥∥
1
≤ µ, (3.13)

where Z′ is as defined in Algorithm 4.7.16 on the input of {Z1, . . . , Zn} and Πk.

Using Theorem 3.9.19, we can establish conditions on a γ-two-sided expander graph

G = (V, E, w) in order to ensure that WG(k) is (µ, L)-two-step tensorial.

Lemma 3.9.20 (Expander walks are two-step tensorial). There exist some universal constants

c′ ≥ 0 and C′ ≥ 0 satisfying the following: If L ≥ c′ · (q4k · k7/µ5), Supp(Zj) ≤ q for all

j ∈ [n], and G is a γ-two-sided expander for γ ≤ C′ · µ2/
(

k2 · q2k
)

and size ≥ k, then WG(k)

is (µ, L)-two-step tensorial.

Proof. The proof is similar to the proof of Lemma 3.7.4 for HDXs, so we omit it.

Interlude: Approximating k-CSP on Walk Constraints

Now, we digress to show how using Theorem 3.9.19 it is possible to deduce parameters

for approximating k-CSPs on WG(k). We believe this result might be of independent

interest and note that it is not required in the list decoding application.
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Corollary 3.9.21. Suppose I is a q-ary k-CSP instance with constraints on WG(k). There exist

absolute constants C′′ ≥ 0 and c4 ≥ 0 satisfying the following:

If WG(k) is (c4 · (µ/(4k · qk))2, r)-splittable, then there is an algorithm that runs in time

n
O
(

q4k·k7·r/µ5
)

based on (C′′ · k5 · qk · r/µ4)-levels of SOS-hierarchy and Algorithm 4.7.16 that

outputs a random assignment ξ : [n]→ [q] that in expectation ensures SATI(ξ) = OPT(I)− µ.

Proof. The algorithm will just run Algorithm 4.7.16 on the local PSD-ensemble {Z1, . . . , Zn}

given by the SDP relaxation of I strengthened by L = (C′′ · k5 · q2k/µ4)-levels of SOS-

hierarchy and Πk, where C′′ ≥ 0 is the constant from Theorem 3.9.19. Z satisfies

SDP(I) = E
w∼Πk

[
E
{Zw}

[1[Zw ∈ Pw]]

]
≥ OPT(I). (3.14)

Since the conditioning done on {Z′} is consistent with the local distribution, by law

of total expectation and Eq. (3.14) we have

E
Ω

E
w∼Πk

1[Z′w ∈ Pw] = SDP(I) ≥ OPT(I). (3.15)

By Theorem 3.9.19 we know that

E
Ω

E
w∼Πk

∥∥∥{Z′w} − {Z′w1
} · · · {Z′wk

}
∥∥∥

1
≤ µ. (3.16)

Now, the fraction of constraints satisfied by the algorithm in expectation is

E
ξ
[SATI(ξ)] = E

Ω
E

w∼Πk
E

(ξ1,...,ξn)∼{Z′1}···{Z
′
n}

[1[ξ|w ∈ Pw]].
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By using Eq. (3.16), we can obtain

E
ξ
[SATI(ξ)] ≥ E

Ω

[
E
{Zw}

1[Z′w satisfies the constraint on w]

]
− µ.

Using Eq. (3.15), we conclude

E
ξ
[SATI(ξ)] ≥ SDP(I)− µ = OPT(I)− µ.

3.9.2 Instantiation to Linear Base Codes

We instantiate the list decoding framework to the direct sum lifting given by the collection

WG(k) of length k walks on a sufficiently expanding graph G = (V, E, w). For parity

sampling of expander walks, we will rely on the following fact.

Theorem 3.9.22 (Walks on Expanders are Parity Samplers [TS17] (Restatement of Theo-

rem 3.4.1)). Suppose G is a graph with second-largest eigenvalue in absolute value at most λ,

and let X(k) be the set of all walks of length k on G. Then X(k) is a (β0, (β0 + 2λ)bk/2c)-parity

sampler. In particular, for any β > 0, if β0 + 2λ < 1 and k is sufficiently large, then X(k) is a

(β0, β)-parity sampler.

First, we instantiate the framework to linear codes which already encompasses most

of the ideas need for general binary codes.

Lemma 3.9.23 (Direct sum lifting of linear biased codes II). Let ε0 < 1/2 be a constant and

ε ∈ (0, ε0). There exists a universal constant C > 0 such that for any d-regular γ-two-sided

expander graph G on ground set WG(1) = [n], if γ ≤ εC, then the following holds:

For every binary 2ε0-biased linear code C1 on WG(1) = [n], there exists a 2ε-biased binary

lifted linear code Ck = dsumX(k)(C1) on WG(k) where k = O (log(1/ε)) and
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- [Efficient List Decoding] If ỹ is (1/2 −
√

ε)-close to Ck, then we can compute the list

L(ỹ, C1, Ck) (c.f. Definition 3.6.15) in time

nε−O(1) · f (n),

where f (n) is the running time of a unique decoding algorithm for C1.

- [Rate] The rate rk of Ck satisfies rk = r1/dk−1 where r1 is the relative rate of C1.

- [Linear] The lifted code Ck is linear.

Proof. The proof is analogous to the one given in Lemma 3.7.5. We want to define parame-

ters for a γ-two-sided expander G = (V, E, w) so that WG(k) satisfies strong enough robust

and tensorial assumptions and we can apply Theorem 3.6.17. In this application, we will

rely on parity sampling for robustness. If dsumWG(k) is a (2ε0, 2ε)-parity sampler, using

the linearity of C1, we obtain a lifted code Ck = dsumX(k)(C1) which is linear and has bias

2ε; thus the lifting is indeed (1/2− ε0, 1/2− ε)-robust. If we want to fully rely on parity

sampling in Theorem 3.6.17, the lifting must be a (β0 = 1/2 + ε0, β = 2ε)-parity sampler,

which is more stringent than the first parity sampling requirement. 21 To invoke Theo-

rem 3.9.22 and obtain this (β0, β)-parity sampler, we need to choose a parameter θ (where

0 < θ < (1− β0)/β0) such that

k ≥ 2 · log(1+θ)β0
(β) + 2 and

γ ≤ θ · β0
2

,

which will ensure that

(β0 + 2γ)bk/2c ≤ ((1 + θ)β0)
bk/2c ≤ β.

21. Recall that this strengthening is used in our list decoding framework.
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To get a (µ, L)-tensorial collection of walks, Lemma 3.9.20 requires

L ≥ c′ · 24k · k7

µ5 and γ ≤ C′ · µ2

k2 · 22k .

where we used that our alphabet is binary (i.e., q = 2) and c′, C′ > 0 are constants. Fi-

nally, Theorem 3.6.17 requires µ ≤ ε8/222. The conceptual part of the proof is essentially

complete and we are left to compute parameters. We choose θ = 1/2− ε0, so that pro-

vided ε0 < 1/2 we have (1 + θ)β0 = 3/4 + ε0 − ε2
0 < 1. Combining the parity sampling

and tensorial requirements and after some simplification, the expansion γ is constrained

as

γ ≤ C′′ ·min

(
ε16

k2 · 22k ,
(

1/4− ε2
0

))
,

where C′′ > 0 is a constant. We deduce that taking γ as

γ ≤ C′′ ·

(
1/4− ε2

0

)
· ε16

k2 · 22k

is sufficient. Further simplifying the above bound gives γ as in the statement of the theo-

rem. Now, we turn to the SOS related parameter L which is constrained to be

L ≥ c′′ · 24k · k7

ε40 ,

where c′′ > 0. Note that in this case the exponent O(L + k) appearing in the running

time of Theorem 3.6.17 becomes O(L). Further simplification of the bound on L leads to

a running time of nε−O(1) · f (n) as in the statement of the theorem.
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3.9.3 Instantiation to General Base Codes

The proof of Theorem 3.9.2 follows from Lemma 3.9.23 in the same way that Theorem 3.7.7

follows from Lemma 3.7.5 in the case of HDXs.
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CHAPTER 4

DECODING EXPLICIT ε-BALANCED CODES NEAR THE

GILBERT–VARSHAMOV BOUND

4.1 Introduction

Binary error correcting codes have pervasive applications [Gur10, GRS19] and yet we

are far from understanding some of their basic properties [Gur09]. For instance, until

very recently no explicit binary code achieving distance 1/2− ε/2 with rate near Ω(ε2)

was known, even though the existence of such codes was (non-constructively) established

long ago [Gil52, Var57] in what is now referred as the Gilbert–Varshamov (GV) bound. On

the impossibility side, a rate upper bound of O(ε2 log(1/ε)) is known for binary codes of

distance 1/2− ε/2 (e.g., [Del75, MRRW77, NS09]).

In a breakthrough result [TS17], Ta-Shma gave an explicit construction of binary codes

achieving nearly optimal distance versus rate trade-off, namely, binary codes of distance

1/2− ε/2 with rate Ω(ε2+β) where β vanishes as ε vanishes 1. Actually, Ta-Shma obtained

ε-balanced binary linear codes, that is, linear binary codes with the additional property

that non-zero codewords have Hamming weight bounded not only below by 1/2− ε/2

but also above by 1/2 + ε/2, and this is a fundamental property in the study of pseudo-

randomness [NN90, AGHP92].

While the codes constructed by Ta-Shma are explicit, they were not known to admit

efficient decoding algorithms, while such results are known for codes with smaller rates.

In particular, an explicit binary code due to Guruswami and Rudra [GR06] is known to be

even list decodable at an error radius 1/2− ε with rate Ω(ε3). We consider the following

question:

1. In fact, Ta-Shma obtained β = β(ε) = Θ(((log log 1/ε)/ log 1/ε)1/3) and thus limε→0 β(ε) = 0.
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Do explicit binary codes near the GV bound admit an efficient decoding algorithm?

Here, we answer this question in the affirmative by providing an efficient 2 unique

decoding algorithm for (essentially) Ta-Shma’s code construction, which we refer as Ta-

Shma codes. More precisely, by building on Ta-Shma’s construction and using our unique

decoding algorithm we have the following result.

Theorem 4.1.1 (Unique Decoding). For every ε > 0 sufficiently small, there are explicit binary

linear Ta-Shma codes CN,ε,β ⊆ FN
2 for infinitely many values N ∈N with

(i) distance at least 1/2− ε/2 (actually ε-balanced),

(ii) rate Ω(ε2+β) where β = O(1/(log2(1/ε))1/6), and

(iii) a unique decoding algorithm with running time NOε,β(1).

Furthermore, if instead we take β > 0 to be an arbitrary constant, the running time becomes

(log(1/ε))O(1) · NOβ(1) (fixed polynomial time).

We can also perform “gentle” list decoding in the following sense (note that this par-

tially implies Theorem 5.1.1).

Theorem 4.1.2 (Gentle List Decoding). For every ε > 0 sufficiently small, there are explicit

binary linear Ta-Shma codes CN,ε,β ⊆ FN
2 for infinitely many values N ∈N with

(i) distance at least 1/2− ε/2 (actually ε-balanced),

(ii) rate Ω(ε2+β) where β = O(1/(log2(1/ε))1/6), and

(iii) a list decoding algorithm that decodes within radius 1/2 − 2−Θ((log2(1/ε))1/6) in time

NOε,β(1).

2. By “efficient”, we mean polynomial time. Given the fundamental nature of the problem of decoding
nearly optimal binary codes, it is an interesting open problem to make these techniques viable in practice.
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We observe that the exponent in the running time NOε,β(1) appearing in Theorem 5.1.1

and Theorem 5.1.2 depends on ε. This dependence is no worse than O(log log(1/ε)), and

if β > 0 is taken to be an arbitrarily constant (independent of ε), the running time becomes

(log(1/ε))O(1) · NOβ(1). Avoiding this dependence in the exponent when β = β(ε) is an

interesting open problem. Furthermore, obtaining a list decoding radius of 1/2 − ε/2

in Theorem 5.1.2 with the same rate (or even Ω(ε2)) is another very interesting open

problem and related to a central open question in the adversarial error regime [Gur09].

Direct sum codes. Our work can be viewed within the broader context of developing

algorithms for the decoding of direct sum codes. Given a (say linear) code C ⊆ Fn
2 and a

collection of tuples W ⊆ [n]t, the code dsumW(C) with block length |W| is defined as

dsumW(C) =
{
(zw1 + zw2 + · · ·+ zwt)w∈W | z ∈ C

}
.

The direct sum operation has been used for several applications in coding and complex-

ity theory [ABN+92, IW97, GI01, IKW09, DS14, DDG+15, Cha16, DK17, Aro02]. It is easy

to see that if C is ε0-balanced for a constant ε0, then for any ε > 0, choosing W to be

a random collection of tuples of size O(n/ε2) results in dsumW(C) being an ε-balanced

code. The challenge in trying to construct good codes using this approach is to find ex-

plicit constructions of (sparse) collections W which are “pseudorandom” enough to yield

a similar distance amplification as above. On the other hand, the challenge in decod-

ing such codes is to identify notions of “structure” in such collections W, which can be

exploited by decoding algorithms.

In Ta-Shma’s construction [TS17], such a pseudorandom collection W was constructed

by considering an expanding graph G over the vertex set [n], and generating t-tuples us-

ing sufficiently long walks of length t− 1 over the so-called s-wide replacement product

of G with another (small) expanding graph H. Roughly speaking, this graph product is a
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generalization of the celebrated zig-zag product [RVW00] but with s different steps of the

zig-zag product instead of a single one. Ta-Shma’s construction can also be viewed as a

clever way of selecting a sub-collection of all walks in G, which refines an earlier construc-

tion suggested by Rozenman and Wigderson [Bog12] (and also analyzed by Ta-Shma)

using all walks of length t− 1.

Identifying structures to facilitate decoding. For the closely related direct product con-

struction (where the entry corresponding to w ∈ W is the entire t-tuple (zw1 , . . . , zwt))

which amplifies distance but increases the alphabet size, it was proved by Alon et al.

[ABN+92] that the resulting code admits a unique decoding algorithm if the incidence

graph corresponding to the collection W is a good sampler. Very recently, it was proved

by Dinur et al. [DHK+19] that such a direct product construction admits list decoding if

the incidence graph is a “double sampler”. The results of [DHK+19] also apply to direct

sum, but the use of double samplers pushes the rate away from near optimality.

For the case of direct sum codes, the decoding task can be phrased as a maximum

t-XOR problem with the additional constraint that the solution must lie in C. More pre-

cisely, given ỹ ∈ FW
2 within the unique decoding radius of dsumW(C), we consider the

following optimization problem

argmin
z∈C

∆(ỹ, dsumW(z)),

where ∆(·, ·) is the (normalized) Hamming distance. While maximum t-XOR is in gen-

eral hard to solve to even any non-trivial degree of approximation [Hås97], previous work

by the authors [AJQ+20] identified a structural condition on W called “splittability” un-

der which the above constraint satisfaction problem can be solved (approximately) re-

sulting in efficient unique and list decoding algorithms. However, by itself the split-

tability condition is too crude to be applicable to codes such as the ones in Ta-Shma’s
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construction. The requirements it places on the expansion of G are too strong and the

framework in [AJQ+20] is only able to obtain algorithms for direct sum codes with rate

2−(log(1/ε))2 � ε2+β.

The conceptual contribution of this work can be viewed as identifying a different re-

cursive structure in direct sums generated by expander walks, which allows us to view

the construction as giving a sequence of codes C0, C1, . . . , C`. Here, C0 is the starting code

C and C` is the final desired code, and each element in the sequence can be viewed as

being obtained via a direct sum operation on the preceding code. Instead of consider-

ing a “one-shot” decoding task of finding an element of C0, this facilitates an iterative

approach where at each step we reduce the task of decoding the code Ci to decoding for

Ci−1, using the above framework from [AJQ+20]. Such an iterative approach with a se-

quence of codes was also used (in a very different setting) in a work of Guruswami and

Indyk [GI03] constructing codes over a large alphabet which are list decodable in linear

time via spectral algorithms.

Another simple and well-known (see e.g., [GI04]) observation, which is very helpful

in our setting, is the use of list decoding algorithms for unique decoding. For a code with

distance 1/2− ε/2, unique decoding can be obtained by list decoding at a much smaller

error radius of (say) 1/2 − 1/8. This permits a much more efficient application of the

framework from [AJQ+20], with a milder dependence on the expansion of the graphs

G and H in Ta-Shma’s construction, resulting in higher rates. We give a more detailed

overview of our approach in Section 4.3.

Known results for random ensembles. While the focus in this work is on explicit con-

structions, there are several known (non-explicit) constructions of random ensembles of

binary codes near or achieving the Gilbert–Varshamov bound (e.g., Table 4.1). Although

it is usually straightforward to ensure the desired rate in such constructions, the distance

only holds with high probability. Given a sample code from such ensembles, certifying
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the minimum distance is usually not known to be polynomial time in the block length.

Derandomizing such constructions is also a possible avenue for obtaining optimal codes,

although such results remain elusive to this date (to the best of our knowledge).

One of the simplest constructions is that of random binary linear codes in which the

generator matrix is sampled uniformly. This random ensemble achieves the GV bound

with high probability, but its decoding is believed to be computationally hard [MMT11].

Much progress has been made on binary codes by using results for larger alphabet

codes [Gur09]. Codes over non-binary alphabets with optimal (or nearly optimal) param-

eters are available [vL99, Sti08, GR06] and thanks to this availability a popular approach

to constructing binary codes has been to concatenate such large alphabet codes with bi-

nary ones. Thommesen [Tho83] showed that by concatenating Reed–Solomon (RS) codes

with random binary codes (one random binary code for each position of the outer RS

code) it is possible to achieve the GV bound. Note that Thommesen codes arise from a

more structured ensemble than random binary linear codes. This additional structure

enabled Guruswami and Indyk [GI04] to obtain efficient decoding algorithms for the

non-explicit Thommesen codes (whose minimum distance is not known to admit effi-

cient certification). This kind of concatenation starting from a large alphabet code and

using random binary codes, which we refer as Thommesen-like, has been an important

technique in tackling binary code constructions with a variety of properties near or at the

GV bound. An important drawback in several such Thommesen-like code constructions

is that they end up being non-explicit (unless efficient derandomization or brute-force is

viable).

Using a Thommesen-like construction, Gopi et al. [GKO+17] showed non-explicit

constructions of locally testable and locally correctable binary codes approaching the

GV bound. More recently, again with a Thommesen-like construction, Hemenway et

al. [HRW17] obtained non-explicit near linear time unique decodable codes at the GV
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bound improving the running time of Guruswami and Indyk [GI04] (and also the decod-

ing rates). We summarize the results discussed so far in Table 4.1.

Binary Code Results near the Gilbert–Varshamov bound
Who? Construction GV Explicit Concatenated Decoding Local
[Gil52, Var57] existential yes no no no n/a
[Tho83] Reed–Solomon +

random binary
yes no yes no n/a

[GI04] Thommesen [Tho83] yes no yes unique decoding n/a
[GKO+17] Thommesen-like yes no yes unique decoding LTC/LCC
[HRW17] Thommesen-like yes no yes near linear time

unique decoding
n/a

[TS17] Expander-based Ω(ε2+β) yes no no n/a

this paper Ta-Shma [TS17] Ω(ε2+β) yes no gentle list decoding n/a

Table 4.1: GV bound related results for binary codes.

There are also non-explicit constructions known to achieve list decoding capacity [GR08,

MRRZ+19] (being concatenated or LDPC/Gallager [Gal62] is not an obstruction to achieve

capacity). Contrary to the other results in this subsection, Guruswami and Rudra [Gur05,

GR06, Gur09], also using a Thommesen-like construction, obtained explicit codes that are

efficiently list decodable from radius 1/2 − ε with rate Ω(ε3). This was done by con-

catenating the so-called folded Reed–Solomon codes with a derandomization of a binary

ensemble of random codes.

Results for non-adversarial error models. All the results mentioned above are for the

adversarial error model of Hamming [Ham50, Gur10]. In the setting of random corrup-

tions (Shannon model), the situation seems to be better understood thanks to the seminal

result on explicit polar codes of Arikan [Ari09]. More recently, in another breakthrough

Guruswami et al. [GRY19] showed that polar codes can achieve almost linear time de-

coding with near optimal convergence to capacity for the binary symmetric channel. This

result gives an explicit code construction achieving parameter trade-offs similar to Shan-

non’s randomized construction [Sha48] while also admitting very efficient encoding and

decoding. Explicit capacity-achieving constructions are also known for bounded memory
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channels [SKS19] which restrict the power of the adversary and thus interpolate between

the Shannon and Hamming models.

4.2 Preliminaries and Notation

4.2.1 Codes

We briefly recall some standard code terminology. Given z, z′ ∈ Fn
2 , recall that the relative

Hamming distance between z and z′ is ∆(z, z′) :=
∣∣{i | zi 6= z′i}

∣∣ /n. A binary code is any

subset C ⊆ Fn
2 . The distance of C is defined as ∆(C) := minz 6=z′ ∆(z, z′) where z, z′ ∈ C.

We say that C is a linear code if C is a linear subspace of Fn
2 . The rate of C is log2(|C|)/n.

Instead of discussing the distance of a binary code, it will often be more natural to

phrase results in terms of its bias.

Definition 4.2.1 (Bias). The bias of a word z ∈ Fn
2 is defined as bias(z) :=

∣∣∣Ei∈[n](−1)zi
∣∣∣. The

bias of a code C is the maximum bias of any non-zero codeword in C.

Definition 4.2.2 (ε-balanced Code). A binary code C is ε-balanced if bias(z + z′) ≤ ε for

every pair of distinct z, z′ ∈ C.

Remark 4.2.3. For linear binary code C, the condition bias(C) ≤ ε is equivalent to C being an

ε-balanced code.

4.2.2 Direct Sum Lifts

Starting from a code C ⊆ Fn
2 , we amplify its distance by considering the direct sum lifting

operation based on a collection W(k) ⊆ [n]k. The direct sum lifting maps each codeword

of C to a new word in F
|W(k)|
2 by taking the k-XOR of its entries on each element of W(k).
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Definition 4.2.4 (Direct Sum Lifting). Let W(k) ⊆ [n]k. For z ∈ Fn
2 , we define the direct sum

lifting as dsumW(k)(z) = y such that ys = ∑i∈s zi for all s ∈W(k). The direct sum lifting of a

code C ⊆ Fn
2 is

dsumW(k)(C) = {dsumW(k)(z) | z ∈ C}.

We will omit W(k) from this notation when it is clear from context.

Remark 4.2.5. We will be concerned with collections W(k) ⊆ [n]k arising from length-(k− 1)

walks on expanding structures (mostly on the s-wide replacement product of two expander graphs).

We will be interested in cases where the direct sum lifting reduces the bias of the base

code; in [TS17], structures with such a property are called parity samplers, as they emulate

the reduction in bias that occurs by taking the parity of random samples.

Definition 4.2.6 (Parity Sampler). A collection W(k) ⊆ [n]k is called an (ε0, ε)-parity sam-

pler if for all z ∈ Fn
2 with bias(z) ≤ ε0, we have bias(dsumW(k)(z)) ≤ ε.

4.2.3 Linear Algebra Conventions

All vectors considered in this paper are taken to be column vectors, and are multiplied on

the left with any matrices or operators acting on them. Consequently, given an indexed

sequence of operators Gk1
, . . . ,Gk2

(with k1 ≤ k2) corresponding to steps k1 through k2 of

a walk, we expand the product ∏k2
i=k1

Gi as

k2

∏
i=k1

Gi := Gk2
· · ·Gk1

.

Unless otherwise stated, all inner products for vectors in coordinate spaces are taken to be

with respect to the (uniform) probability measure on the coordinates. Similarly, all inner

products for functions are taken to be with respect to the uniform measure on the inputs.

All operators considered in this paper are normalized to have singular values at most 1.
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4.3 Proof Overview

The starting point for our work is the framework developed in [AJQ+20] for decoding

direct sum codes, obtained by starting from a code C ⊆ Fn
2 and considering all parities

corresponding to a set of t-tuples W(t) ⊆ [n]t. Ta-Shma’s near optimal ε-balanced codes

are constructed by starting from a code with constant rate and constant distance and con-

sidering such a direct sum lifting. The set of tuples W(t) in his construction corresponds

to a set of walks of length t− 1 on the s-wide replacement product of an expanding graph

G with vertex set [n] and a smaller expanding graph H. The s-wide replacement product

can be thought of here as a way of constructing a much smaller pseudorandom subset of

the set of all walks of length t− 1 on G, which yields a similar distance amplification for

the lifted code.

The simplified construction with expander walks. While we analyze Ta-Shma’s con-

struction later in the paper, it is instructive to first consider a W(t) simply consisting of all

walks of length t− 1 on an expander. This construction, based on a suggestion of Rozen-

man and Wigderson [Bog12], was also analyzed by Ta-Shma [TS17] and can be used to

obtain ε-balanced codes with rate Ω(ε4+o(1)). It helps to illustrate many of the conceptual

ideas involved in our proof, while avoiding some technical issues.

Let G be a d-regular expanding graph with vertex set [n] and the (normalized) second

singular value of the adjacency operator AG being λ. Let W(t) ⊆ [n]t denote the set of

t-tuples corresponding to all walks of length t− 1, with N = |W(t)| = n · dt−1. Ta-Shma

proves that for all z ∈ Fn
2 , W(t) satisfies

bias(z) ≤ ε0 ⇒ bias(dsumW(t)(z)) ≤ (ε0 + 2λ)b(t−1)/2c ,

i.e., W(t) is an (ε0, ε)-parity sampler for ε = (ε0 + 2λ)b(t−1)/2c. Choosing ε0 = 0.1 and
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λ = 0.05 (say), we can choose d = O(1) and obtain the ε-balanced code C ′ = dsumW(t)(C)

with rate d−(t−1) = εO(1) (although the right constants matter a lot for optimal rates).

Decoding as constraint satisfaction. The starting point for our work is the framework

in [AJQ+20] which views the task of decoding ỹ with ∆(C ′, ỹ) < (1− ε)/4− δ (where the

distance of C ′ is (1− ε)/2) as an instance of the MAX t-XOR problem (see Fig. 4.1). The

goal is to find

argmin
z∈C

∆
(

dsumW(t)(z), ỹ
)

,

which can be rephrased as

argmax
z∈C

E
w=(i1,...,it)∈W(t)

[
1{zi1

+···+zit=ỹw}
]

.

It is possible to ignore the condition that z ∈ C if the collection W(t) is a slightly stronger

parity sampler. For any solution z̃ ∈ Fn
2 (not necessarily in C) such that

∆(dsumW(t)(z̃), ỹ) <
1− ε

4
+ δ,

we have

∆(dsumW(t)(z̃), dsumW(t)(z)) <
1− ε

2

by the triangle inequality, and thus bias(dsumW(t)(z − z̃)) > ε. If W(t) is not just an

(ε0, ε)-parity sampler, but in fact a ((1+ ε0)/2, ε)-parity sampler, this would imply bias(z−

z̃) > (1 + ε0)/2. Thus, ∆(z, z̃) < (1− ε0)/4 (or ∆(z, z̃) < (1− ε0)/4) and we can use a

unique decoding algorithm for C to find z given z̃.

The task of finding such a z ∈ C boils down to finding a solution z̃ ∈ Fn
2 to a

MAX t-XOR instance, up to a an additive loss of O(δ) in the fraction of constraints satis-

fied by the optimal solution. While this is hard to do in general [Hås01, Gri01], [AJQ+20]
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Small approximation error δ
(comparable to ε)

ỹ

yUnique decoding radius
((1− ε)/4)

Figure 4.1: Unique decoding ball along with error from approximation.

(building on [AJT19]) show that this can be done if the instance satisfies a special prop-

erty called splittability. To define this, we let W[t1, t2] ⊂ [n]t2−t1+1 denote the collection

of (t2− t1 + 1)-tuples obtained by considering the indices between t1 and t2 for all tuples

in W(t). We also assume that all w ∈ W[t1, t2] can be extended to the same number of

tuples in W(t) (which is true for walks).

Definition 4.3.1 (Splittability (informal)). A collection W(t) ⊆ [n]t is said to be τ-splittable,

if t = 1 (base case) or there exists t′ ∈ [t− 1] such that:

1. The matrix S ∈ RW[1,t′]×W[t′+1,t] defined by S(w, w′) = 1{ww′∈W} has normalized

second singular value at most τ (where ww′ denotes the concatenated tuple).

2. The collections W[1, t′] and W[t′ + 1, t] are τ-splittable.

For example, considering walks in G of length 3 (t = 4) and t′ = 2, we get that

W[1, 2] = W[3, 4] = E, the set of oriented edges in G. Also S(w, w′) = 1 if and only if

the second vertex of w and first vertex of w′ are adjacent in G. Thus, up to permutation

of rows and columns, we can write the normalized version of S as AG ⊗ Jd/d where AG

is normalized adjacency matrix of G and Jd denotes the d× d matrix of 1s. Hence such

a W(t) satisfies σ2(S) ≤ τ with τ = σ2(AG), and a similar proof works for walks of all

lengths.

The framework in [AJQ+20] and [AJT19] gives that if W(t) is τ-splittable for τ =
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(δ/2t)O(1), then the above instance of MAX t-XOR can be solved to additive error O(δ)

using the Sum-of-Squares (SOS) SDP hierarchy. Broadly speaking, splittability allows

one to (recursively) treat instances as expanding instances of problems with two “tuple

variables” in each constraint, which can then be analyzed using known algorithms for

2-CSPs [BRS11, GS11] in the SOS hierarchy. Combined with parity sampling, this yields

a unique decoding algorithm. Crucially, this framework can also be extended to perform

list decoding3 up to a radius of 1/2−
√

ε− δ under a similar condition on τ, which will be

very useful for our application.

While the above can yield decoding algorithms for suitably expanding G, the require-

ment on τ (and hence on λ) makes the rate much worse. We need δ = O(ε) (for unique

decoding) and t = O(log(1/ε)) (for parity sampling), which requires λ = εΩ(1), yield-

ing only a quasipolynomial rate for the code (recall that we could take λ = O(1) earlier

yielding polynomial rates).

Unique decoding: weakening the error requirement. We first observe that it is possible

to get rid of the dependence δ = O(ε) above by using the list decoding algorithm for unique

decoding. It suffices to take δ = 0.1 and return the closest element from the the list of all

codewords up to an error radius 1/2−
√

ε− 0.1, if we are promised that ∆(ỹ, C) is within

the unique decoding radius (see Fig. 4.2). However, this alone does not improve the rate

as we still need the splittability (and hence λ) to be 2−Ω(t) with t = O(log(1/ε)).

Code cascades: handling the dependence on walk length. To avoid the dependence of

the expansion on the length t− 1 of the walk (and hence on ε), we avoid the “one-shot”

decoding above, and instead consider a sequence of intermediate codes between C and

3. While unique decoding can be thought of as recovering a single solution to a constraint satisfaction
problem, the goal in the list decoding setting can be thought of as obtaining a “sufficiently rich” set of
solutions which forms a good cover. This is achieved in the framework by adding an entropic term to the
semidefinite program, which ensures that the SDP solution satisfies such a covering property.
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List decoding radius
(1/2−

√
ε)

ỹ

yUnique decoding radius
(1/4− ε/4)

Constant approximation
error (0.1)

Figure 4.2: Unique decoding and list decoding balls along with error from approximation.
Note that the list decoding ball contains the unique decoding ball even after allowing for
a relatively large amount of error.

C ′. Consider the case when t = k2, and instead of computing t-wise sums of bits in each

z ∈ Fn
2 , we first compute k-wise sums according to walks of length k− 1 on G, and then a

k-wise sum of these values. In fact, the second sum can also be thought of as arising from

a length k− 1 walk on a different graph, with vertices corresponding to (directed) walks

with k vertices in G, and edges connecting w and w′ when the last vertex of w is connected

to the first one in w′ (this is similar to the matrix considered for defining splittability). We

can thus think of a sequence of codes C0, C1, C2 with C0 = C and C2 = C ′, and both

C1 and C2 being k-wise direct sums. More generally, when t = k` for an appropriate

constant k we can think of a sequence C = C0, C1, . . . , C` = C ′, where each is an k-wise

direct sum of the previous code, obtained via walks of length k− 1 (hence k vertices) in

an appropriate graph. We refer to such sequences (defined formally in Section 4.5) as code

cascades (see Fig. 4.3).

Instead of applying the decoding framework above to directly reduce the decoding of

a corrupted codeword from C ′ to the unique decoding problem in C, we apply it at each

level of a cascade, reducing the unique decoding problem in Ci to that in Ci−1. If the direct
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C0 C1 Ci−1 Ci C`· · · · · ·dsum dsum

ε0 ε1 εi−1 εi ε` = ε

Refined parity sampling via Ta-Shma’s walk

Crude parity sampling via Markov chain walk

Figure 4.3: Code cascading.

sum at each level of the cascade is an (η0, η)-parity sampler, the list decoding algorithm

at radius 1/2−√η suffices for unique decoding even if η is a (sufficiently small) constant

independent of ε. This implies that we can take k to be a (suitably large) constant. This

also allows the splittability (and hence λ) to be 2−O(k) = Ω(1), yielding polynomial

rates. We present the reduction using cascades in Section 4.6 and the parameter choices

in Section 4.8. The specific versions of the list decoding results from [AJQ+20] needed

here are instantiated in Section 4.9.

While the above allows for polynomial rate, the running time of the algorithm is still

exponential in the number of levels ` (which is O(log t) = O(log log(1/ε))) since the list

decoding for each level potentially produces a list of size poly(n), and recursively calls

the decoding algorithm for the previous level on each element of the list. We obtain a

fixed polynomial time algorithm by “pruning” the list at each level of the cascade before

invoking the decoding algorithm for the previous level, while only slightly increasing the

parity sampling requirements. The details are contained in Section 4.6.
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Working with Ta-Shma’s construction. Finally, to obtain near-optimal rates, we need to

work with with Ta-Shma’s construction, where the set of tuples W(t) ⊆ [n]t corresponds

to walks arising from an s-wide replacement product of G with another expanding graph

H. One issue that arises is that the collection of walks W(t) as defined in [TS17] does

not satisfy the important splittability condition required by our algorithms. However,

this turns out to be easily fixable by modifying each step in Ta-Shma’s construction to be

exactly according to the zig-zag product of Reingold, Vadhan and Wigderson [RVW00].

We present Ta-Shma’s construction and this modification in Section 4.4.

We also verify that the tuples given by Ta-Shma’s construction satisfy the conditions

for applying the list decoding framework, in Section 4.7. While the sketch above stated

this in terms of splittability, the results in [AJQ+20] are in terms of a more technical condi-

tion called tensoriality. We show in Section 4.7 that this is indeed implied by splittability,

and also prove splittability for (the modified version of) Ta-Shma’s construction.

4.4 Ta-Shma’s Construction: A Summary and Some Tweaks

In this section, we first discuss the s-wide replacement product that is central to Ta-Shma’s

construction of optimal ε-balanced codes, and then we describe the construction itself (we

refer the reader to [TS17] for formal details beyond those we actually need here).

As mentioned before, we will also need to modify Ta-Shma’s construction [TS17] a

little to get splittability which is a notion of expansion of a collection W(k) ⊆ [n]k (and

it is formally defined in Definition 4.7.9). The reason for this simple modification is that

this splittability property is required by the list decoding framework. Note that we are

not improving the Ta-Shma code parameters; in fact, we need to argue why with this

modification we can still achieve Ta-Shma’s parameters. Fortunately, this modification

is simple enough that we will be able to essentially reuse Ta-Shma’s original analysis.
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In Appendix D.1.3, we will also have the opportunity to discuss, at an informal level,

the intuition behind some parameter trade-offs in Ta-Shma codes which should provide

enough motivation when we instantiate these codes in Section 4.8.

4.4.1 The s-wide Replacement Product

Ta-Shma’s code construction is based on the so-called s-wide replacement product [TS17].

This is a derandomization of random walks on a graph G that will be defined via a prod-

uct operation of G with another graph H (see Definition D.1.3 for a formal definition). We

will refer to G as the outer graph and H as the inner graph in this construction.

Let G be a d1-regular graph on vertex set [n] and H be a d2-regular graph on vertex

set [d1]
s, where s is any positive integer. Suppose the neighbors of each vertex of G are

labeled 1, 2, . . . , d1. For v ∈ V(G), let vG[j] be the j-th neighbor of v. The s-wide replace-

ment product is defined by replacing each vertex of G with a copy of H, called a “cloud”.

While the edges within each cloud are determined by H, the edges between clouds are

based on the edges of G, which we will define via operators G0,G1, . . . ,Gs−1. The i-th op-

erator Gi specifies one inter-cloud edge for each vertex (v, (a0, . . . , as−1)) ∈ V(G)×V(H),

which goes to the cloud whose G component is vG[ai], the neighbor of v in G indexed by

the i-th coordinate of the H component. (We will resolve the question of what happens to

the H component after taking such a step momentarily.)

Walks on the s-wide replacement product consist of steps with two different parts: an

intra-cloud part followed by an inter-cloud part. All of the intra-cloud substeps simply

move to a random neighbor in the current cloud, which corresponds to applying the

operator I ⊗ AH, where AH is the normalized adjacency matrix of H. The inter-cloud

substeps are all deterministic, with the first moving according to G0, the second according

to G1, and so on, returning to G0 for step number s + 1. The operator for such a walk
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taking t− 1 steps on the s-wide replacement product is

t−2

∏
i=0

Gi mod s(I⊗ AH).

Observe that a walk on the s-wide replacement product yields a walk on the outer

graph G by recording the G component after each step of the walk. The number of (t− 1)-

step walks on the s-wide replacement product is

|V(G)| · |V(H)| · dt−1
2 = n · ds

1 · d
t−1
2 ,

since a walk is completely determined by its intra-cloud steps. If d2 is much smaller than

d1 and t is large compared to s, this is less than ndt−1
1 , the number of (t− 1)-step walks

on G itself. Thus the s-wide replacement product will be used to simulate random walks

on G while requiring a reduced amount of randomness (of course this simulation is only

possible under special conditions, namely, when we are uniformly distributed on each

cloud).

To formally define the s-wide replacement product, we must consider the labeling of

neighbors in G more carefully.

Definition 4.4.1 (Rotation Map). Suppose G is a d1-regular graph on [n]. For each v ∈ [n]

and j ∈ [d1], let vG[j] be the j-th neighbor of v in G. Based on the indexing of the neighbors

of each vertex, we define the rotation map 4 rotG : [n] × [d1] → [n] × [d1] such that for every

(v, j) ∈ [n]× [d1],

rotG((v, j)) = (v′, j′)⇔ vG[j] = v′ and v′G[j
′] = v.

4. This kind of map is denoted rotation map in the zig-zag terminology [RVW00].
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Furthermore, if there exists a bijection ϕ : [d1]→ [d1] such that for every (v, j) ∈ [n]× [d1],

rotG((v, j)) = (vG[j], ϕ(j)),

then we call rotG locally invertible.

If G has a locally invertible rotation map, the cloud label after applying the rotation

map only depends on the current cloud label, not the vertex of G. In the s-wide replace-

ment product, this corresponds to the H component of the rotation map only depending

on a vertex’s H component, not its G component. We define the s-wide replacement prod-

uct as described before, with the inter-cloud operator Gi using the i-th coordinate of the

H component, which is a value in [d1], to determine the inter-cloud step.

Definition 4.4.2 (s-wide replacement product). Suppose we are given the following:

- A d1-regular graph G = ([n], E) together with a locally invertible rotation map rotG : [n]×

[d1]→ [n]× [d1].

- A d2-regular graph H = ([d1]
s, E′).

And we define:

- For i ∈ {0, 1, . . . , s− 1}, we define Roti : [n]× [d1]
s → [n]× [d1]

s as, for every v ∈ [n]

and (a0, . . . , as−1) ∈ [d1]
s,

Roti((v, (a0, . . . , as−1))) := (v′, (a0, . . . , ai−1, a′i, ai+1, . . . , as−1)),

where (v′, a′i) = rotG(v, ai).

- Denote by Gi the operator realizing Roti and let AH be the normalized random walk operator

of H. Note that Gi is a permutation operator corresponding to a product of transpositions.
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Then t− 1 steps of the s-wide replacement product are given by the operator

t−2

∏
i=0

Gi mod s(I⊗ AH).

Ta-Shma instantiates the s-wide replacement product with an outer graph G that is a

Cayley graph, for which locally invertible rotation maps exist generically.

Remark 4.4.3. Let R be a group and A ⊆ R where the set A is closed under inversion. For every

Cayley graph Cay(R, A), the map ϕ : A → A defined as ϕ(g) = g−1 gives rise to the locally

invertible rotation map

rotCay(R,A)((r, a)) = (r · a, a−1),

for every r ∈ R, a ∈ A.

1 2

34

1

2
3

4

1

2

3

4 1

2

3

4

1

23

4

Figure 4.4: An example of the 1-wide replacement product with outer graph G = K5 and
inner graph H = C4. Vertices are labeled by their H components. Note that the rotation
map is locally invertible, with ϕ(1) = 2, ϕ(2) = 1, ϕ(3) = 4, and ϕ(4) = 3.
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4.4.2 The Construction

Ta-Shma’s code construction works by starting with a constant bias code C0 in Fn
2 and

boosting to arbitrarily small bias using direct sum liftings. Recall that the direct sum

lifting is based on a collection W(t) ⊆ [n]t, which Ta-Shma obtains using t − 1 steps

of random walk on the s-wide replacement product of two regular expander graphs G

and H. The graph G is on n vertices (same as blocklength of the base code) and other

parameters like degrees d1 and d2 of G and H respectively are chosen based on target

code parameters.

To elaborate, every t − 1 length walk on the replacement product gives a sequence

of t outer vertices or G-vertices, which can be seen as an element of [n]t. This gives the

collection W(t) with |W(t)| = n · ds
1 · d

t−1
2 which means the rate of lifted code is smaller

than the rate of C0 by a factor of ds
1dt−1

2 . However, the collection W(t) is a parity sam-

pler and this means that the bias decreases (or the distance increases). The relationship

between this decrease in bias and decrease in rate with some careful parameter choices

allows Ta-Shma to obtain nearly optimal ε-balanced codes.

4.4.3 Tweaking the Construction

Recall the first s steps in Ta-Shma’s construction are given by the operator

Gs−1(I⊗ AH)Gs−2 · · ·G1(I⊗ AH)G0(I⊗ AH).

Naively decomposing the above operator into the product of operators ∏s−1
i=0 Gi(I⊗AH) is

not good enough to obtain the splittability property which would hold provided σ2(Gi(I⊗

AH)) was small for every i in {0, . . . , s− 1}. However, each Gi(I⊗AH) has |V(G)| singular

values equal to 1 since Gi is an orthogonal operator and (I ⊗ AH) has |V(G)| singular
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values equal to 1. To avoid this issue we will tweak the construction to be the following

product
s−1

∏
i=0

(I⊗ AH)Gi(I⊗ AH).

The operator (I⊗ AH)Gi(I⊗ AH) is exactly the walk operator of the zig-zag product

G z H of G and H with a rotation map given by the (rotation map) operator Gi. This

tweaked construction is slightly simpler in the sense that G z H is an undirected graph.

We know by the zig-zag analysis that (I⊗ AH)Gi(I⊗ AH) is expanding as long G and H

are themselves expanders. More precisely, we have a bound that follows from [RVW00].

Fact 4.4.4. Let G be an outer graph and H be an inner graph used in the s-wide replacement

product. For any integer 0 ≤ i ≤ s− 1,

σ2((I⊗ AH)Gi(I⊗ AH)) ≤ σ2(G) + 2 · σ2(H) + σ2(H)2.

This bound will imply splittability as shown in Appendix D.1.4. We will need to argue

that this modification still preserves the correctness of the parity sampling and that it can

be achieved with similar parameter trade-offs.

The formal definition of a length-t walk on this slightly modified construction is given

below.

Definition 4.4.5. Let t ∈ N, G be a d1-regular graph and H be a d2-regular graph on ds
1 ver-

tices. Given a starting vertex (v, h) ∈ V(G)×V(H), a (t− 1)-step walk on the tweaked s-wide

replacement product of G and H is a tuple ((v0, h0), . . . , (vt−1, ht−1)) ∈ (V(G)×V(H))t such

that

- (v0, h0) = (v, h), and

- for every 0 ≤ i < t− 1, we have (vi, hi) adjacent to (vi+1, hi+1) in (I⊗ AH)Gi mod s(I⊗

AH).
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Note that each (I⊗ AH)Gi mod s(I⊗ AH) is a walk operator of a d2
2-regular graph. Therefore, the

starting vertex (v, h) together with a degree sequence (m1, . . . , mt) ∈ [d2
2]

t−1 uniquely defines a

(t− 1)-step walk.

Parity Sampling

We argue informally why parity sampling still holds with similar parameter trade-offs.

Later in Section 4.4.3, we formalize a key result underlying parity sampling and, in Sec-

tion 4.8, we compute the new trade-off between bias and rate in some regimes. In Ap-

pendix D.1.1, the definition of the original s-wide replacement product as a purely graph

theoretic operation was given. Now, we explain how Ta-Shma used this construction for

parity sampling obtaining codes near the GV bound.

For a word z ∈ F
V(G)
2 in the base code, let Pz be the diagonal matrix, whose rows

and columns are indexed by V(G)×V(H), with (Pz)(v,h),(v,h) = (−1)zv . Proving parity

sampling requires analyzing the operator norm of the following product

Pz
s−1

∏
i=0

(I⊗ AH)GiPz(I⊗ AH), (4.1)

when bias(z) ≤ ε0. Let 1 ∈ RV(G)×V(H) be the all-ones vector and W be the collection of

all (t− 1)-step walks on the tweaked s-wide replacement product. Ta-Shma showed (and

it is not difficult to verify) that

bias (dsumW(z)) =

∣∣∣∣∣
〈

1,Pz
t−2

∏
i=0

(I⊗ AH)Gi mod sPz(I⊗ AH)1

〉∣∣∣∣∣ .

From the previous equation, one readily deduces that

bias (dsumW(z)) ≤ σ1

(
Pz

s−1

∏
i=0

(I⊗ AH)GiPz(I⊗ AH)

)b(t−1)/sc
.
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Set B := Pz ∏s−1
i=0 (I⊗ AH)GiPz(I⊗ AH). To analyze the operator norm of B, we will first

need some notation. Note that B is an operator acting on the space V = RV(G) ⊗RV(H).

Two of its subspaces play an important role in the analysis, namely,

W‖ = span{a⊗ b ∈ RV(G) ⊗RV(H) | b = 1} andW⊥ = (W‖)⊥.

Note that the complement subspace is with respect to the standard inner product. Ob-

serve that V = W‖ ⊕W⊥. Given arbitrary unit vectors v, w ∈ V , Ta-Shma considers the

inner product 〈
v,

s−1

∏
i=0

(I⊗ AH)GiPz(I⊗ AH)w

〉
. (4.2)

Each time an operator (I⊗AH) appears in the above expression, the next step of the walk

can take one out of d2 possibilities and thus the rate suffers a multiplicative decrease of

1/d2. We think that we are “paying” d2 for this step of the walk. The whole problem lies

in the trade-off between rate and distance, so the crucial question now is how much the

norm decreases as we pay d2. For a moment, suppose that the norm always decreases by

a factor of λ2 := σ2(H) per occurrence of (I⊗ AH). If in this hypothetical case we could

further assume λ2 = 1/
√

d2, then if B was a product containing dlogλ2
(ε)e factors of (I⊗

AH), the final bias would be at most ε and the rate would have suffered a multiplicative

decrease of (essentially) ε2 and we would be done.

Of course, this was an oversimplification. The general strategy is roughly the above,

but a beautiful non-trivial step is needed. Going back to the bilinear form Eq. (4.2), if

w ∈ W⊥ (or v ∈ W⊥), we pay d2 and we do obtain a norm decrease of λ2. More generally,

note that can decompose w = w‖ + w⊥ with w‖ ∈ W‖ and w⊥ ∈ W⊥ (decompose

v = v‖ + v⊥ similarly) and we can carry this process iteratively collecting factors of λ2.
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However, we are stuck with several terms of the form for 0 ≤ k1 ≤ k2 < s,

〈
v‖k1

,
k2

∏
i=k1

(I⊗ AH)GiPz(I⊗ AH)w‖k2

〉
,

with v‖k1
, w‖k2

∈ W‖, and for which the preceding naive norm decrease argument fails.

This is the point in the analysis where the structure of the s-wide replacement product

is used. Since v‖k1
, w‖k2

∈ W‖, these vectors are uniform on each “cloud”, i.e., copy of H.

Recall that a vertex in H is an s-tuple (m1, . . . , ms) ∈ [d1]
s. Ta-Shma leverages the fact of

having a uniform such tuple to implement k2 − k1 + 1 (up to s) steps of random walk on

G. More precisely, Ta-Shma obtains the following beautiful result:

Theorem 4.4.6 (Adapted from Ta-Shma [TS17]). Let G be a locally invertible graph of degree

d1, H be a Cayley graph on F
s log d1
2 , and 0 ≤ k1 ≤ k2 < s be integers. If v‖ = v ⊗ 1 and

w‖ = w⊗ 1, then

〈
v‖,

k2

∏
i=k1

Gi(I⊗ AH)Pzw‖
〉

=
〈

v, (AGMz)
k2−k1+1 w

〉

where Mz ∈ RV(G)×V(G) is the diagonal matrix defined as (Mz)v,v := (−1)zv for v ∈ V(G).

Remark 4.4.7. Note that the walk operator in this theorem corresponds to the original construc-

tion. Theorem 4.4.6 was used by Ta-Shma to obtain Fact D.1.7 whose Corollary D.1.8 corresponds

to the modified construction.

Ta-Shma proved Theorem 4.4.6 under the more general condition that H is 0-pseudorandom.

Roughly speaking, this property means that if we start with a distribution that is uniform

over the clouds, and walk according to fixed H-steps j0, j1, · · · , js−1, then the distribution

of G-vertices obtained will be identical to the distribution obtained if we were doing the

usual random walk on G. We will always choose H to be a Cayley graph on F
s log d1
2 ,
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which will imply that H is also 0-pseudorandom. The proof of Theorem 4.4.6 crucially

uses the product structure of F
s log d1
2 : every vertex of H can be represented by s registers

of log d1 bits each, and both inter-cloud and intra-cloud steps can be seen as applying

register-wise bijections using some canonical mapping between [d1] and F
log d1
2 .

Ta-Shma’s original parity sampling proof required ε0 + 2θ + 2σ2(G) ≤ σ2(H)2, where

ε0 is the initial bias and θ is an error parameter arising from a number theoretic construc-

tion of Ramanujan graphs for the outer graph G. This is because ε0 + 2θ + 2σ2(G) is the

reduction of bias in every two steps while taking a walk on G (see Theorem 4.5.2). Hav-

ing ε0 + 2θ + 2σ2(G) ≤ σ2(H)2 ensured that after establishing Theorem 4.4.6, we were

collecting enough reduction for d2
2 price we paid for two steps. In the modified construc-

tion, we now have d2
2 possibilities for each step in (I⊗A2

H) (so d4
2 price for two steps), and

so if instead we have ε0 + 2θ + 2σ2(G) ≤ σ2(H)4 in the modified construction, we claim

that the correctness of the parity sampling analysis is preserved as well as (essentially)

the trade-off between walk length and norm decay. Fortunately, Ta-Shma’s parameters

decouple and we can choose parameters to satisfy the above requirement.

Remark 4.4.8. This modification on the s-replacement product of G and H essentially 5 amounts

to taking a different inner graph H which can be factored as H =
√

H
√

H (and is still 0-

pseudorandom).

Spectral Analysis of the Modified Construction

We formally show that we don’t loose much by going from Ta-Shma’s original s-wide

product construction to its tweaked version. The key technical result obtained by Ta-

Shma is the following, which is used to analyze the bias reduction as a function of the

total number walk steps t− 1.

5. Except at the first and last factors in the product of operators.
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Fact 4.4.9 (Theorem 24 abridged [TS17]). If H is a Cayley graph on F
s log d1
2 and ε0 + 2 · θ +

2 · σ2(G) ≤ σ2(H)2, then

∥∥∥∥∥s−1

∏
i=0

PzGi(I⊗ AH)

∥∥∥∥∥
op

≤ σ2(H)s + s · σ2(H)s−1 + s2 · σ2(H)s−3,

where Pz ∈ R(V(G)×V(H))×(V(G)×V(H)) is the sign operator of a ε0 biased word z ∈ F
V(G)
2

defined as a diagonal matrix with (Pz)(v,h),(v,h) = (−1)zv for every (v, h) ∈ V(G)×V(H).

We reduce the analysis of Ta-Shma’s tweaked construction to Fact D.1.7. In doing so,

we only lose one extra step as shown below.

Corollary 4.4.10. If H2 is a Cayley graph on F
s log d1
2 and ε0 + 2 · θ + 2 · σ2(G) ≤ σ2(H)4, then

∥∥∥∥∥s−1

∏
i=0

(I⊗ AH)PzGi(I⊗ AH)

∥∥∥∥∥
op

≤ σ2(H2)s−1 + (s− 1) · σ2(H2)s−2 + (s− 1)2 · σ2(H2)s−4,

where Pz is the sign operator of an ε0-biased word z ∈ F
V(G)
2 as in Fact D.1.7.

Proof. We have

∥∥∥∥∥s−1

∏
i=0

(I⊗ AH)PzGi(I⊗ AH)

∥∥∥∥∥
op

≤ ‖(I⊗ AH)‖op

∥∥∥∥∥s−1

∏
i=1

PzGi(I⊗ A2
H)

∥∥∥∥∥
op

‖PzG0(I⊗ AH)‖op

≤
∥∥∥∥∥s−1

∏
i=1

PzGi(I⊗ A2
H)

∥∥∥∥∥
op

≤ σ2(H2)s−1 + (s− 1) · σ2(H2)s−2 + (s− 1)2 · σ2(H2)s−4,

where the last inequality follows from Fact D.1.7.

Remark 4.4.11. We know that in the modified construction H2 is a Cayley graph since H is a

Cayley graph.
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From this point onward, we will be working exclusively with the modified construc-

tion instead of using it in its original form. Any references to Ta-Shma’s construction or

the s-wide replacement product will actually refer to the modified versions described in

this section.

4.5 Code Cascading

A code cascade is a sequence of codes generated by starting with a base code C0 and

recursively applying lifting operations.

Definition 4.5.1. We say that a sequence of codes C0, C1, . . . , C` is a code cascade provided

Ci = dsumWi(ti)
(Ci−1) for every i ∈ [`]. Each Wi(ti) is a subset of [ni−1]

ti , where ni−1 =

|Wi−1(ti−1)| is the block length of the code Ci−1.

Let us see how code cascades may be useful for decoding. Suppose we wish to lift the

code C0 to C`, and there is some W(t) ⊆ [n0]
t such that C` = dsumW(t)(C0). In our case of

bias boosting, this t will depend on the target bias ε. However, the expansion requirement

of the list-decoding framework of [AJQ+20] has a poor dependence on t. A way to work

around this issue is to go from C0 to C` via a code cascade as above such that each ti is a

constant independent of the final bias but
`

∏
i=1

ti = t (which means ` depends on ε). The

final code C` of the cascade is the same as the code obtained from length-(t− 1) walks.

While decoding will now become an `-level recursive procedure, the gain from replacing

t by ti will outweigh this loss, as we discuss below.

4.5.1 Warm-up: Code Cascading Expander Walks

We now describe the code cascading construction and unique decoding algorithm in more

detail. Let G = (V, E) be a d-regular graph with uniform distribution over the edges. Let
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m be a sufficiently large positive integer, which will be the number of vertices of the walks

used for the lifting between consecutive codes in the cascade. At first, it will be crucial

that we can take m = O(1) so that the triangle inequality arising from the analysis of the

lifting between two consecutive codes involves a constant number of terms. We construct

a recursive family of codes as follows.

- Start with a code C0 which is linear and has constant bias ε0.

- Define the code C1 = dsumW(m)(C0), which is the direct sum lifting over the collec-

tion W(m) of all length-(m− 1) walks on G using the code C0.

- Let Ĝi = (Vi, Ei) be the (directed) graph where Vi is the collection of all walks on

mi vertices on G with two walks (v1, . . . , vmi) and (u1, . . . , umi) connected iff vmi is

adjacent to u1 in G.

- Define Ci to be the direct sum lifting on the collection Wi(m) of all length-(m− 1)

walks on Gi−1 using the code Ci−1, i.e., Ci = dsumWi(m)(Ci−1).

- Repeat this process to yield a code cascade C0, . . . , C`.

Thanks to the definition of the graphs Ĝi and the recursive nature of the construction,

the final code C` is the same as the code obtained from C0 by taking the direct sum lifting

over all walks on t = m` vertices of G. We can use Ta-Shma’s analysis (building on the

ideas of Rozenman and Wigderson [Bog12]) for the simpler setting of walks over a single

expander graph to determine the amplification in bias that occurs in going from C0 all the

way to C`.

Theorem 4.5.2 (Adapted from Ta-Shma [TS17]). Let C be an ε0-balanced linear code, and let

C ′ = dsumW(t)(C) be the direct sum lifting of C over the collection of all length-(t− 1) walks

212



W(t) on a graph G. Then

bias(C ′) ≤ (ε0 + 2σ2(G))b(t−1)/2c.

If σ2(G) ≤ ε0/2 and ` =
⌈

logm(2 log2ε0
(ε) + 3)

⌉
, taking t = m` ≥ 2 log2ε0

(ε) + 3 in

the above theorem shows that the final code C` is ε-balanced. Observe that the required

expansion of the graph G only depends on the constant initial bias ε0, not on the desired

final bias ε. It will be important for being able to decode with better parameters that both

σ2(G) and m are constant with respect to ε; only ` depends on the final bias (with more

care we can make σ2(G) depend on ε, but we restrict this analysis to Ta-Shma’s refined

construction on the s-wide replacement product).

As mentioned before, to uniquely decode C` we will inductively employ the list de-

coding machinery for expander walks from [AJQ+20]. The list decoding algorithm can

decode a direct sum lifting C ′ = dsumW(m)(C) as long as the graph G is sufficiently

expanding, the walk length m − 1 is large enough, and the base code C has an efficient

unique decoding algorithm (see Theorem 4.6.1 for details).

The expansion requirement ultimately depends on the desired list decoding radius

of C ′, or more specifically, on how close the list decoding radius is to 1/2. If the dis-

tance of C ′ is at most 1/2, its unique decoding radius is at most 1/4, which means list

decoding at the unique decoding radius is at a constant difference from 1/2 and thus

places only a constant requirement on the expansion of G. In the case of the code cascade

Ci = dsumWi(m)(Ci−1), unique decoding of Ci−1 is guaranteed by the induction hypoth-

esis. It is not too difficult to see that each graph Ĝi will have the same second singular

value as G, so we can uniquely decode Ci if G meets the constant expansion requirement

and m is sufficiently large.
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4.5.2 Code Cascading Ta-Shma’s Construction

We will now describe how to set up a code cascade based on walks on an s-wide replace-

ment product. Consider the s-wide replacement product of the outer graph G with the

inner graph H. The first s walk steps are given by the walk operator

s−1

∏
i=0

(I⊗ AH)Gi(I⊗ AH).

Let As−1 := (I⊗ AH)Gs−2(I⊗ AH) · · · (I⊗ AH)G0(I⊗ AH). If the total walk length t− 1 is

a multiple of s, the walks are generated using the operator

((I⊗ AH)Gs−1(I⊗ AH)As−1)
(t−1)/s .

Here (I⊗AH)Gs−1(I⊗AH) is used as a “binding” operator to connect two walks contain-

ing s vertices at level C2, s2 vertices at level C3, and so on. More precisely, we form the

following code cascade.

- C0 is an ε0-balanced linear code efficiently uniquely decodable from a constant ra-

dius.

- C1 = dsumW1(s)(C0), where W1(s) is the set of length-(s-1) walks given by the oper-

ator

(I⊗ AH)Gs−2(I⊗ AH)︸ ︷︷ ︸
(s− 2)th step

· · · (I⊗ AH)G0(I⊗ AH)︸ ︷︷ ︸
0th step

.

- C2 = dsumW2(s)(C1), where W2(s) is the set of length-(s− 1) walks over the vertex

set W1(s) (with the latter being the set of length-(s− 1) walks on the replacement

product graph as mentioned above).
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- Ci+1 = dsumWi+1(s)(Ci), where Wi+1(s) is the set of length-(s− 1) walks 6 over the

vertex set Wi(s). Similarly to the cascade of expander walks above, the lift can be

thought of as being realized by taking walks using a suitable operator analogous

to Ĝi. Since its description is more technical we postpone its definition (see Defini-

tion 4.7.2) to Appendix D.1.4 where it is actually used.

- C` denotes the final code in the sequence, which will later be chosen so that its bias

is at most ε.

(I ⊗ H)Gs−1(I ⊗ H)(I ⊗ H)Gs−2(I ⊗ H) (I ⊗ H)G0(I ⊗ H)· · · (I ⊗ H)Gs−1(I ⊗ H) (I ⊗ H)Gs−2(I ⊗ H) (I ⊗ H)G0(I ⊗ H)· · ·

(s− 1) steps
(s− 1) steps

· · ·

(s− 1)-steps

Binding operator Binding operator

Figure 4.5: Two levels of code cascading for Ta-Shma’s construction involving codes C0,
C1 and C2 (to make the notation compact we used H to denote AH).

4.6 Unique Decoding of Ta-Shma Codes

We show how code cascading together with list decoding for each level of the cascade

allow us to obtain an efficient unique decoding algorithm for Ta-Shma’s construction. We

obtain a sequence of results of increasing strength culminating in Theorem 5.1.1 (which

we recall below for convenience). The approach is as follows: we use several different

instantiations of Ta-Shma’s construction, each yielding a value of s (for the s-wide re-

placement product) and expansion parameters for the family of outer and inner graphs,

6. For simplicity we chose the number of vertices in all walks of the cascade to be s, but it could naturally
be some si ∈N depending on i.
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and show how the list decoding framework can be invoked in the associated cascade for

each one.

Theorem 5.1.1 (Unique Decoding). For every ε > 0 sufficiently small, there are explicit binary

linear Ta-Shma codes CN,ε,β ⊆ FN
2 for infinitely many values N ∈N with

(i) distance at least 1/2− ε/2 (actually ε-balanced),

(ii) rate Ω(ε2+β) where β = O(1/(log2(1/ε))1/6), and

(iii) a unique decoding algorithm with running time NOε,β(1).

Furthermore, if instead we take β > 0 to be an arbitrary constant, the running time becomes

(log(1/ε))O(1) · NOβ(1) (fixed polynomial time).

In this section, we will fit these objects and tools together assuming the parameters

are chosen to achieve the required rates and the conditions for applying the list decoding

results are satisfied. The concrete instantiations of Ta-Shma codes are done in Section 4.8.

Establishing that the list decoding framework can be applied to this construction is done

in Section 4.7 after which the framework is finally instantiated in Section 4.9.

Ta-Shma uses the direct sum lifting on an s-wide replacement product graph to con-

struct a family of ε-balanced codes CN,ε,β with rate Ω(ε2+β) and finds parameters for

such codes to have the required bias and rate. We will discuss unique decoding results

for several versions of these codes. Throughout this section, we will use collections W(k)

which will always be either the set of walks with k = s vertices on an s-wide replacement

product graph (corresponding to the first level of the code cascade), which we denote

W[0, s − 1], or a set of walks where the vertices are walks on a lower level of the code

cascade.
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4.6.1 Unique Decoding via Code Cascading

To perform unique decoding we will use the machinery of list decoding from Theo-

rem 4.6.1 (proven later in Section 4.9), which relies on the list decoding framework of

[AJQ+20]. Proving that this framework can be applied to Ta-Shma’s construction is one

of our technical contributions.

Theorem 4.6.1 (List decoding direct sum lifting). Let η0 ∈ (0, 1/4) be a constant, η ∈

(0, η0), and

k ≥ k0(η) := Θ(log(1/η)).

Suppose C ⊆ Fn
2 is an η0-balanced linear code and C ′ = dsumW(k)(C) is the direct sum lifting

of C on a τ-splittable collection of walks W(k). There exists an absolute constant K > 0 such that

if

τ ≤ τ0(η, k) :=
η8

K · k · 24k ,

then the code C ′ is η-balanced and can be efficiently list decoded in the following sense:

If ỹ is (1/2−√η)-close to C ′, then we can compute the list

L(ỹ, C, C ′) :=
{
(z, dsumW(k)(z)) | z ∈ C, ∆

(
dsumW(k)(z), ỹ

)
≤ 1

2
−√η

}

in time

nO(1/τ0(η,k)4) · f (n),

where f (n) is the running time of a unique decoding algorithm for C. Otherwise, we return

L(ỹ, C, C ′) = ∅ with the same running time of the preceding case.

Note that the requirement on k in the above theorem is necessary for the lifted code

C ′ to be η-balanced. Splittability will imply that the walk collection W(k) is expanding,

which gives us parity sampling for large k. Specifically, k must be large enough for W(k)
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to be a (1/2 + η0/2, η)-parity sampler.

Applying the list decoding tool above, we can perform unique decoding in the regime

of η0, η, and k being constant. With these choices the expansion required for splittability

and the parity sampling strength are only required to be constants.

Lemma 4.6.2 (Decoding Step). Let η0 ∈ (0, 1/4) and η < min{η0, 1/16}. If W(k) is a walk

collection on vertex set [n] with k ≥ k0(η) and splittability τ ≤ τ0(η, k), where k0 and τ0 are as

in Theorem 4.6.1, we have the following unique decoding property:

If C ⊆ Fn
2 is an η0-balanced linear code that can be uniquely decoded in time f (n), then C ′ =

dsumW(k)(C) is an η-balanced code that can be uniquely decoded in time nO(1/τ0(η,k)4) · f (n).

Proof. Using Theorem 4.6.1, we can list decode C ′ up to a radius of 1/2−√η for any η if

we have the appropriate parameters k and τ. Let ỹ ∈ F
W(k)
2 be a received word within

the unique decoding radius of C ′. To perform unique decoding, we simply run the list

decoding algorithm on ỹ and return the codeword on the resulting list which is closest

to ỹ; this will yield the correct result as long as the list decoding radius is larger than

the unique decoding radius. It suffices to have 1/2−√η > 1/4 ≥ ∆(C ′)/2. We choose

parameters as follows:

1. Take η < 1/16 to ensure 1/2−√η > 1/4.

2. Let k0 = Θ(log(1/η)) be the smallest integer satisfying the assumption in Theo-

rem 4.6.1 with the chosen η. Take k ≥ k0.

3. Take τ ≤ τ0(η, k) = η8/(K · k · 24k).

Note that k and τ satisfy the conditions of Theorem 4.6.1, so we can use this theorem

to list decode a received word ỹ in time nO(1/τ0(η,k)4) · f (n). To unique decode, we return

the closest y on the list to ỹ (or failure if the list is empty).
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Iteratively using the decoding step given by Lemma 4.6.2 above, we obtain unique

decodability of all codes in a cascade (under suitable assumptions).

Lemma 4.6.3 (Code Cascade Decoding). Let η0 ∈ (0, 1/4) and η < min{η0, 1/16}. Suppose

C0 ⊆ F
n0
2 , C1 ⊆ F

n1
2 , . . . , C` ⊆ F

n`
2 is a code cascade where C0 is an η0-balanced linear code that

can be uniquely decoded in time g(n0).

If for every i ∈ [`] we have that Ci is obtained from Ci−1 by a τi-splittable walk collection

Wi(ki) on vertex set [ni−1] with ki ≥ k0(η) and τi ≤ τ0(η, ki), where k0 and τ0 are as in Theo-

rem 4.6.1, then C` is uniquely decodable in time

g(n0) ·
`

∏
i=1

nO(1/τ0(η,ki)
4)

i−1 .

Proof. Induct on i ∈ [`] applying Lemma 4.6.2 as the induction step. The code Ci produced

during each step will have bias at most η < η0, so the hypothesis of Lemma 4.6.2 will be

met at each level of the cascade.

We are almost ready to prove our first main theorem establishing decodability close to

the Gilbert–Varshamov bound. We will need parameters for an instantiation of Ta-Shma’s

code that achieves the desired distance and rate (which will be developed in Section 4.8.1)

and a lemma relating splittability to the spectral properties of the graphs used in the

construction (to be proven in Appendix D.1.4).

Lemma 4.6.4 (Ta-Shma Codes I). For any β > 0, there are infinitely many values of ε ∈

(0, 1/2) (with 0 as an accumulation point) such that for infinitely many values of N ∈ N, there

are explicit binary Ta-Shma codes CN,ε,β ⊆ FN
2 with

(i) distance at least 1/2− ε/2 (actually ε-balanced), and

(ii) rate Ω(ε2+β).
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Furthermore, CN,ε,β is the direct sum lifting of a base code C0 ⊆ F
n0
2 using the collection of

walks W[0, t− 1] on the s-wide replacement product of two graphs G and H, with the following

parameters:

- s ≥ s0 := max{128, 26/β}.

- The inner graph H is a regular graph with σ2(H) ≤ λ2, where λ2 = (16s3 log s)/s2s2
.

- The outer graph G is a regular graph with σ2(G) ≤ λ1, where λ1 = λ4
2/6.

- The base code C0 is unique decodable in time nO(1)
0 and has bias ε0 ≤ λ4

2/3.

- The number of vertices t in the walks satisfies λ
2(1−5/s)(1−1/s)(t−1)
2 ≤ ε.

Lemma 4.6.5. Let W(k) be either the collection W[0, s − 1] of walks of length s on the s-wide

replacement product with outer graph G and inner graph H or the collection of walks over the

vertex set W[0, r], where r ≡ −1 (mod s). Then W(k) is τ-splittable with τ = σ2(G) +

2σ2(H) + σ2(H)2.

The statement of this first decoding theorem is more technical than Theorem 5.1.1, but

it will be easier to prove while the latter will build on this theorem with a more careful

tuning of parameters.

Theorem 4.6.6 (Main I). For every β > 0, there are infinitely many values ε ∈ (0, 1/2) (with

0 an accumulation point) such that for infinitely many values of N ∈ N there are explicit binary

linear Ta-Shma codes CN,ε,β ⊆ FN
2 with

(i) distance at least 1/2− ε/2 (actually ε-balanced),

(ii) rate Ω(ε2+β), and

(iii) a unique decoding algorithm with running time NOβ(log(log(1/ε))).
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Proof. We proceed as follows:

1. Let η0 = 1/10 and η = 1/100 (these choices are arbitrary; we only need η0 < 1/4,

η < 1/16, and η < η0). Let k0 = k0(η) be the constant from Theorem 4.6.1 with this

value of η.

2. Given β > 0, Lemma 4.6.4 provides a value s0 such that the direct sum lifting on the

s-wide replacement product with s ≥ s0 can achieve a rate of Ω(ε2+β) for infinitely

many ε ∈ (0, 1/2). Choose s to be an integer larger than both k0 and s0 that also

satisfies

s2 ·
( s

16

)−s2

≤ η8

4K
, (4.3)

where K is the constant from Theorem 4.6.1.

3. Use Lemma 4.6.4 with this value of s to obtain graphs G and H and a base code C0

having the specified parameters λ1, λ2, ε0, and t, with the additional requirement

that t = s` for some integer `. These parameter choices ensure that the result-

ing code CN,ε,β has the desired distance and rate. Since s ≥ 128, we have λ2 =

(16s3 log s)/s2s2 ≤ s−s2
. From the choice of t satisfying λ

2(1−5/s)(1−1/s)(t−1)
2 ≤ ε,

we deduce that ` = O(log(log(1/ε))). Note also that the bias ε0 of the code C0 is

smaller than η0.

4. Create a code cascade with ` levels using the s-wide replacement product of the

graphs G and H as in Section 4.5.2, starting with C0 and ending with the final code

C` = CN,ε,β. As the total number of vertices in a walk is t = s`, each level of the code

cascade will use walks with s vertices. Let C0, C1, . . . , C` be the sequence of codes in

this cascade.

5. In order to satisfy the splittability requirement of Lemma 4.6.3, the walk collection

Wi(s) at each level of the code cascade must be τ-splittable, where τ ≤ τ0(η, s2). (We
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use k = s2 instead of k = s in the requirement for a technical reason that will be clear

in Section 4.8.2.) The bounds on the singular values of G and H and Lemma 4.6.5

ensure that

τ = σ2(G) + 2σ2(H) + σ2(H)2 ≤ 4λ2 ≤ 4s−s2
,

which is smaller than τ0(η, s2) = η8/(K · s2 · 24s2
) by Eq. (4.3)

6. As all hypotheses of Lemma 4.6.3 are satisfied by the code cascade, we apply it to

conclude that CN,ε,β is uniquely decodable in time

g(n0) ·
`

∏
i=1

nO(1/τ0(η,s)4)
i−1 ≤ NO(1) ·

`

∏
i=1

NOβ(1) = NOβ(log(log(1/ε))),

where we use that C0 is uniquely decodable in time nO(1)
0 , 1/τ0(η, s) = 2O(1/β),

ni−1 < n` = N for every i ∈ [`], and ` = O(log(log(1/ε))).

In the code cascade constructed in Theorem 4.6.6, the final number of vertices in a

walk is t = s`, where s is a sufficiently large constant that does not depend on ε. The

limited choices for t place some restrictions on the values of the final bias ε that can be

achieved. To achieve any bias ε for C` we need to choose the parameters more carefully,

which will be done in Section 4.8.2 to yield our next main result.

Theorem 4.6.7 (Main II). For every β > 0 and every ε > 0 with β and ε sufficiently small, there

are explicit binary linear Ta-Shma codes CN,ε,β ⊆ FN
2 for infinitely many values N ∈N with

(i) distance at least 1/2− ε/2 (actually ε-balanced),

(ii) rate Ω(ε2+β), and

(iii) a unique decoding algorithm with running time NOβ(log(log(1/ε))).
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Ta-Shma obtained codes of rate Ω(ε2+β) with vanishing β as ε goes to zero. We obtain

a unique decoding algorithm for this regime (with slightly slower decreasing β as ε van-

ishes). More precisely, using the parameters described in Section 4.8.3 and the running

time analysis in Section 4.6.2, we obtain the following theorem which is our main result

for unique decoding.

Theorem 4.6.8 (Main Unique Decoding (restatement of Theorem 5.1.1)). For every ε > 0

sufficiently small, there are explicit binary linear Ta-Shma codes CN,ε,β ⊆ FN
2 for infinitely many

values N ∈N with

(i) distance at least 1/2− ε/2 (actually ε-balanced),

(ii) rate Ω(ε2+β) where β = O(1/(log2(1/ε))1/6), and

(iii) a unique decoding algorithm with running time NOε,β(1).

Furthermore, if instead we take β > 0 to be an arbitrary constant, the running time becomes

(log(1/ε))O(1) · NOβ(1) (fixed polynomial time).

Theorem 5.1.2 about gentle list decoding is proved in Section 4.8.4 after instantiating

Ta-Shma codes in some parameter regimes in the preceding parts of Section 4.8.

4.6.2 Fixed Polynomial Time

In Theorem 4.6.7, a running time of NOβ(log(log(1/ε))) was obtained to decode Ta-Shma

codes CN,ε,β of distance 1/2− ε/2 and rate Ω(ε2+β) for constant β > 0 and block length

N. The running time contains an exponent which depends on the bias ε and is therefore

not fixed polynomial time. We show how to remove this dependence in this regime of

β > 0 being an arbitrary constant. More precisely, we show the following.
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Theorem 4.6.9 (Fixed PolyTime Unique Decoding). Let β > 0 be an arbitrary constant. For

every ε > 0 sufficiently small, there are explicit binary linear Ta-Shma codes CN,ε,β ⊆ FN
2 for

infinitely many values N ∈N with

(i) distance at least 1/2− ε/2 (actually ε-balanced),

(ii) rate Ω(ε2+β), and

(iii) a unique decoding algorithm with fixed polynomial running time (log(1/ε))O(1) · NOβ(1).

The list decoding framework finds a list of pairs (z, y = dsum(z)) of size at most

N(1/τ0(η,k))O(1)
at each level of the code cascade and recursively issues decoding calls to

all z in this list. Since the number of lifts in the cascade is Ω(log(log(1/ε))), we end up

with an overall running time of NOβ(log(log(1/ε))).

We will describe a method of pruning these lists which will lead to fixed polynomial

running time. Let 1/2 − √η, where η > 0 is a constant, be the list decoding radius

used for a unique decoding step in the cascade. To achieve fixed polynomial time we

will prune this polynomially large list of words to a constant size at each inductive step

in Lemma 4.6.3. As we are working with parameters within the Johnson bound, the actual

list of codewords has constant size (1/η)O(1). At every step, we will be able to find a small

sublist whose size only depends on η that has a certain covering property, and then issue

decoding calls to this much smaller list.

Definition 4.6.10 (ζ-cover). Let W(k) ⊆ [n]k, C ⊆ Fn
2 , A ⊆ C, and L = {(z, dsumW(k)(z)) |

z ∈ A}. We say that L′ = {(z(1), dsumW(k)(z
(1))), . . . , (z(m), dsumW(k)(z

(m)))} is a ζ-

cover of L if for every (z, y) ∈ L, there exists some (z′, y′) ∈ L′ with bias(z− z′) > 1− 2ζ

(that is, either ∆(z, z′) < ζ or ∆(z, z′) > 1− ζ).

Lemma 4.6.11 (Cover Compactness). Let W(k) ⊆ [n]k, C ⊆ Fn
2 be a linear η0-balanced code,
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C ′ = dsumW(k)(C) be an η-balanced code, and ỹ ∈ F
W(k)
2 . Define

L(ỹ, C, C ′) :=
{
(z, dsumW(k)(z)) | z ∈ C, ∆

(
dsumW(k)(z), ỹ

)
≤ 1

2
−√η

}
.

Suppose L′ is a ζ-cover of L(ỹ, C, C ′) for some ζ < 1/2. Further, suppose that for every (z′, y′) ∈

L′, we have ∆
(
y′, ỹ

)
≤ 1/2−√η. If W(k) is a (1− 2ζ, η)-parity sampler, then there exists

L′′ ⊆ L′ with
∣∣L′′∣∣ ≤ 1/η which is a (2ζ)-cover of L.

Proof. Build a graph where the vertices are pairs (z′, y′) ∈ L′ and two vertices (z(i), y(i)),

(z(j), y(j)) are connected iff bias(z(i)− z(j)) > 1− 2ζ. LetL′′ be any maximal independent

set of this graph. Any two vertices (z(i), y(i)), (z(j), y(j)) ∈ L′′ have bias(z(i) − z(j)) ≤

1− 2ζ and thus bias(y(i)− y(j)) ≤ η since W(k) is a (1− 2ζ, η)-parity sampler. This means

that {y′′ | (z′′, y′′) ∈ L′′} is a code of distance at least 1/2− η/2. By the condition that

∆(y′′, ỹ) ≤ 1/2−√η for all (z′′, y′′) ∈ L′′ and the Johnson bound, we have
∣∣L′′∣∣ ≤ 1/η.

Finally, we will show that L′′ is a (2ζ)-cover of L. Let (z, y) ∈ L. As L′ is a ζ-cover

of L, there exists a pair (z′, y′) ∈ L with bias(z− z′) > 1− 2ζ, so z is within distance ζ

of either z′ or its complement z′. The construction of L′′ as a maximal independent set

ensures that there is some (z′′, y′′) ∈ L′′ with bias(z′ − z′′) > 1− 2ζ, so z′′ is also within

distance ζ of either z′ or its complement z′. Applying the triangle inequality in all of the

possible cases, we see that either ∆(z, z′′) < 2ζ or ∆(z, z′′) > 1− 2ζ, which implies L′′ is

a (2ζ)-cover of L.

To decode in fixed polynomial time, we use a modification of the list decoding re-

sult Theorem 4.6.1 that outputs a ζ-cover L′ of the list of codewords L instead of the list

itself. Theorem 4.6.1 recovers the list L by finding L′ and unique decoding every element

of it. To get L′, we use the same algorithm, but stop before the final decoding step. This

removes the unique decoding time f (n) of the base code from the running time of the

list decoding algorithm. We will apply Lemma 4.6.11 after each time we call this ζ-cover
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algorithm to pare the list down to a constant size before unique decoding; note that this

loses a factor of 2 in the strength of the cover. To compensate for this, we will use a collec-

tion W(k) with stronger parity sampling than required for Theorem 4.6.1. In that theorem,

W(k) was a (1/2 + η0/2, η)-parity sampler to ensure that we obtained words within the

list decoding radius (1/4− η0/4) of the base code. By using a stronger parity sampler,

the words in the pruned list L′′ will still be within the unique decoding radius even after

accounting for the loss in the bias from cover compactness, which means decoding will

still be possible at every level of the cascade. Fortunately, improving the parity sampling

only requires increasing the walk length k by a constant multiplicative factor. The cover

retrieval algorithm below will be proven in Section 4.9.

Theorem 4.6.12 (Cover retrieval for direct sum lifting). Let η0 ∈ (0, 1/4) be a constant,

η ∈ (0, η0), ζ = 1/8− η0/8, and

k ≥ k′0(η) := Θ(log(1/η)).

Suppose C ⊆ Fn
2 is an η0-balanced linear code and C ′ = dsumW(k)(C) is the direct sum lifting

of C on a τ-splittable collection of walks W(k). There exists an absolute constant K > 0 such that

if

τ ≤ τ0(η, k) :=
η8

K · k · 24k ,

then the code C ′ is η-balanced, W(k) is a (1− 2ζ, η)-parity sampler, and we have the following:

If ỹ is (1/2−√η)-close to C ′, then we can compute a ζ-cover L′ of the list

L(ỹ, C, C ′) :=
{
(z, dsumW(k)(z)) | z ∈ C, ∆

(
dsumW(k)(z), ỹ

)
≤ 1

2
−√η

}
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in which ∆(y′, ỹ) ≤ 1/2−√η for every (z′, y′) ∈ L′, in time

nO(1/τ0(η,k)4).

Otherwise, we return L′ = ∅ with the same running time of the preceding case.

We now have all of the pieces necessary to prove Theorem 4.6.9. The process is essen-

tially the same as our earlier unique decoding algorithm, except we use the cover retrieval

algorithm from Theorem 4.6.12 instead of the full list decoding from Theorem 4.6.1. This

allows us to insert a list pruning step in between obtaining the ζ-cover and calling the

unique decoding algorithm for the previous level of the cascade.

Proof of Theorem 4.6.9. We use the code CN,ε,β from Theorem 4.6.7 to get the desired dis-

tance and rate, with the slight modification of ensuring s is larger than k′0 from Theo-

rem 4.6.12 rather than k0 from Theorem 4.6.1.

Each level of the code cascade between Ci−1 and Ci uses constant η0 < 1/4 and

η < min{η0, 1/16}, which allows for decoding in a similar fashion to Lemma 4.6.2 and

Lemma 4.6.3. The difference is that we use Theorem 4.6.12 as the decoding step to obtain

a ζ-cover L′ of the list L(ỹ, Ci−1, Ci) for ỹ ∈ F
ni
2 , where ζ = 1/8− η0/8. By Lemma 4.6.11

and the fact that the walk collection is a (1 − 2ζ, η)-parity sampler, L has a (2ζ)-cover

L′′ ⊆ L′ of size at most 1/η. The covering property says that for every (z, y) ∈ L, there

exists some (z′′, y′′) ∈ L′′ such that z is within distance 2ζ = 1/4− η0/4 of either z′′ or

its complement z′′. This is the unique decoding radius of the η0-balanced code Ci−1, so

we can recursively decode the list

L′′ ∪ {(z′′, dsum(z′′)) | (z′′, dsum(z′′)) ∈ L′′}

to obtain the complete list of codewords in Ci−1.
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Now we analyze the running time. On each level of the code cascade, we run the

cover retrieval algorithm once to get L′, prune the cover to get L′′, and then feed the

union of L′′ and its complement (which has size at most 2/η) into the unique decoding

algorithm for the next level of the cascade. Letting Ti(ni) be the running time of unique

decoding a single word in the code Ci ⊆ F
ni
2 , we have the following recurrence:

Ti(ni) ≤ nO(1/τ0(η,k)4)
i +

2
η
· Ti−1(ni−1) and T0(n0) = nO(1)

0 .

Note that the base code C0 has constant bias ε0 and thus it has a fixed polynomial time de-

coding algorithm (e.g. Theorem 4.6.7). The height of the recursive call tree is the number

of levels in the code cascade, which is ` = O(log(log(1/ε))), as in the proof of Theo-

rem 4.6.6. Each node of this tree has a constant branching factor of 2/η. Thus, the tree has

(log(1/ε))O(1) nodes, each of which costs at most nO(1/τ0(η,k)4)
i ≤ NO(1/τ0(η,k)4) time.

Furthermore, in this regime of β > 0 being a constant, k is constant as well as η, so we

have NO(1/τ0(η,k)4) = NOβ(1) and the total running time is (log(1/ε))O(1) · NOβ(1).

4.7 Satisfying the List Decoding Framework Requirements

The list decoding framework of [AJQ+20] is capable of decoding codes obtained from

direct sum liftings, provided they satisfy a few requisite properties. The framework was

originally shown to work for expander walks; we need to adapt it to our case of a code

cascade based on walks on the s-wide replacement product. We will start with a broad

overview of the list decoding algorithm and point out where various requirements arise.

The problem of finding a list of codewords in a direct sum lifting close to a received

word can be viewed as finding approximate solutions to a k-XOR instance. This is done

by solving a particular SOS program and rounding the resulting solution. The algorithm

is unable to perform rounding if the k-XOR instance is based on an arbitrary collection
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of walks W(k); it can only handle liftings in which W(k) satisfies a property called tenso-

riality. If W(k) is tensorial, the SOS local variables in the solution can be approximated

by product distributions, which will allow us to obtain a list of solutions by independent

rounding. Tensoriality for expander walks is a consequence of a simpler property known

as splittability, which is a certain measure of the expansion of a walk collection.

Unfortunately, the list returned by the rounding process will not contain codewords

directly—instead, we only get a guarantee that all of the codewords we are looking for

have a weak agreement (just over 1/2) with something on this list. We will find the

desired codewords by relying on the parity sampling of W(k). If W(k) is a sufficiently

strong parity sampler, weak agreement in the lifted space corresponds to a much stronger

agreement in the ground space. This will allow us to recover the codewords using the

unique decoding algorithm of the base code.

To recap, applying the list decoding framework in our setting requires doing the fol-

lowing:

1. Proving parity sampling for the walks used in the code cascade (Section 4.7.1).

2. Showing that the walk collection of the s-wide replacement product is splittable

(Appendix D.1.4).

3. Making Ta-Shma’s construction compatible with the Sum-of-Squares machinery (Sec-

tion 4.7.3) and then obtaining tensoriality from splittability (Section 4.7.4).

An additional complication is introduced by using a code cascade instead of a single

decoding step: the above requirements need to be satisfied at every level of the cascade.

The details of the proofs will often differ between the first level of the cascade, which

is constructed using walks on the s-wide replacement product, and higher levels, which

are walks on a directed graph whose vertices are walks themselves. Once we have es-
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tablished all of the necessary properties, we will instantiate the list decoding framework

in Section 4.9.

We will first define some convenient notation which will be used throughout this

section.

Notation 4.7.1. Let G be a d1-regular outer graph and H be a d2-regular inner graph used in

Ta-Shma’s s-wide replacement product.

Let 0 ≤ k1 ≤ k2 be integers. We define W[k1, k2] to be the set of all walks starting at

time k1 and ending at time k2 in Ta-Shma’s construction. More precisely, since G and H are

regular graphs, the collection W[k1, k2] contains all walks obtained by sampling a uniform vertex

(v, h) ∈ V(G)×V(H) and applying the operator

(I⊗ AH)Gk2−1(I⊗ AH) · · · (I⊗ AH)Gk1
(I⊗ AH),

where the index i of each Gi is taken modulo s. Observe that when k1 = k2, we have W[k1, k2] =

V(G)×V(H).

We define a family of Markov operators which will play a similar role to the graphs

Ĝi from the cascade described in Section 4.5.1, but for Ta-Shma’s construction rather than

expander walks.

Definition 4.7.2 (Split Operator). Let 0 ≤ k1 ≤ k2 < k3. We define the graph walk split

operator

Sk1,k2,k3
: RW[k2+1,k3] → RW[k1,k2]

such that for every f ∈ RW[k2+1,k3],

(
Sk1,k2,k3

( f )
)
(w) := Ew′:ww′∈W[k1,k3]

[ f (w′)],

where ww′ denotes the concatenation of the walks w and w′. The operator Sk1,k2,k3
can be defined
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more concretely in matrix form such that for every w ∈W[k1, k2] and w′ ∈W[k2 + 1, k3],

(
Sk1,k2,k3

)
w,w′

=
1ww′∈W[k1,k3]

|{w̃ : ww̃ ∈W[k1, k3]}|
=

1ww′∈W[k1,k3]

d2(k3−k2)
2

.

4.7.1 Parity Sampling for the Code Cascade

To be able to apply the list decoding machinery to the code cascade C0 ⊆ F
n0
2 , C1 ⊆

F
n1
2 , . . . , C` ⊆ F

n`
2 , we need the direct sum lifting at every level to be a parity sampler. The

first level in the cascade uses walks directly on the s-wide replacement product, which we

can show is a good parity sampler using the spectral properties proven in Appendix D.1.3.

However, it will be more convenient for calculating parameters later on to prove a weaker

result, which will suffice for our purposes since we only need to obtain constant bias

for every level of the cascade. We analyze the parity sampling of these walks with the

same strategy Ta-Shma employed to show parity sampling for walks on expander graphs

(which resulted in Theorem 4.5.2).

Claim 4.7.3. Let W[0, s− 1] be the collection of walks on the s-wide replacement product of the

graphs G and H and z ∈ F
V(G)
2 be a word with bias(z) ≤ η0. Let Pz be the diagonal matrix with

entries (Pz)(v,h),(v,h) = (−1)zv for (v, h) ∈ V(G)× V(H). If σ2((I⊗ AH)Gi(I⊗ AH)) ≤ γ

for all 0 ≤ i ≤ s− 2, then

∥∥∥∥∥s−2

∏
i=0

(I⊗ AH)Gi(I⊗ AH)Pz

∥∥∥∥∥
2

≤ (η0 + 2γ)b(s−1)/2c.

Proof. Let 0 ≤ j < s− 2 be even. Take a vector v ∈ RV(G)×V(H) with ‖v‖2 = 1 and let v‖

and v⊥ be its parallel and orthogonal components to the all ones vector. For 0 ≤ i ≤ s− 2,

let Ai = (I⊗ AH)Gi(I⊗ AH). Consider two terms Aj+1PzAjPz of the product appearing in

231



the claim. Since Pz is unitary,
∥∥∥Aj+1PzAjPz

∥∥∥
2
=
∥∥∥Aj+1PzAj

∥∥∥
2
. We have

∥∥∥Aj+1PzAjv
∥∥∥

2
≤
∥∥∥Aj+1PzAjv

‖
∥∥∥

2
+
∥∥∥Aj+1PzAjv

⊥
∥∥∥

2

≤
∥∥∥Aj+1PzAjv

‖
∥∥∥

2
+
∥∥∥Ajv

⊥
∥∥∥

2

≤
∥∥∥Aj+1Pzv‖

∥∥∥
2
+ σ2(Aj)

≤
∥∥∥Aj+1(Pzv‖)‖

∥∥∥
2
+
∥∥∥Aj+1(Pzv‖)⊥

∥∥∥
2
+ σ2(Aj)

≤
∥∥∥(Pzv‖)‖

∥∥∥
2
+ σ2(Aj+1) + σ2(Aj)

≤ η0 + 2γ.

Applying this inequality to every two terms of the product, the result follows.

Corollary 4.7.4. Let W[0, s− 1] be the collection of walks on the s-wide replacement product of

the graphs G and H and η0 > 0. If σ2((I⊗ AH)Gi(I⊗ AH)) ≤ γ for all 0 ≤ i ≤ s− 2, then

W[0, s− 1] is an (η0, η)-parity sampler, where η = (η0 + 2γ)b(s−1)/2c.

Proof. Let z ∈ Fn
2 have bias at most η0. The bias of dsumW[0,s−1](z) is given by 7

bias(dsumW[0,s−1](z)) =

∣∣∣∣∣
〈

1,Pz

(
s−2

∏
i=0

(I⊗ AH)Gi(I⊗ AH)Pz

)
1

〉∣∣∣∣∣ ,

where Pz is the diagonal matrix with entries (Pz)(v,h),(v,h) = (−1)zv for (v, h) ∈ V(G)×

V(H) and 1 is the all-ones vector. Since Pz is unitary, we have

bias(dsumW[0,s−1](z)) ≤
∥∥∥∥∥s−2

∏
i=0

(I⊗ AH)Gi(I⊗ AH)Pz

∥∥∥∥∥
2

≤ (η0 + 2γ)b(s−1)/2c = η

by Claim 4.7.3. Hence W[0, s− 1] is an (η0, η)-parity sampler.

7. This is slightly different from the expression for the bias given in Appendix D.1.3, but both are equal
since moving on the H component of the graph doesn’t affect the bit assigned to a vertex.
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For higher levels of the cascade, we need to prove parity sampling for collections

of walks over walks. Since the walks on the first level contain s vertices, when we take

walks on higher levels, the operator linking different walks together will always use Gs−1

as the walk operator for the G step. Thus we can consider a more specific form of the split

operator where we split at a time parameter that is one less than a multiple of s.

Definition 4.7.5. Let r ≡ −1 (mod s) be a positive integer. We define the operator S4r,r as

S
4
r,r = Sk1,k2,k3

,

where k1 = 0, k2 = r, and k3 = 2r + 1. In this case, W[k1, k2] = W[k2 + 1, k3].

All levels of the code cascade beyond the first use walks generated by the directed

operator S4r,r. Proving parity sampling for these walks is analogous to the proof of Corol-

lary 4.7.4, but slightly simpler since the walk operator doesn’t change with each step.

Claim 4.7.6. Let r ≡ −1 (mod s) be a positive integer and z ∈ F
W[0,r]
2 be a word with

bias(z) ≤ η0. Let P̃z be the diagonal matrix with entries (P̃z)w,w = (−1)zw for w ∈ W[0, r].

For every integer k ≥ 1, we have

∥∥∥∥(S4r,rP̃z
)k−1

∥∥∥∥
2
≤
(

η0 + 2 · σ2

(
S
4
r,r

))b(k−1)/2c
.

Proof. Take a vector v ∈ RW[0,r] with ‖v‖2 = 1 and let v‖ and v⊥ be its parallel and

orthogonal components to the all ones vector. Since P̃z is unitary,
∥∥∥S4r,rP̃zS

4
r,rP̃z

∥∥∥
2

=
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∥∥∥S4r,rP̃zS
4
r,r

∥∥∥
2
. We have

∥∥∥S4r,rP̃zS
4
r,rv
∥∥∥

2
≤
∥∥∥S4r,rP̃zS

4
r,rv‖

∥∥∥
2
+
∥∥∥S4r,rP̃zS

4
r,rv⊥

∥∥∥
2

≤
∥∥∥S4r,rP̃zS

4
r,rv‖

∥∥∥
2
+
∥∥∥S4r,rv⊥

∥∥∥
2

≤
∥∥∥S4r,rP̃zv‖

∥∥∥
2
+ σ2(S

4
r,r)

≤
∥∥∥S4r,r(P̃zv‖)‖

∥∥∥
2
+
∥∥∥S4r,r(P̃zv‖)⊥

∥∥∥
2
+ σ2(S

4
r,r)

≤
∥∥∥(P̃zv‖)‖

∥∥∥
2
+ σ2(S

4
r,r) + σ2(S

4
r,r)

≤ η0 + 2 · σ2(S
4
r,r).

As
∥∥∥(S4r,rP̃z)k−1

∥∥∥
2
≤
∥∥∥(S4r,rP̃z)2

∥∥∥b(k−1)/2c
, the result follows.

Corollary 4.7.7. Let r ≡ −1 (mod s) be a positive integer and η0 > 0. The collection of walks

W(k) with k vertices over the vertex set W[0, r] using random walk operator S
4
r,r is an (η0, η)-

parity sampler, where η = (η0 + 2 · σ2(S
4
r,r))

b(k−1)/2c.

Proof. Let z ∈ F
W[0,r]
2 have bias at most η0. The bias of the direct sum lifting of z is given

by

bias(dsumW(k)(z)) =
∣∣∣〈1, P̃z(S

4
r,rP̃z)

k−11
〉∣∣∣ ,

where P̃z is the diagonal matrix with entries (P̃z)w,w = (−1)zw for w ∈ W[0, r] and 1 is

the all-ones vector. Since P̃z is unitary, we have

∣∣∣〈1, P̃z(S
4
r,rP̃z)

k−11
〉∣∣∣ ≤ ∥∥∥∥(S4r,rP̃z

)k−1
∥∥∥∥

2
≤
(

η0 + 2 · σ2

(
S
4
r,r

))b(k−1)/2c
= η

by Claim 4.7.6. Hence W(k) is an (η0, η)-parity sampler.
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4.7.2 Splittability of Ta-Shma’s Construction

We investigate the splittability of the collection of walks generated by Ta-Shma’s con-

struction. In order to formally define this property, we will need the concept of an interval

splitting tree, which describes how a walk is split into smaller and smaller pieces.

Definition 4.7.8 (Interval Splitting Tree). We say that a binary rooted tree T is a k-interval

splitting tree if it has exactly k leaves and

- the root of T is labeled with (0, m, k− 1) for some m ∈ {0, 1, . . . , k− 2}, and

- each non-leaf non-root vertex v of T is labeled with (k1, k2, k3) for some integer k2 ∈

[k1, k3 − 1]. Suppose (k′1, k′2, k′3) is the label assigned to the parent of v. If v is a left child,

we must have k1 = k′1 and k3 = k′2; otherwise, we must have k1 = k′2 + 1 and k3 = k′3.

Given an interval splitting tree T , we can naturally associate a split operator Sk1,k2,k3

to each internal node (k1, k2, k3). The splittability of a collection W[0, k− 1] of k-tuples is

a notion of expansion at every node in the splitting tree.

Definition 4.7.9 ((T , τ)-splittability). The collection W[0, k− 1] is said to be (T , τ)-splittable

if T is a k-interval splitting tree and

σ2(Sk1,k2,k3
) ≤ τ

for every internal node (k1, k2, k3) of T .

If there exists some k-interval splitting tree T such that W[0, k− 1] is (T , τ)-splittable, then

W[0, k− 1] will be called τ-splittable.

In order to prove that the collection of walks in Ta-Shma’s construction is splittable, a

split operator Sk1,k2,k3
can be related to the walk operator (I⊗ AH)Gk2

(I⊗ AH) as shown
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below. This structural property will allow us to deduce spectral properties of Sk1,k2,k3

from the spectrum of (I⊗ AH)Gk2
(I⊗ AH).

Lemma 4.7.10. Let 0 ≤ k1 ≤ k2 < k3. Suppose G is a d1-regular outer graph on vertex set [n]

with walk operator Gk2
used at step k2 of a walk on the s-wide replacement product and H is a

d2-regular inner graph on vertex set [m] with normalized random walk operator AH. Then there

are orderings of the rows and columns of the representations of Sk1,k2,k3
and AH as matrices such

that

Sk1,k2,k3
=
(
(I⊗ AH)Gk2

(I⊗ AH)
)
⊗ J/d2(k3−k2−1)

2 ,

where J ∈ R[d2]
2(k2−k1)×[d2]

2(k3−k2−1)
is the all ones matrix.

Proof. Partition the set of walks W[k1, k2] into the sets W1,1, . . . , Wn,m, where w ∈ Wi,j

if the last vertex of the walk wk2
= (vk2

, hk2
) satisfies vk2

= i and hk2
= j. Similarly,

partition W[k2 + 1, k3] into the sets W′1,1, . . . , W′n,m, where w′ ∈ W′i,j if the first vertex of

the walk w′1 = (v1, h1) satisfies v1 = i and h1 = j. Note that
∣∣∣Wi,j

∣∣∣ = d2(k2−k1)
2 and∣∣∣W′i,j∣∣∣ = d2(k3−k2−1)

2 for all (i, j) ∈ [n]× [m], since there are d2
2 choices for each step of the

walk.

Now order the rows of the matrix Sk1,k2,k3
so that all of the rows corresponding to

walks in W1,1 appear first, followed by those for walks in W1,2, and so on in lexicographic

order of the indices (i, j) of Wi,j, with an arbitrary order within each set. Do a similar

re-ordering of the columns for the sets W′1,1, . . . , W′1,m. Observe that

(
Sk1,k2,k3

)
w,w′

=
1ww′∈W[k1,k3]

d2(k3−k2)
2

=
d2

2 · (weight of transition from (vk2
, hk2

) to (v′1, h′1) in (I⊗ AH)Gk2
(I⊗ AH))

d2(k3−k2)
2

,

which only depends on the adjacency of the last vertex of w and the first vertex of w′. If
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the vertices wk2
= (vk2

, hk2
) and w′1 = (v1, h1) are adjacent, then

(
Sk1,k2,k3

)
w,w′

=
(
(I⊗ AH)Gk2

(I⊗ AH)
)
(vk2

,hk2
),(v′1,h′1)

/d2(k3−k2−1)
2 ,

for every w ∈ Wwk2
and w′ ∈ W′wk1

; otherwise,
(
Sk1,k2,k3

)
w,w′

= 0. Since the walks in

the rows and columns are sorted according to their last and first vertices, respectively, the

matrix Sk1,k2,k3
exactly matches the tensor product ((I⊗AH)Gk2

(I⊗AH))⊗ J/d2(k3−k2−1)
2 .

Corollary 4.7.11. Let 0 ≤ k1 ≤ k2 < k3. Suppose G is a d1-regular outer graph with walk

operator Gk2
used at step k2 of a walk on the s-wide replacement product and H is a d2-regular

inner graph with normalized random walk operator AH. Then

σ2(Sk1,k2,k3
) = σ2((I⊗ AH)Gk2

(I⊗ AH)).

Proof. Using Lemma D.1.10 and the fact that

σ2(((I⊗ AH)Gk2
(I⊗ AH))⊗ J/d2(k3−k2−1)

2 ) = σ2((I⊗ AH)Gk2
(I⊗ AH)),

the result follows.

Remark 4.7.12. Corollary D.1.11 is what causes the splittability argument to break down for

Ta-Shma’s original construction, as σ2(Gk2
(I⊗ AH)) = 1.

By combining this result with the spectral bound from Fact D.1.5, we find that the

collection of walks of length s on the s-wide replacement product is (T , τ)-splittable for

any splitting tree T , where τ is controlled by the second singular values of the graphs G

and H. This analysis can also be applied to walks on higher levels of the cascade where

the vertex set is W[0, r].
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Corollary 4.7.13 (Restatement of Lemma 4.6.5). The collection of walks W[0, s − 1] on the

s-wide replacement product with outer graph G and inner graph H and the collection of walks

W(k) on the vertex set W[0, r] with random walk operator S
4
r,r and r ≡ −1 (mod s) are both

τ-splittable with τ = σ2(G) + 2σ2(H) + σ2(H)2.

Proof. By Corollary D.1.11 and Fact D.1.5, the split operator Sk1,k2,k3
for any 0 ≤ k1 ≤

k2 < k3 satisfies

σ2(Sk1,k2,k3
) = σ2((I⊗ AH)Gk2

(I⊗ AH)) ≤ σ2(G) + 2σ2(H) + σ2(H)2,

so W[0, s − 1] is τ-splittable with τ = σ2(G) + 2σ2(H) + σ2(H)2, as any internal node

(k1, k2, k3) of any s-interval splitting tree will have σ2(Sk1,k2,k3
) ≤ τ. The split operators

of any k-interval splitting tree for the collection W(k) are of the form Sk1,k2,k3
with k1 ≡ 0

(mod s) and k2, k3 ≡ −1 (mod s), which means W(k) is τ-splittable as well.

4.7.3 Integration with Sum-of-Squares

Before defining tensoriality and obtaining it in our setting, we examine how the Sum-of-

Squares hierarchy is used in the list decoding algorithm in more detail.

SOS Preliminaries: p-local PSD Ensembles

The SOS hierarchy gives a sequence of increasingly tight semidefinite programming re-

laxations for several optimization problems, including CSPs. Since we will use relatively

few facts about the SOS hierarchy, already developed in the analysis of Barak, Raghaven-

dra and Steurer [BRS11], we will adapt their notation of p-local distributions to describe

the relaxations.

Solutions to a semidefinite relaxation of a CSP on n boolean variables using p levels
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of the SOS hierarchy induce probability distributions µS over FS
2 for any set S ⊆ [n]

with |S| ≤ p. These distributions are consistent on intersections: for T ⊆ S ⊆ [n], we

have µS|T = µT, where µS|T denotes the restriction of the distribution µS to the set T.

We use these distributions to define a collection of random variables Z1, . . . , Zn taking

values in F2 such that for any set S with |S| ≤ p, the collection of variables {Zi}i∈S has

joint distribution µS. Note that the entire collection {Z1, . . . , Zn} may not have a joint

distribution: this property is only true for sub-collections of size at most p. We will refer

to the collection {Z1, . . . , Zn} as a p-local ensemble of random variables.

For any T ⊆ [n] with |T| ≤ p − 2 and any ξ ∈ FT
2 , we can define a (p − |T|)-local

ensemble {Z′1, . . . , Z′n} by “conditioning” the local distributions on the event ZT = ξ,

where ZT is shorthand for the collection {Zi}i∈T. For any S with |S| ≤ p− |T|, we define

the distribution of Z′S as µ′S := µS∪T|{ZT = ξ}.

Finally, the semidefinite program also ensures that for any such conditioning, the

conditional covariance matrix

M(S1,α1)(S2,α2)
= Cov

(
1[Z′S1

=α1]
, 1[Z′S2

=α2]

)

is positive semidefinite, where |S1| , |S2| ≤ (p − |T|)/2. Here, for each pair S1, S2 the

covariance is computed using the joint distribution µ′S1∪S2
. In this paper, we will only

consider p-local ensembles such that for every conditioning on a set of size at most (p− 2),

the conditional covariance matrix is PSD. We will refer to these as p-local PSD ensembles.

We will also need a simple corollary of the above definitions.

Fact 4.7.14. Let {Z1, . . . , Zn} be a p-local PSD ensemble and W(k) ⊆ [n]k For 1 ≤ i < k,

define W(i) ⊆ [n]i to be the collection of tuples of size i appearing in elements of W(k). For

all p′ ≤ p/2, the collection
{

Zset(w)

}
w∈W(≤p′)

is a (p/p′)-local PSD ensemble, where W(≤

p′) =
⋃p′

i=1 W(i).
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For random variables ZS in a p-local PSD ensemble, we use the notation {ZS} to

denote the distribution of ZS (which exists when |S| ≤ p). As we will work with ordered

tuples of variables instead of sets, we define Zw for w ∈ [n]k based on the set Sw = set(w),

taking care that repeated elements of w are always assigned the same value.

Definition 4.7.15 (Plausible assignment). Given w = (w1, . . . , wk) ∈ [n]k and an assignment

α ∈ Fw
2 , we say that α is plausible for w if there are no distinct i, j ∈ [k] such that wi = wj but

αi 6= αj.

The distribution {Zw} = µw is defined as µw(α) = µSw(α|Sw) if α ∈ Fw
2 is plausible

for w, and µw(α) = 0 otherwise.

Tensoriality

A key algorithm in the list decoding framework is propagation rounding (Algorithm 4.7.16),

which solves a CSP to find solutions close to a codeword. Suppose W(k) ⊆ [n]k is a col-

lection of walks, or more generally, a collection of any k-tuples. The algorithm starts with

a local PSD ensemble {Z1, . . . , Zn} which is the solution to an SOS program for list de-

coding. Propagation rounding takes this solution and conditions some of the variables

according to a random assignment to these variables to yield another local PSD ensemble

Z′.
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Algorithm 4.7.16 (Propagation Rounding Algorithm, adapted from [AJQ+20]).

Input An (L + 2k)-local PSD ensemble {Z1, . . . , Zn} and collection W(k) ⊆ [n]k.

Output A random assignment (σ1, . . . , σn) ∈ Fn
2 and 2k-local PSD ensemble Z′.

1. Choose m ∈ {1, . . . , L/k} uniformly at random.

2. For j = 1, . . . , m, sample a walk wj independently and uniformly from W(k).

3. Write S =
⋃m

j=1 set(wj) for the set of the seed vertices.

4. Sample an assignment σ : S→ F2 according to the local distribution {ZS}.

5. Set Z′ = {Z1, . . . , Zn|ZS = σ}, i.e. the local ensemble Z conditioned on agreeing with σ.

6. For all i ∈ [n], sample independently σi ∼ {Z′i}.

7. Output (σ1, . . . , σn) and Z′.

If the collection W(k) ⊆ [n]k used in the direct sum lifting is amenable to SOS round-

ing, the conditioned ensemble Z′ will be able to recover a word close to some codeword

on the list. This is quantified by the following tensorial properties. We will see shortly

how splittability will be used to obtain tensoriality in our setting.

Definition 4.7.17 (Tensorial Walk Collection). Let W(k) ⊆ [n]k, µ ∈ [0, 1], and L ∈ N.

Define Ω to be the set of all tuples (m, S, σ) obtainable in propagation rounding (Algorithm 4.7.16)

on W(k) with SOS degree parameter L. We say that W(k) is (µ, L)-tensorial if the local PSD

ensemble Z′ returned by propagation rounding satisfies

E
Ω

E
w∈W(k)

∥∥∥{Z′w} − {Z′w(1)

}
· · ·
{

Z′w(k)

}∥∥∥
1
≤ µ. (4.4)

The framework actually uses a strengthening of the above property, in which vari-

ables for pairs of walks chosen independently approximately behave as a product.
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Definition 4.7.18 (Two-Step Tensorial Walk Collection). Let W(k) ⊆ [n]k, µ ∈ [0, 1], and

L ∈ N. Define Ω to be the set of all tuples (m, S, σ) obtainable in propagation rounding (Al-

gorithm 4.7.16) on W(k) with SOS degree parameter L. We say that W(k) is (µ, L)-two-step

tensorial if it is (µ, L)-tensorial and the local PSD ensemble Z′ returned by propagation rounding

satisfies the additional condition

E
Ω

E
w,w′∈W(k)

∥∥{Z′wZ′w′} −
{

Z′w
}{

Z′w′
}∥∥

1 ≤ µ.

From Directed to Undirected

In order to apply the list decoding framework using the directed split operator Sk1,k2,k3
,

we will replace it with the symmetrized version

U (Sk1,k2,k3
) =

 0 Sk1,k2,k3(
Sk1,k2,k3

)†
0


and show how U (Sk1,k2,k3

) corresponds to a particular undirected graph.

Definition 4.7.19. Let 0 ≤ k1 ≤ k2 < k3. We define the operator Sk2,k3,k1
: RW[k1,k2] →

RW[k2+1,k3] such that for every f ∈ RW[k1,k2],

(
Sk2,k3,k1

( f )
)
(w′) := Ew:ww′∈W[k1,k3]

[ f (w)],

for every w′ ∈W[k2 + 1, k3].

The operator U (Sk1,k2,k3
) defines an undirected weighted bipartite graph on the ver-

tices W[k1, k2] ∪W[k2 + 1, k3]. We can see that Sk2,k3,k1
is the adjoint of Sk1,k2,k3

, which

means that each edge ww′ in this graph is weighted according to the transition probabil-

ity from one walk to the other whenever one of w, w′ is in W[k1, k2] and the other is in
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W[k2 + 1, k3].

Claim 4.7.20. (
Sk1,k2,k3

)†
= Sk2,k3,k1

.

Proof. Let f ∈ CW[k1,k2] and g ∈ CW[k2+1,k3]. For i ≤ j, define Πi,j to be the uniform

distribution on W[i, j]. We show that
〈

f , Sk1,k2,k3
g
〉
=
〈
Sk2,k3,k1

f , g
〉

. On one hand we

have

〈
f , Sk1,k2,k3

g
〉
= Ew∈W[k1,k2]

[
f (w)Ew′:ww′∈W[k1,k3]

[g(w′)]
]

= Ew∈W[k1,k2]

 f (w) ∑
w′∈W[k2+1,k3]

Πk1,k3
(ww′)

Πk1,k2
(w)

g(w′)


= ∑

w∈W[k1,k2]

Πk1,k2
(w) f (w) ∑

w′∈W[k2+1,k3]

Πk1,k3
(ww′)

Πk1,k2
(w)

g(w′)

= ∑
ww′∈W[k1,k3]

f (w)g(w′)Πk1,k3
(ww′).

On the other hand we have

〈
Sk2,k3,k1

f , g
〉
= Ew′∈W[k2+1,k3]

[
Ew:ww′∈W[k1,k3]

[ f (w)]g(w′)
]

= Ew′∈W[k2+1,k3]

 ∑
w∈W[k1,k2]

Πk1,k3
(ww′)

Πk2+1,k3
(w′)

f (w)g(w′)


= ∑

w′∈W[k2+1,k3]

Πk2+1,k3
(w′) ∑

w∈W[k1,k2]

Πk1,k3
(ww′)

Πk2+1,k3
(w′)

f (w)g(w′)

= ∑
ww′∈W[k1,k3]

f (w)g(w′)Πk1,k3
(ww′).

Hence, Sk2,k3,k1
= (Sk1,k2,k3

)† as claimed.
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Variables for Walks on the s-wide Replacement Product

When analyzing walks on the s-wide replacement product, we actually need to use two

separate, but related, local PSD ensembles. In Ta-Shma’s construction, the vertices of the

outer graph G correspond to positions in the base code C0 ⊆ Fn
2 , where n = |V(G)|. Given

a vertex (v, h) ∈ V(G)×V(H) in the s-wide replacement product and codeword z ∈ C0,

(v, h) is assigned bit zv, regardless of the vertex h of the inner graph. We will enforce

this property by working with variables in V(G) rather than the full V(G)× V(H). The

local PSD ensemble Z = {Zv}v∈V(G) contains one variable for every vertex of G, with

local distributions for sets of variables up to a given size. For a walk w on the s-wide

replacement product, we will use Zw as an abbreviation for ZSw , where Sw is the set of all

G-components of vertices visited on the walk.

The constraints of the CSP are placed on walks on the s-wide replacement product

that do care about the H-component of the vertices, so we define a second local PSD en-

semble Y = {Y(v,h)}(v,h)∈V(G)×V(H) with a variable for each vertex of the s-wide replace-

ment product of G and H. It is this collection Y for which we need to prove tensoriality

in order to use the list decoding framework. When we perform propagation rounding,

we condition the ensemble Z on a random assignment σ to a subset S ⊆ V(G), rather

than conditioning Y on a random assignment to a subset of V(G)×V(H). Working with

Z ensures that the rounded assignments will be consistent on each cloud of the s-wide

replacement product. Since the bit assigned to a vertex (v, h) only depends on v, inde-

pendent rounding of {Z | ZS = σ} will also yield the desired rounding of {Y | ZS = σ}.

We can define Y based on the ensemble Z more concretely. Suppose S′ ⊆ V(G) ×

V(H) is a subset of size at most p, where p is the locality of the ensemble, and define

T = {v | (v, h) ∈ S′}. The distribution µS′ of YS′ is defined based on the distribution µT

of ZT by µS′(α) = µT(α|T), where α ∈ FS′
2 is an assignment to S′ whose value on each

vertex (v, h) only depends on v.
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Observe that the introduction of the ensemble Y is only necessary on the first level of

the Ta-Shma code cascade between the codes C0 and C1, which takes place on the s-wide

replacement product. Higher levels of the cascade use walks on graphs whose vertices are

the walks from the level below. The association of the bits of a codeword to the vertices

of this graph has no consistency requirement, so we simply use a single local ensemble Z

with a variable for each vertex.

4.7.4 Splittability Implies Tensoriality

The connection between splittability and tensoriality will be made with the help of a

version of the triangle inequality.

Claim 4.7.21 (Triangle inequality, adapted from [AJQ+20]). Let s ∈ N+ and T be an s-

interval splitting tree. Then

E
w∈W[0,s−1]

∥∥∥∥∥{Zw} −
s−1

∏
i=0

{
Zw(i)

}∥∥∥∥∥
1

≤ ∑
(k1,k2,k3)∈T

E
w∈W[k1,k3]

∥∥∥{Zw} −
{

Zw(k1,k2)

}{
Zw(k2+1,k3)

}∥∥∥
1
,

where the sum is taken over the labels of the internal nodes of T .

To prove tensoriality, we will use the method of [BRS11] and [AJT19] to show that we

can break correlations over expanding collections of tuples arising in the s-wide replace-

ment product of the form

E
ww′∈W[k1,k3]

w∈W[k1,k2],w′∈W[k2+1,k3]

‖{Zww′} − {Zw}{Zw′}‖1

appearing on the right-hand side of the triangle inequality.
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The First Level of the Cascade

We now check the technical details to obtain tensoriality for the first lifting in the code

cascade between the codes C0 and C1, which corresponds to taking s steps in Ta-Shma’s

construction. Recall that in order to obtain an assignment z′ ∈ Fn
2 whose lifting is con-

sistent on vertices with the same G-component, we need to prove tensoriality for the

ensemble Y with a variable for each vertex in V(G)×V(H).

The proof of tensoriality will make use of a specific entropic potential function. For

an arbitrary random variable X taking values in a finite set [q], define the function H(X)

as

H(X) :=
1
q ∑

a∈[q]
H(1[X=a]) = Ea∈[q]H(1[X=a]),

where H is the binary entropy function. Using this, we define a potential function for a

weighted undirected graph G.

Definition 4.7.22 (Graph Potential). Let G = (V, E) be a weighted graph with edge distribution

ΠE. Let ΠV be the marginal distribution on V. Suppose that {Yi}i∈V is a p-local PSD ensemble

for some p ≥ 1. We define ΦG to be

ΦG := E
i∼ΠV

[H(Yi)] .

Let T be an s-interval splitting tree associated with the s-wide replacement product

of graphs G and H. We define

ΦT := ∑
(k1,k2,k3)∈T

ΦU (Sk1,k2,k3
),

where U (Sk1,k2,k3
) is the associated bipartite undirected graph of the operator Sk1,k2,k3

.

Lemma 4.7.23 (Splittability Implies Tensoriality). Let W[0, s− 1] be the walk collection of the
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s-wide replacement product of two graphs G and H. If L ≥ 128 · (s4 · 24s/µ4) and W[0, s− 1] is

τ-splittable with τ ≤ µ/(4s · 24s), then W[0, s− 1] is (µ, L)-tensorial.

Proof. We need to show that

E
w∈W[0,s−1]

∥∥∥∥∥{Y′w} − s−1

∏
i=0

{
Y′w(i)

}∥∥∥∥∥
1

≤ µ,

which can be proven by adapting a potential argument technique from [BRS11]. First, set

the potential

Φm = E
S∼Πm

E
σ∼{ZS}

ΦT|ZS=σ, (4.5)

where the distribution Πm on S ⊆ V(G) is obtained from the process of choosing S in

propagation rounding (Algorithm 4.7.16) once m has been fixed. Consider the error term

µm := E
S∼Πm

E
σ∼{ZS}

D(S, σ), (4.6)

where D(S, σ) := Ew∈W[0,s−1]

∥∥∥{Yw | ZS = σ} −∏s−1
i=0

{
Yw(i) | ZS = σ

}∥∥∥
1
. If µm ≥ µ/2,

then

P
S∼Πm,σ∼{ZS}

[D(S, σ) ≥ µm/2] ≥ µ

4
.

For each choice of S and σ such that D(S, σ) ≥ µ/2, applying the triangle inequality

from Claim 4.7.21 to the conditioned variables gives us

µ

2
≤ E

w∈W[0,s−1]

∥∥∥∥∥{Yw | ZS = σ} −
s−1

∏
i=0

{
Yw(i) | ZS = σ

}∥∥∥∥∥
1

≤ ∑
(k1,k2,k3)∈T

E
w∈W[k1,k3]

∥∥∥{Yw | ZS = σ} −
{

Yw(k1,k2) | ZS = σ
}{

Yw(k2+1,k3) | ZS = σ
}∥∥∥

1
.
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Hence, there exists (k1, k2, k3) such that

µ

2s
≤ E

w∈W[k1,k3]

∥∥∥{Yw | ZS = σ} −
{

Yw(k1,k2)
| ZS = σ

}{
Yw(k2+1,k3)

| ZS = σ
}∥∥∥

1
.

Note that choosing w ∈ W[0, s − 1] uniformly and restricting to w(k1, k3) gives a uni-

formly random element of W[k1, k3]. If we choose w(k1, k2) or w(k2 + 1, k3) with equal

probability, then the final walk is distributed according to the stationary measure of

U (Sk1,k2,k3
). Let w′ denote the chosen walk. Observe that Yw′ is a deterministic func-

tion of Zw′ | ZS = σ. Now, we sample Zw′ | ZS = σ, which gives us a sample of Yw′ .

Applying Lemma C.1.1, we have

Φ
U (Sk1,k2,k3

)

|{Yw′ |ZS=σ} ≤ Φ
U (Sk1,k2,k3

)

ZS=σ − µ2

16s2 · 24s .

This conditioning on an assignment to Zset(w′) | ZS = σ does not increase the other terms

of ΦT associated to split operators other than U (Sk1,k2,k3
) since entropy is non-increasing

under conditioning. Similarly, conditioning on the remaining variables that are part of w

but not w′ does not increase ΦT . Then, we obtain

Φm −Φm+1 ≥ P
S∼Πm,σ∼{ZS}

[D(S, σ) ≥ µm/2] · µ2

16s2 · 24s .

Since s ≥ Φ1 ≥ · · · ≥ ΦL/(s+1) ≥ 0, there can be at most 32s3 · 24s/µ3 indices m ∈ [L/s]

such that µm ≥ µ/2. In particular, since the total number of indices is L/s, we have

E
m∈[L/s]

[µm] ≤ µ

2
+

s
L
· 32s3 · 24s

µ3 .

Our choice of L is more than enough to ensure Em∈[L/s][µm] ≤ µ.

Applying the list decoding framework will require the stronger property of two-step
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tensoriality, which we can obtain under the same assumptions.

Lemma 4.7.24 (Splittability Implies Two-step Tensoriality). Let W[0, s− 1] be the walk col-

lection of the s-wide replacement product of two graphs G and H. If L ≥ 128 · (s4 · 24s/µ4) and

W[0, s− 1] is τ-splittable with τ ≤ µ/(4s · 24s), then W[0, s− 1] is (µ, L)-two-step tensorial.

Proof. Under our assumptions the (µ, L)-tensorial property follows from Lemma 4.7.23

(which is the only place where the assumption on τ is used), so we only need to show

E
w,w′∈W[0,s−1]

∥∥{Y′wY′w′} −
{

Y′w
}{

Y′w′
}∥∥

1 ≤ µ,

which can be proven by adapting a potential argument technique from [BRS11]. First, set

the potential

Φm = E
S∼Πm

E
σ∼{ZS}

E
w∈W[0,s−1]

H(Yw | ZS = σ), (4.7)

where the distribution Πm on S ⊆ V(G) is obtained from the process of choosing S in

propagation rounding (Algorithm 4.7.16) once m has been fixed. Consider the error term

µm := E
S∼Πm

E
σ∼{ZS}

D(S, σ), (4.8)

where D(S, σ) := Ew,w′∈W[0,s−1][‖{YwYw′ | ZS = σ} − {Yw|ZS = σ}{Yw′ |ZS = σ}‖1].

If µm ≥ µ/2, then

P
S∼Πm,σ∼{ZS}

[D(S, σ) ≥ µm/2] ≥ µ

4
.

Let G′ = (V = W[0, s − 1], E) be the graph with edges E = {{w, w′} | w, w′ ∈

W[0, s− 1]}. Local correlation (expectation over the edges) on this graph G′ is the same

as global correlation (expectation over two independent copies of vertices). Then, we
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obtain 8

Φm −Φm+1 ≥ P
S∼Πm,σ∼{ZS}

[D(S, σ) ≥ µm/2] · µ2

2 · 22s .

Since 1 ≥ Φ1 ≥ · · · ≥ ΦL/(s+1) ≥ 0, there can be at most 8 · 22s/µ3 indices m ∈ [L/s]

such that µm ≥ µ/2. In particular, since the total number of indices is L/s, we have

E
m∈[L/s]

µm ≤
µ

2
+

k
L
· 8 · 22s

µ3 .

Our choice of L is more than enough to ensure Em∈[L/s][µm] ≤ µ.

We have already established that W[0, s− 1] is τ-splittable with τ = σ2(G)+ 2σ2(H)+

σ2(H)2 in Corollary 4.7.13, so we can obtain (µ, L)-two-step tensoriality for any µ if this

quantity is small enough.

Higher Levels of the Cascade

We now discuss tensoriality of the other levels of the cascade between Ci−1 and Ci for

i ≥ 2. Tensorial properties are simpler to establish here than on the first level of the

cascade. The relevant split operators are special cases of Sk1,k2,k3
where k1 ≡ 0 (mod s)

and k2, k3 ≡ −1 (mod s). The main difference now is that we can associate the parity bits

of Ci−1 with the vertices of U (S4r,r), which themselves represent walks. As this association

of parity bits doesn’t need to satisfy a consistency condition, we only need to work with

a single ensemble Z instead of working with two different ensembles as in the previous

case. The proofs of Lemma 4.7.23 and Lemma 4.7.24 with these slight modifications give

us two-step tensoriality.

Lemma 4.7.25 (Two-step Tensoriality for Higher Levels). Let W(k) be the set of walks defined

using (k− 1) steps of the operator S4r,r. If L ≥ 128 · (k4 · 24k/µ4) and W(k) is τ-splittable with

8. See [AJT19] or [BRS11] for the details.
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τ ≤ µ/(4k · 24k), then W(k) is (µ, L)-two-step tensorial.

We know from Corollary 4.7.13 that the collection of walks obtained from σ2(S
4
r,r) is

(σ2(G) + 2 · σ2(H) + σ2(H)2)-splittable, so the parameters necessary to obtain two-step

tensoriality are the same as in the first level of the cascade.

4.8 Choosing Parameters for Ta-Shma’s Construction

We explore how some choices of parameters for Ta-Shma’s construction interact with the

requirements of our decoding algorithm. The analysis is divided into rounds of increas-

ingly stronger decoding guarantees with later rounds relying on the codes obtained in

previous rounds. Naturally, the stronger guarantees come with more delicate and techni-

cal considerations. We briefly summarize the goals of each round and some key parame-

ters.

1. Round I: For any constant β > 0, we obtain efficient unique decodable codes C` with

distance at least 1/2− ε and rate Ω(ε2+β) for infinitely many discrete values of ε > 0

(with ε as close to 0 as desired). In this regime, it suffices for the expansion of H to

be constant. This round leads to Theorem 4.6.6.

2. Round II: Similar to Round I, but now ε can be any value in an interval (0, b) with

b < 1/2 being a function of β. Again the expansion of H can be constant. This round

leads to Theorem 4.6.7.

3. Round III: We want β to vanish as ε vanishes (this is qualitatively similar to Ta-

Shma’s result). In this regime, we make the expansion of H be a function of ε, and we

rely on the uniquely decodable codes of Round II. This round leads to Theorem 5.1.1.

4. Round IV: For any constant β0 > 0, we obtain efficient list decodable codes C` with list

decoding radius 1/2− β0 and rate Ω(ε2+β) with β→ 0 as ε→ 0. In this regime, we
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make the expansion of H be a function of ε, and we rely on the uniquely decodable

codes of Round III. This round leads to Theorem 5.1.2.

The way we choose parameters for Ta-Shma’s construction borrows heavily from Ta-

Shma’s arguments in [TS17]. We fix some notation common to all rounds. A graph is

said to be an (n, d, λ)-graph provided it has n vertices, is d-regular, and has second largest

singular value of its normalized adjacency matrix at most λ.

Notation 4.8.1. We use the following notation for the graphs G and H used in the s-wide replace-

ment product.

- The outer graph G will be an (n′, d1, λ1)-graph.

- The inner graph H will be a (ds
1, d2, λ2)-graph.

The parameters n′, d1, d2, λ1, λ2 and s will be chosen in the subsequent sections.

4.8.1 Round I: Initial Analysis

We are given the dimension D of the desired code and ε ∈ (0, 1/2). We set a parameter

α ≤ 1/128 such that (for convenience) 1/α is a power of 2 and

α5

4 log2(1/α)
≥ 1

log2(1/ε)
. (4.9)

We can assume that α ≤ 1/128 satisfy Eq. (D.2) since otherwise ε is a constant and we can

use the list decodable codes from [AJQ+20]. The use of Eq. (D.2) will be clear shortly. It

becomes a necessity from round III onward. For rounds I and II, the parameter α will be

a constant, but it will be useful to establish the analysis in more generality now so that

subsequent rounds can reuse it.
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The inner graph H. The choice of H is similar to Ta-Shma’s choice. More precisely,

we set s = 1/α and d2 = s4s2
(Ta-Shma took d2 = s4s). We obtain a Cayley graph

H = Cay(F
4s log2(d2)
2 , A) such that H is an (n2 = d4s

2 , d2, λ2) graph where λ2 = b2/
√

d2

and b2 = 4s log2(d2). (The set of generators, A, comes from a small bias code derived from

a construction of Alon et al. [AGHP92], but we will rely on Ta-Shma’s analysis embodied

in Lemma C.2.2 and not discuss it further.)

The base code C0. Set ε0 = 1/d2
2 = λ4

2/b4
2 ≤ λ4

2/3 (this choice differs from Ta-Shma’s

and it appears because we are essentially working with H2 rather than H). We will choose

a base code C0 such that the desired code will be obtained as a direct sum lifting of C0,

and because this lifting preserves the dimension, the dimension of C0 should be D. We

choose C0 to be an ε0-balanced code with dimension D and block length n = Oε0(D). For

instance, we can start with any good (constant rate and relative distance) linear base code

C0 that has an efficient unique decoding algorithm and obtain a ε0-balanced lifted code

that can be efficiently unique decoded (as long as ε0 is constant) using the framework

in [AJQ+20].

The outer graph G. Set d1 = d4
2 so that n2 = ds

1 as required by the s-wide replacement

product. We apply Ta-Shma’s explicit Ramanujan graph Lemma C.2.1 with parameters

n, d1 and θ to obtain an (n′, d1, λ1) Ramanujan graph G with λ1 ≤ 2
√

2/
√

d1 and n′ ∈

[(1− θ)n, n] or n′ ∈ [(1− θ)2n, 2n]. Here, θ is an error parameter that we set as θ = λ4
2/6

(this choice of θ differs from Ta-Shma). Because we can construct words with block length

2n (if needed) by duplicating each codeword, we may assume w.l.o.g. that n′ is close to n

and (n− n′) ≤ θn ≤ 2θn′. See Appendix C.2 for a more formal description of this graph.

Note that λ1 ≤ λ4
2/6 since λ1 ≤ 3/

√
d1 = 3/d2

2 = 3 · λ4
2/b4

2 ≤ λ4
2/6. Hence, ε0 +

2θ + 2λ1 ≤ λ4
2.
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The walk length. Set the walk length t− 1 to be the smallest integer such that

(λ2
2)

(1−5α)(1−α)(t−1) ≤ ε.

This will imply using Ta-Shma’s analysis that the bias of the final code is at most ε as

shown later.

s = 1/α, such that α5

4 log2(1/α)
≥ 1

log2(1/ε)

H : (n2, d2, λ2), n2 = ds
1, d2 = s4s2

, λ2 = b2√
d2

, b2 = 4s log d2

G : (n′, d1, λ1), n′ ≈ n = O(D/εc
0), d1 = d4

2, λ1 ≤ 2
√

2
d1

t : smallest integer such that (λ2
2)

(1−5α)(1−α)(t−1) ≤ ε

Claim 4.8.2. We have t− 1 ≥ s/α = s2.

Proof. Using d2 = s4s2
and Eq. (D.2), we have

(
1

λ2
2

)(1−5α)(1−α)s/α

≤
(

1
λ2

2

)s/α

=

(
d2
b2

2

)s/α

≤ (d2)
s/α = s4s3/α

= 24s3 log2(s)/α = 24 log2(1/α)/α4
≤ 2log2(1/ε) =

1
ε

.

Hence, ε ≤ (λ2
2)

(1−5α)(1−α)s/α and thus t− 1 must be at least s/α.

Remark 4.8.3. By our choice of t, we have (λ2
2)

(1−5α)(1−α)(t−2) ≥ ε. Since 1/(t− 1) ≤ α, we

get (λ2
2)

(1−5α)(1−α)2(t−1) ≥ ε.

Final Bias. We denote by C` the final code obtained by t steps of the s-wide replacement

product. The bias of C` is given by Corollary D.1.8 (which in turn is a simple corollary of

Ta-Shma’s Fact D.1.7) as shown next.

Corollary 4.8.4. The code C` is ε-balanced.
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Proof. Using Corollary D.1.8, we have that the final bias

b :=
(

σ2(H2)s−1 + (s− 1) · σ2(H2)s−2 + (s− 1)2 · σ2(H2)s−4
)b(t−1)/sc

is bounded by

b ≤ (3(s− 1)2σ2(H2)s−4)((t−1)/s)−1 (Using σ2(H2) ≤ 1/3s2)

≤ ((σ2(H2)s−5)(t−1−s)/s

= σ2(H2)(1−5/s)(1−s/(t−1))(t−1)

≤ σ2(H2)(1−5α)(1−α)(t−1)

=
(

λ2
2

)(1−5α)(1−α)(t−1)
≤ ε,

where the last inequality follows from s = 1/α and t− 1 ≥ s/α, the latter from Claim 4.8.2.

Rate. The proof of the rate follows a similar structure of Ta-Shma’s original argument

except that we take s to be a constant independent of ε so that ε0, λ1, and λ2 are also

constants independent of ε. Note that we previously said α = 1/s needs to satisfy Equa-

tion D.2, but that implies only an upper bound for s, and smaller (even constant) values

for s are still permissible.

Claim 4.8.5. C` has rate Ω(ε2+26·α) provided ε0 > 0 is constant.

Proof. The support size is the number of walks of length t on the s-wide replacement
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product of G and H (each step of the walk has d2
2 options), which is

|V(G)||V(H)|d2(t−1)
2 = n′ · ds

1 · d
2(t−1)
2 = n′ · d2(t−1)+4s

2 ≤ n · d2(t−1)+4s
2

= Θε0

(
D · d2(t−1)+4s

2

)
= Θ

(
D · (d2

2)
t−1+2s

)
= O

(
D · (d2

2)
(1+2α)(t−1)

)
,

where the penultimate equality follows from the assumption that ε0 is a constant.

Note that dα
2 = d1/s

2 = s4s ≥ b2 since b2 = 4s log2(d2) = 16s3 log2(s) ≤ s4 (recall that

s = 1/α ≥ 128). Thus,

d1−2α
2 =

d2
d2α

2
≤ d2

b2
2
=

1
σ2(H2)

.

We obtain

(d2
2)

(t−1) ≤
(

1
σ2(H2)

) 2(t−1)
1−2α

≤
(

1
ε

) 2
(1−2α)(1−5α)(1−α)2

(Using Remark 4.8.3)

≤
(

1
ε

)2(1+10α)

,

which implies a block length of

O
(

D · (d2
2)

(1+2α)(t−1)
)
= O

(
D
(

1
ε

)2(1+10α)(1+2α)
)

= O

(
D
(

1
ε

)2(1+13α)
)

.

Lemma 4.8.6 (Codes Near the GV bound I). For every constant β > 0, there exists a suffi-

ciently large constant s in the above analysis so that for any dimension value D ∈N+ (sufficiently

large) and ε > 0 (sufficiently small) the final code CN,ε,β, where N is the block length, satisfies
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- CN,ε,β is ε-balanced,

- CN,ε,β has rate Ω(ε2+β), and

- CN,ε,β is a linear code of dimension D.

Remark 4.8.7. As a consequence of code cascading, the final attainable walk lengths have the form

s` − 1 where ` is a positive integer. Given β > 0, we have infinitely many values of ε attainable

by such walk lengths which gives infinitely many codes CN,ε,β. This means that although the bias

ε cannot be arbitrary, we have an infinite sequence of values of ε for which the rates of the codes

CN,ε,β are near the GV bound. In Section 4.8.2, we show how to bypass this artificial limitation.

These codes are used in the proof of Theorem 4.6.6.

We can view the above analysis as defining a function Γ that receives

- the dimension D ∈N+,

- the final bias ε > 0,

- the approximating error α ∈ (0, 1/128] with s := 1/α being a power of two, and

- a multiplying factor Q ∈N+ such that d2 = s4s2·Q (in the above Q was 1).

and outputs a tuple of parameters (t, ε0, θ, d1, λ1, n′), graphs G and H (as above) where,

in particular, the number of steps t ∈ N+ is such that the final code C` has bias at most ε

and rate Ω(ε2+26·α).

In future rounds, Γ may be called with Q = s instead of Q = 1. This will cause d2

to increase from s4s2
to s4s2·Q, and so in the proof of Claim 4.8.2, 24 log2(1/α)/α4

will be

replaced by 24 log2(1/α)/α5
. This explains why Eq. (D.2) has a stricter requirement than

needed in the Q = 1 case above.
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4.8.2 Round II: A More Careful Analysis

We are given the dimension of the code D and ε ∈ (0, 1/2). As before, we set a parameter

α ≤ 1/128 such that (for convenience) 1/α is a power of 2. Set s = 1/α and Q = s.

Apply Γ to (D, ε, α, Q) to obtain all parameters except t. Choose t to be the smallest

integer satisfying

(λ2
2)

(1−5α)(1−2α)(1−α)(t−1) ≤ ε,

where observe that an extra (1− 2α) factor appears in the exponent. This change in t will

worsen the rate but by losing a factor of 1
1−2α in the exponent, we can lower bound the

rate. That is, (d2
2)
−(t−1) = Ω(ε

2+26·α
1−2α ).

Set ` ∈N+ to be the smallest value such that s` ≥ t (here we are implicitly assuming

that t > s). If s` = t, we are done since we can use all the parameters returned by Γ for the

construction of C`. Now assume s` > t and let ζ = t/s`−1. Note that ζ ∈ (1, s). Choose P

to be the integer in the interval [Q, s ·Q] such that

0 ≤ P
Q
− ζ ≤ 1

Q
.

Because s` > t, and only powers of s may be chosen for walk length, we might over-

shoot in walk length by a multiplicative factor of s. This will cause a corresponding decay

in rate computation that we cannot afford. To overcome this, in the last level of the cas-

cade between codes C`−1 and C`, perform the direct sum over walks of length (P − 1)

instead of length (s− 1). The new total number of vertices is t′ = Ps`−1. Note that P can

be as large as s2, so our splittability guarantee of W(P) (the walk collection from the lift

between C`−1 and C`) has to be strong enough to accommodate this larger arity and not

only arity s.

Claim 4.8.8. We have t− 1 ≤ t′−1
Q ≤ (1 + 2α)(t− 1).
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Proof. By construction, we have the sequence of implications

0 ≤ P
Q

s`−1 − ζs`−1 ≤ s`−1

Q

⇒0 ≤ t′

Q
− t ≤ s`−1

Q
≤ t

Q

⇒t− 1
Q
≤ t′ − 1

Q
≤ (t− 1)

(
1 +

1
Q

)
+ 1,

from which we obtain

t− 1 ≤ t− 1
Q
≤ t′ − 1

Q

and
t′ − 1

Q
≤ (t− 1)

(
1 +

1
Q

)
+ 1 = (1 + α)(t− 1) + 1 < (1 + 2α)(t− 1),

the latter using Q = s = 1/α.

We apply Γ again but this time to (D, ε, α, 1) to obtain new parameters (t′′, ε′0, θ′, d′1,

λ′1, n′′), and graphs G′ and H′.

Claim 4.8.9. The code C ′` obtained by t′ walk steps on the s-wide replacement product of G′ and

H′ from the second application of Γ has bias at most ε and rate Ω(ε2+40α).

Proof. Let d2 = s4s2·Q, b2 = 4s log2(d2) and λ2 = b2/
√

d2 be the parameters of the first

invocation of Γ. Recall that t was chosen to be the smallest integer satisfying

(λ2
2)

(1−5α)2(1−α)(t−1) ≤ ε.

Let d′2 = s4s2
, b′2 = 4s log2(d

′
2) and λ′2 = b′2/

√
d′2 be the parameters of the second invoca-
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tion of Γ. Observe that

(λ′2)
Q =

(b′2)
Q√

(d′2)
Q

=
(b′Q2 )√

d2
=

(16s3 log2(s))
Q

s2s2·Q

≤ s4Q

s2s2·Q =
1

s2s2·Q(1− 2
s2 )

=

(
1

s2s2·Q

)1−2α

≤
(

b2√
d2

)1−2α

= λ1−2α
2 .

Then the bias of C ′` is at most

(((λ′2)
Q)2)(1−5α)(1−α)(t′−1)/Q ≤ (λ2

2)
(1−5α)(1−2α)(1−α)(t′−1)/Q

≤ (λ2
2)

(1−5α)(1−2α)(1−α)(t−1) ≤ ε.

For the rate computation of C ′`, we will lower bound the term ((d′2)
2)−(t

′−1). Since d2 =

(d′2)
Q, (d2

2)
−(t−1) = Ω(ε

2+26·α
1−2α ) and t′−1

Q ≤ (1 + 2α)(t− 1) (the latter by Claim 4.8.8), the

rate of C ′` is

Ω(((d′2)
2)−(t

′−1)) = Ω((d2
2)
−(t′−1)/Q) = Ω((d2

2)
−(1+2α)(t−1)) = Ω((ε2+26·α)

1+2α
1−2α ) = Ω(ε2+40·α).

4.8.3 Round III: Vanishing β as ε Vanishes

We are given the dimension of the code D and ε ∈ (0, 1/2). As before, we set a parameter

α ≤ 1/128 such that (for convenience) 1/α is a power of 2. Set s := 1/α.

We will consider the regime where s is a function of ε. As a consequence, the param-

eters d2, λ2, d1, λ1, ε0 will also depend on ε. Since x ≤ 1/ log2(1/x) for x ≤ 1/2 (and

α ≤ 1/2), if α satisfies α6/4 ≥ 1/ log2(1/β), it also satisfies Eq. (D.2) (we lose a log factor

by replacing 1/ log2(1/α) by α, but we will favor simplicity of parameters). In particular,
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we can set α so that s is

s = Θ((log2(1/ε))1/6),

and satisfy Eq. (D.2).

We follow the same choices as in Round II except for the base code C0.

The base code C0. Set ε0 = 1/d2
2 = λ4

2/b4
2 ≤ λ4

2/3. We choose an ε0-balanced code C0

with support size n = O(D/εc
0) where c = 2.001 (this choice of c is arbitrary, it is enough

to have c as a fixed small constant) using the construction from Round II. It is crucial that

we can unique decode C0 (using our algorithm), since this is required in order to apply

the list decoding framework.

Note that ε0 is no longer a constant. For this reason, we need to consider the rate

computation of the final code C` more carefully. The proof will follow an argument similar

to Ta-Shma’s.

Claim 4.8.10. C` has rate Ω(ε2+26·α) where α = Θ(1/(log2(1/ε))1/6).

Proof. The support size is the number of walks of length t− 1 on the s-wide replacement

product of G and H (each step of the walk has d2
2 options), which is

|V(G)||V(H)|d2(t−1)
2 = n′ · ds

1 · d
2(t−1)
2 = n′ · d2(t−1)+4s

2 ≤ n · d2(t−1)+4s
2

= Θ

(
D
εc

0
· d2(t−1)+4s

2

)

= Θ
(

D · (d2
2)

(t−1)+2s+2.001
)

= O
(

D · (d2
2)

(1+2α)(t−1)
)

.

From this point the proof continues exactly as the proof of Claim D.1.17.
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4.8.4 Round IV: Arbitrary Gentle List Decoding

In round III, when we take

s = Θ((log2(1/ε))1/6),

we will have λ2 = 4s log(s4s2
)/s2s2 ≤ s−s2

provided s is large enough. This non-constant

λ2 will allow us perform “gentle” list decoding with radius arbitrarily close to 1/2. More

precisely, we have the following.

Theorem 4.8.11 (Gentle List Decoding (restatement of Theorem 5.1.2)). For every ε > 0

sufficiently small, there are explicit binary linear Ta-Shma codes CN,ε,β ⊆ FN
2 for infinitely many

values N ∈N with

(i) distance at least 1/2− ε/2 (actually ε-balanced),

(ii) rate Ω(ε2+β) where β = O(1/(log2(1/ε))1/6), and

(iii) a list decoding algorithm that decodes within radius 1/2 − 2−Θ((log2(1/ε))1/6) in time

NOε,β(1).

Proof. We consider some parameter requirements in order to apply the list decoding

framework Theorem 4.9.1 between C`−1 and C`. Suppose we want to list decode within

radius 1/2−√η. For parity sampling, we need

s ≥ Θ(log2(1/η)).

Since the number of vertices in a walk can be at most s2, for splittability we need

η8/(s2 · 22s2
) ≥ 2 · s−s2

.

In particular, we can take η = 2−Θ(s) and satisfy both conditions above.
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4.9 Instantiating the List Decoding Framework

We established the tensoriality (actually two-step tensoriality) and parity sampling prop-

erties of every lifting between consecutive codes Ci−1 and Ci in Ta-Shma’s cascade. Using

these properties, we will be able to invoke the list decoding framework from [AJQ+20] to

obtain the following list decoding result.

Theorem 4.9.1 (Restatement of Theorem 4.6.1). Let η0 ∈ (0, 1/4) be a constant, η ∈ (0, η0),

and

k ≥ k0(η) := Θ(log(1/η)).

Suppose C ⊆ Fn
2 is an η0-balanced linear code and C ′ = dsumW(k)(C) is the direct sum lifting

of C on a τ-splittable collection of walks W(k), where W(k) is either the set of walks W[0, s] on

an s-wide replacement product graph or a set of walks using the random walk operator S4r,r. There

exists an absolute constant K > 0 such that if

τ ≤ τ0(η, k) :=
η8

K · k · 24k ,

then the code C ′ is η-balanced and can be efficiently list decoded in the following sense:

If ỹ is (1/2−√η)-close to C ′, then we can compute the list

L(ỹ, C, C ′) :=
{
(z, dsumW(k)(z)) | z ∈ C, ∆

(
dsumW(k)(z), ỹ

)
≤ 1

2
−√η

}

in time

nO(1/τ0(η,k)4) · f (n),

where f (n) is the running time of a unique decoding algorithm for C. Otherwise, we return

L(ỹ, C, C ′) = ∅ with the same running time of the preceding case 9.

9. In the case ỹ is not (1/2−√η)-close to C ′, but the SOS program turns out to be feasible, some of the
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4.9.1 List Decoding Framework

We recall the precise statement of the list decoding framework tailored to direct sum

lifting.

Theorem 4.9.2 (List Decoding Theorem (Adapted from [AJQ+20])). Suppose dsumW(k) is

an (η8/230, L)-two-step tensorial direct sum lifting from an η0-balanced code C ⊆ Fn
2 to C ′ on a

multiset W(k) ⊆ [n]k which is a (1/2 + η0/2, η)-parity sampler.

Let ỹ ∈ F
W(k)
2 be (1/2−√η)-close to C ′. Then the List Decoding algorithm returns the

coupled code list L(ỹ, C, C ′). Furthermore, the running time is nO(L+k) (polylog(1/η) + f (n))

where f (n) is the running time of an unique decoding algorithm of C.

We apply the list decoding framework of Theorem 4.9.2 to the liftings arising in the

Ta-Shma cascade to obtain Theorem 4.9.1. This requires choosing parameters so that both

the parity sampling and tensoriality requirements are met at every level of the cascade,

which we do by appealing to our results from Section 4.7.

Proof of Theorem 4.9.1. We want to define parameters for τ-splittability so that W(k) satis-

fies strong enough parity sampling and tensoriality assumptions to apply Theorem 4.9.2.

For parity sampling, we require W(k) to be an (1/2 + η0/2, η)-parity sampler. Sup-

pose W(k) is τ-splittable with τ < 1/16. By Corollary 4.7.4 or Corollary 4.7.7 and split-

tability, the collection of walks W(k) is an (η′0, η′)-parity sampler, where η′ ≤ (η′0 +

2τ)b(k−1)/2c. To achieve the desired parity sampling, we take η′0 = 1/2 + η0/2 and

choose a value of k large enough so that η′ ≤ η. Using the assumption η0 < 1/4, we

calls to the unique decoding algorithm of C (issued by the list decoding framework) might be outside all
unique decoding balls. Such cases may be handled by returning failure if the algorithm does not terminate
by the time f (n). Even if a codeword in C is found, the pruning step of list decoding [AJQ+20] will return
an empty list for L(ỹ, C, C ′) since ỹ is not (1/2−√η)-close to C.
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compute

η′ = (η′0 + 2τ)b(k−1)/2c ≤ (1/2 + η0/2 + 2τ)k/2−1 < (3/4)k/2−1,

which will be smaller than η as long as k is at least

k0(η) = 2
(

1 +
log(1/η)

log(4/3)

)
= Θ(log(1/η)).

Achieving this level of parity sampling also ensures that the lifted code C ′ is η-balanced.

The list decoding theorem also requires (η8/230, L)-two-step tensoriality. Lemma 4.7.24

(with s = k) and Lemma 4.7.25 each provide (µ, L)-two-step tensoriality for τ-splittable

walk collections on the s-wide replacement product and using S
4
r,r, respectively, with

L ≥ 128k4 · 24k

µ4 and τ ≤ µ

4k · 24k .

To get µ = η8/230, we require

L ≥ K′ · k4 · 24k

η32 and τ ≤ τ0(η, k) =
η8

K · k · 24k ,

where K and K′ are (very large) constants. This ensures that τ is small enough for the

parity sampling requirement as well. With these parameters, the running time for the list

decoding algorithm in Theorem 4.9.2 becomes

nO(L+k)(polylog(1/η) + f (n)) = nO(L) · f (n) = nO(1/τ0(η,k)4) · f (n).

For decoding in fixed polynomial time, we also need a variation of list decoding
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where we don’t run the unique decoding algorithm of the base code and only obtain

an approximate list of solutions. The proof is very similar to the proof of Theorem 4.9.1

above.

Theorem 4.9.3 (Restatement of Theorem 4.6.12). Let η0 ∈ (0, 1/4) be a constant, η ∈ (0, η0),

ζ = 1/8− η0/8, and

k ≥ k′0(η) := Θ(log(1/η)).

Suppose C ⊆ Fn
2 is an η0-balanced linear code and C ′ = dsumW(k)(C) is the direct sum lifting

of C on a τ-splittable collection of walks W(k), where W(k) is either the set of walks W[0, s] on

an s-wide replacement product graph or a set of walks using the random walk operator S4r,r. There

exists an absolute constant K > 0 such that if

τ ≤ τ0(η, k) :=
η8

K · k · 24k ,

then the code C ′ is η-balanced, W(k) is a (1− 2ζ, η)-parity sampler, and we have the following:

If ỹ is (1/2−√η)-close to C ′, then we can compute a ζ-cover L′ of the list

L(ỹ, C, C ′) :=
{
(z, dsumW(k)(z)) | z ∈ C, ∆

(
dsumW(k)(z), ỹ

)
≤ 1

2
−√η

}

in which ∆(y′, ỹ) ≤ 1/2−√η for every (z′, y′) ∈ L′ 10, in time

nO(1/τ0(η,k)4).

Otherwise, we return L′ = ∅ with the same running time of the preceding case.

Proof. The list decoding framework produces a cover L′ of the list L(ỹ, C, C ′), and, as its

final step, corrects the cover to obtain the actual list L(ỹ, C, C ′) by running the unique de-

10. A randomized rounding will ensure this, but see Appendix C.4 for obtaining this property determin-
istically.
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coding algorithm of C on each entry of L′ (see [AJQ+20] for details). Using Theorem 4.9.2

with a (1 − 2ζ, η)-parity sampler and omitting this final step of the algorithm, we can

obtain the ζ-cover L′ in time nO(L+k)polylog(1/η).

The tensoriality part of the proof of Theorem 4.9.1 applies here unchanged, so we

need only make sure k is large enough to yield the stronger parity sampling necessary

for this theorem. As in that proof, we have that W(k) is an (η′0, η′)-parity sampler with

η′ ≤ (η′0 + 2τ)b(k−1)/2c. Take η′0 = 1− 2ζ = 3/4 + η0/4. Using η0 < 1/4 and assuming

τ < 1/16, we have

η′ ≤ (η′0 + 2τ)b(k−1)/2c ≤ (3/4 + η0/4 + 2τ)k/2−1 < (15/16)k/2−1,

which will be smaller than η as long as k is at least

k′0(η) = 2
(

1 +
log(1/η)

log(16/15)

)
= Θ(log(1/η)).
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CHAPTER 5

NEAR-LINEAR TIME DECODING OF TA-SHMA’S CODES VIA

SPLITTABLE REGULARITY

5.1 Introduction

A binary code C ⊆ FN
2 is said to be ε-balanced if any two distinct codewords x, y ∈ C

satisfy ∆(x, y) ∈ [(1−ε)/2, (1+ε)/2], where ∆(x, y) denotes the relative distance between

the two codewords. Finding explicit and optimal constructions of such codes, and in-

deed of codes where the distances are at least (1−ε)/2 is a central problem in coding the-

ory [Gur10, Gur09], with many applications to the theory of pseudorandomness [Vad12].

Recently, Ta-Shma [TS17] gave a breakthrough construction of (a family of) explicit ε-

balanced codes, with near-optimal rates, for arbitrarily small ε > 0. For the case of

codes with distance at least (1−ε)/2, the existential rate-distance tradeoffs established

by Gilbert [Gil52] and Varshamov [Var57], prove the existence of codes with rate Ω(ε2),

while McEliece et al. [MRRW77] prove an upper bound of O(ε2 log(1/ε)) on the rate. On

the other hand, Ta-Shma’s result yields an explicit family of codes with rate Ω(ε2+o(1)).

Decoding algorithms. The near-optimal ε-balanced codes of Ta-Shma [TS17] (which we

will refer as Ta-Shma codes) were not known to be efficiently decodable at the time of

their discovery. In later work, polynomial-time unique decoding algorithms for (a slight

modification of) these codes were developed in [JQST20] (building on [AJQ+20]) using

the Sum-of-Squares (SoS) hierarchy of semidefinite programming (SDP) relaxations. For

unique decoding of codes with rates Ω(ε2+α) (when α > 0 is an arbitrarily small constant)

these results yield algorithms running in time NOα(1). These algorithms also extend to

the case when α is a vanishing function of ε, and to the problem of list decoding within

an error radius of 1/2− ε′ (for ε′ larger than a suitable function of ε) with running time
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NOε,ε′ ,α(1). However, the Oα(1) exponent of N obtained in the unique decoding case is

quite large even for a fixed constant α (say α = 0.1), and the exponent in the list decoding

case grows with the parameter ε.

In this work, we use a different approach based on new weak regularity lemmas (for

structures identified by the SoS algorithms), resulting in near-linear time algorithms for

both the above tasks. The algorithms below work in time Õε(N) for ε-balanced Ta-Shma

codes with rates Ω(ε2+α), even when α is a (suitable) vanishing function of ε.

Theorem 5.1.1 (Near-linear Time Unique Decoding). For every ε > 0 sufficiently small, there

are explicit binary linear Ta-Shma codes CN,ε,α ⊆ FN
2 for infinitely many values N ∈N with

(i) distance at least 1/2− ε/2 (actually ε-balanced),

(ii) rate Ω(ε2+α) where α = O(1/(log2(1/ε))1/6), and

(iii) an r(ε) · Õ(N) time unique decoding algorithm that that decodes within radius 1/4− ε/4

and works with high probability,

where r(ε) = exp(exp(polylog(1/ε))).

We can also obtain list decoding results as in [JQST20], but now in near-linear time.

Theorem 5.1.2 (Near-linear Time Gentle List Decoding). For every ε > 0 sufficiently small,

there are explicit binary linear Ta-Shma codes CN,ε,α ⊆ FN
2 for infinitely many values N ∈ N

with

(i) distance at least 1/2− ε/2 (actually ε-balanced),

(ii) rate Ω(ε2+α) where α = O(1/(log2(1/ε))1/6), and

(iii) an r(ε) · Õ(N) time list decoding algorithm that decodes within radius 1/2− 2−Θ((log2(1/ε))1/6)

and works with high probability,
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where r(ε) = exp(exp(poly(1/ε))).

While Theorem 5.1.2 yields a list decoding radius close to 1/2, we remark that the

above tradeoff between the list decoding radius and rate, is far from the state-of-the-

art of 1/2− ε radius with rate Ω(ε3) of Guruswami and Rudra [GR06]. Considering a

three way trade-off involving distance, rate, and list-decoding radius, Theorem 5.1.2 can

be seen as close to optimal with respect to the first two parameters, and quite far off

with respect to the third one. Finding an algorithm for codes with optimal tradeoffs in

all three parameters, is a very interesting open problem. Another interesting problem

is understanding the optimal dependence of the “constant” factors r(ε) in the running

times. We have not tried to optimize these factors in our work.

Direct-Sum Codes and “Structured Pseudorandomness”. Ta-Shma’s code construction

can be viewed as a special case of “distance amplification via direct-sum", an operation

with several applications in coding and complexity theory [ABN+92, IW97, GI01, IKW09,

DS14, DDG+15, Cha16, DK17, Aro02]. Given a (say) linear code C0 ⊆ Fn
2 and a collection

of tuples W ⊆ [n]k, we define it’s “direct-sum lifting" as C = dsumW(C0) ⊆ F
|W|
2 where

dsumW(C0) :=
{
(zi1 + · · ·+ zik)(i1,...,ik)∈W | z ∈ C0

}
.

It is easy to see that if C0 is ε0-balanced for a constant ε0, then taking W = [n]k results in

dsumW(C0) being ε-balanced with ε = εk
0 (though with vanishing rate). A standard sam-

pling argument shows that a random W ⊆ [n]k with |W| = O(n/ε2) also suffices, while

yielding rate Ω(ε2). Rozenman and Wigderson [Bog12] suggested a derandomization of

this argument using a “pseudorandom" W constructed from iteratively considering the

edges from larger and larger expanders graphs. While this result can be shown to achieve

a rate of Ω(ε4+o(1)), Ta-Shma achieves a rate of Ω(ε2+o(1)) using a carefully constructed

sub-collection of walks on an expander with a special form.
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The above results show that pseudorandomness can be used to amplify distance,

since the collections W above behave like a random W. However, finding decoding al-

gorithms for such codes requires understanding properties of these collections which are

unlike a random W, since random collections yield codes with (essentially) random gen-

erator matrices, where we do not expect efficient algorithms.

Our results can be viewed as showing that when the collection W satisfies a form

of “structured multi-scale pseudorandomness" property 1 called splittability (identified in

previous work), it can be exploited for algorithm design. One can think of splittability as

capturing properties of the complete set [n]k, which are not present in a (sparse) random

W ⊆ [n]k. For the case of k = 4, when W = [n]4, if we consider a graph between

pairs (i1, i2) and (i3, i4), which are connected when (i1, . . . , i4) ∈ W, then this defines an

expanding (complete) graph when W = [n]4. On the other hand, for a random W of size

O(n), such a graph is a matching with high probability. Splittability requires various such

graphs defined in terms of W to be expanders.

Definition 5.1.3 (Splittability, informal). Given W ⊆ [n]k and a, b ∈ [k], let W[a, b] ⊆

[n]b−a+1 denote the tuples obtained by considering (ia, . . . , ib) for every (i1, . . . , ik) ∈ W. We

say W can be τ-split at position t, if the bipartite graph with vertex sets W[1, t] and W[t + 1, k],

edge-set W, and (normalized) biadjacency matrix St ∈ RW[1,t]×W[t+1,k], is an expander satisfy-

ing σ2(St) ≤ τ. We say that W is τ-splittable if for all 1 ≤ a ≤ t < b ≤ k, W[a, b] can be τ-split

at position t.

Note that when k = 2, this coincides with the definition of (bipartite) graph expan-

sion. It is also easy to show that collections of length-(k − 1) walks on a graph with

second singular value λ, satisfy the above property with τ = λ. The sub-collections used

1. As discussed later, there are several notions of “structured pseudorandom” for (ordered and un-
ordered) hypergraphs. We describe splittability here, since this is the one directly relevant for our algorith-
mic applications.
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by Ta-Shma can also be shown to splittable (after a a slight modification) and we recall

this proof from [JQST20] in Appendix D.1.

The key algorithmic component in our decoding results, is a general list decoding re-

sult for codes constructed via direct-sum operations, which reduces the task of list decod-

ing for dsumW(C0) to that of unique decoding for the code C0, when W is τ-splittable

for an appropriate τ. The splittability property was identified and used in previous

work [AJQ+20, JQST20], for the analysis of SoS based algorithms, which obtained the

above reduction in NOε(1) time. Regularity based methods also allow for near-linear time

algorithms in this general setting of direct-sum codes, with a simpler and more transpar-

ent proof (and improved dependence of the list decoding radius on τ and k).

Theorem 5.1.4 (List Decoding Direct Sum (informal version of Theorem 5.5.1)). Let C0 ⊆

Fn
2 be an ε0-balanced linear code, which is unique-decodable to distance (1−ε0)/4 in time T0. Let

W ⊆ [n]k be a τ-splittable collection of tuples. Let C = dsumW(C0) be ε-balanced, and let β be

such that

β � max

{
√

ε,
(

τ · k3
)1/2

,
(

1
2
+ 2ε0

)k/2
}

.

Then, there exists a randomized algorithm, which given ỹ ∈ FW
2 , recovers the list

Lβ(ỹ) := {y ∈ C | ∆(ỹ, y) ≤ 1/2− β} ,

with probability at least 1− o(1), in time Õ(Cβ,k,ε0
· (|W|+ T0)), where Ck,β,ε0

only depends on

k, β and ε0.

Splittable Regularity. The technical component of our results is a novel understanding

of splittable structures, via weak regularity lemmas. This provides a different way of

exploiting “structured pseudorandomness" properties in hypergraphs, which may be of

interest beyond applications considered here.
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For the case of graphs (i.e., k = 2), several weak regularity lemmas are known

which can be applied to (say) dense subgraphs of an expanding graph [RTTV08, TTV09,

COCF09, BV20]. As in the Frieze-Kannan [FK96] weak regularity lemma for dense graphs,

these lemmas decompose the adjacency matrix AW′ of a subgraph W′ ⊆W, as a weighted

sum of a small number of cut matrices (1S`1
T
T`

for S`, T` ⊆ [n]), such that one can use this

decomposition to count the number of edges between any subsets S, T ⊆ [n] i.e.,

∣∣∣∣∣1TS
(

AW′ −∑
`

c` · 1S`1
T
T`

)
1T

∣∣∣∣∣ ≤ ε · |W| .

This can be thought of as computing an “approximation” of AW′ using a small number

of cut matrices 1Sj
1TTj

, which is “indistinguishable” by any cut matrix 1S1TT .

More generally, one can think of the above results as approximating any function

g : W → [−1, 1] (with g = 1W′ in the example above) with respect to a family of "split"

functions F ⊆ { f : [n]→ [−1, 1]}⊗2, where the approximation itself is a sum of a small

number of of functions from F i.e., for all f1, f2 ∈ F∣∣∣∣∣
〈

g−∑
`

c` · f`,1 ⊗ f`,2 , f1 ⊗ f2

〉∣∣∣∣∣ ≤ ε · |W| .

Our regularity lemma for splittable W ⊆ [n]k, extends the above notion of approximation,

using k-wise split functions of the form f1 ⊗ · · · ⊗ fk. We obtain near-linear time weak

regularity decompositions for classes of k-wise cut functions of the form

CUT⊗k := {±1S1
⊗ · · · ⊗ 1Sk

| S1, . . . , Sk ⊆ [n]},

and also for signed version of these k-wise cut functions

CUT⊗k
± := {±χS1

⊗ · · · ⊗ χSk
| S1, . . . , Sk ⊆ [n]},
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where χS = (−1)1S . For our decoding results, we will use CUT⊗k
± . Our near-linear time

weak regularity decomposition result is given next.

Theorem 5.1.5 (Efficient Weak Regularity (informal version of Theorem 5.4.11)). Let W ⊆

[n]k and let F be either CUT⊗k or CUT⊗k
± . Suppose g ∈ R[n]k is supported on W and has

bounded norm. For every δ > 0, if W is τ-splittable with τ = O(δ2/k3), then we can find

h = ∑
p
`=1 c` · f` in Õk,δ(|W|) time, where p = O(k2/δ2), f` ∈ F and c` ∈ R, such that h is a

good approximator to g in the following sense

max
f∈F

〈g− h, f 〉 ≤ δ · |W| ,

where the inner product is over the counting measure on [n]k.

We note that an existential version of the above theorem follows known abstract ver-

sions of the Frieze-Kannan regularity lemma [TTV09, BV20], via a relatively simple use of

splittability. However, making a black-box application of known regularity lemmas algo-

rithmic, requires computing a form of "tensor cut-norm", which is believed to be hard to

even approximate in general2 (unlike the matrix case). The nontrivial component of the

result above, is obtaining a regularity lemma which allows for a near-linear time computa-

tion, while still achieving parameters close to the existential version.

Related Work. As discussed above, decoding results for Ta-Shma’s codes were derived

earlier using algorithms based on the SoS hierarchy [AJQ+20, JQST20]. The biggest ad-

vantage of the present work being the near optimal (i.e., near linear) dependence of the

running time on block length of the code whereas this dependencce is at best a large

2. Strictly speaking, we only need to approximate this for “splittable" tensors. It is possible that one
could use existing regularity lemmas black box, and use splittability to design a fast algorithm for tensor
cut-norm. In our proof, we instead choose to use the matrix cut-norm algorithms as black-box, and use
splittability to modify the proof of the regularity lemma.

274



polynomial function in [JQST20]. However, in some regimes the dependence of the de-

conding time on ε is polylogarithmic in [JQST20] wheares here it is super exponential.

Therefore, our work and [JQST20] are incomparable. We will comment more on their

difference at the end of this section. A common thread in the SoS algorithms is to re-

late the task of decoding, to that of solving instances of constraint satisfaction prob-

lems with k variables in each constraint (k-CSPs). The original weak regularity lemma

of Frieze and Kannan [FK96] was indeed motivated by the question of approximately

solving k-CSPs on dense structures (see also [KV09]). Several extensions of the Frieze-

Kannan lemma are known, particularly for various families of sparse pseudorandom

graphs [KR02, RTTV08, TTV09, OGT15, BV20]. Oveis-Gharan and Trevisan [OGT15] also

proved a new weak regularity lemma for “low threshold-rank" graphs, which was used

to obtain approximation algorithms for some 2-CSPs, where the previously known algo-

rithms used the SoS hierarchy [BRS11, GS11]. Our work can be viewed as an extension of

these ideas to the case of k-CSPs.

Ideas based on regularity lemmas, were also employed in the context of list decod-

ing of Reed-Muller codes, by Bhowmick and Lovett [BL18]. They use analogues of the

abstract weak regularity lemma [TTV09] and the Szemerédi regularity lemma over finite

fields, but these are only used to prove bounds on the list size, rather than in the algo-

rithm itself. On the other hand, our decoding algorithm crucially uses the decomposition

obtained via our weak regularity lemma for (real-valued functions on) splittable struc-

tures.

In general, expansion phenomena have a rich history of interaction with coding the-

ory (e.g., [GI01, Gur04, GI05, RWZ20]) including to the study of linear (or near-linear) time

decoding backing to the seminal work of Sipser and Spielman [SS96]. The codes in [SS96]

were good codes, though not near optimal in terms of distance-rate trade-off. Several

other notions of “structured pseudorandomness” for hypergraphs (referred to as high-
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dimensional expansion) have also been considered in literature, which also have connec-

tions to the decoding of good codes. In particular, the notion of “double sampler” was

used to obtain algorithms for the list decoding for direct-product codes [DHK+19]. The

notions of local spectral expansion [DK17], cosystolic expansion [EK16b], and multilayer

agreement samplers [DDHRZ20], are also used to connect structured pseudorandomness

to the design of locally testable codes. The notion of splittability was also studied for

unordered hypergraphs in terms of “complement walks” by Dinur and Dikstein [DD19],

and in terms of “swap walks” in [AJT19], for high-dimensional expanders defined via

local spectral expansion. The concept of splittability also arose in the ealier work of Mos-

sel [Mos10] when giving bounds to the expected value of products of low influence func-

tions3.

We now give more details on some of the differences between our work and [JQST20]

in the case of unique decoding. For a Ta-Shma code of block length N, distance 1/2− ε

and rate Ω(ε2+α) where α > 0 quantifies how far we are from the Gilbert–Varshamov pa-

rameters4, we will consider a few scenarios for the decoding time. The biggest advantage

of the present work is a near linear dependence of the running time on the block length N,

i.e., Õ(exp(exp(polylog(1/ε))) · N) time, whereas the decoders in [JQST20] take Oε(Nγ)

with γ is at least a large constant (and in some cases γ grows with 1/ε). More preceily,

for constant α = O(1) their decoders take O(log(1/ε)O(1) · NOα(1)), and for α = α(ε)

they take O(Npoly(1/ε)) time. On the other hand, our decoding times have a super ex-

ponential dependence on ε whereas this dependence can be polylogarithmic in [JQST20].

Roughly speaking, the use of Sum-of-Squares leads to a larger polynomial dependence on

the block length while the use of a regularity based approach leads to large dependence

on ε. It is an open problem to find a decoding algorithm having at the same time a linear

3. We thank the announymous reviewer for bringing the work [Mos10] to our attention.

4. In Ta-Shma’s construction, the exponent α can be taken to be a constant or a suitable function of ε that
vanish with ε.
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or near-linear dependence on N and a polynomial dependence on ε.

5.2 A Technical Overview

We now give a more detailed overview of some of the technical components of our proof.

Splittability. The key structural property used for our algorithmic and structural re-

sults, is the “structured pseudorandomness" of ordered hypergraphs W ⊆ [n]k, which we

call splittability. The canonical example one can think of for this case, is a collection of all

length-(k− 1) walks on a (say) d-regular expander graph G on n vertices. Note that this

satisfies |W[a, b]| = db−a · n, where W[a, b] represents the collection of sub-tuples with

coordinates between indices a and b i.e., portions of the walks between the ath and bth

step. We will restrict our discussion in this paper only to d-regular collections W ⊆ [n]k

satisfying |W[a, b]| = db−a · n.

We briefly sketch why the collection of length-3 walks (i.e., the case k = 4) is splittable.

Recall that splittability requires various graphs with sub-tuples to be expanding, and in

particular consider the graph between W[1, 2] and W[3, 4], with edge-set W[1, 4]. If E(G)

is the set of edges in G included with both orientations, then note that W[1, 2] = W[3, 4] =

E(G), and (i1, i2), (i3, i4) are connected iff (i2, i3) ∈ E(G). If M ∈ RW[1,2]×W[3,4] denotes

the biadjacency matrix of the bipartite graph H on W[1, 2]×W[3, 4], then up to permuta-

tions of rows and columns, we can write M as AG⊗ Jd/d, where Jd denotes the d× d all-1s

matrix and AG is the normalized adjacency matrix of G, since each tuple (i2, i3) ∈ E(G)

contributes d2 edges in H (for choices of i1 and i4). Thus σ2(M) = σ2(AG), which is small

if G is an expander. A similar argument also works for splits in other positions, and for

longer walks.

The above argument can also be extended to show that the sub-collections of walks

277



considered by Ta-Shma (after a slight modification) are splittable, though the structure

and the corresponding matrices are more involved there (see Appendix D.1).

Regularity for graphs and functions. We first consider an analytic form of the Frieze-

Kannan regularity lemma (based on [TTV09]). Let g : X → [−1, 1] be any function on a

finite space X with an associated probability measure µ, and let F ⊆ { f : X → [−1, 1]}

be any class of functions closed under negation. Say we want to construct a “simple

approximation/decomposition” h, which is indistinguishable from g, for all functions in

f i.e.,

〈g− h, f 〉µ = E
x∼µ

[(g(x)− h(x)) · f (x)] ≤ δ ∀ f ∈ F .

We can view the regularity lemma as saying that such an h can always be constructed as a

sum of 1/δ2 functions from F . Indeed, we can start with h(0) = 0, and while there exists

f` violating the above condition, we update h(`+1) = h(`) + δ · f`. The process must stop

in 1/δ2 steps, since ‖g− h(`)‖2 can be shown to decrease by δ2 in every step.

∥∥∥g− h(`)
∥∥∥2

µ
−
∥∥∥g− h(`+1)

∥∥∥2

µ
= 2δ ·

〈
g− h(`), f`

〉
µ
− δ2 · ‖ f`‖2

µ ≥ δ2 .

In fact, the above can be seen as gradient descent for minimizing the convex function

F(h) = sup f∈F 〈g− h, f 〉µ. Taking X = [n]2 with µ as uniform on [n]2, g = 1E(G) for a

(dense) graph G, and F as all functions (cut matrices) of the form ±1S1TT yields the weak

regularity lemma for graphs, since we get h = ∑` c` · f` = ∑` c` · 1S`1
T
T`

such that

〈g− h, f 〉µ ≤ δ ∀ f ∈ F ⇔ 1
n2 ·

∣∣∣∣∣EG(S, T)−∑
`

c` |S` ∩ S| |T` ∩ T|
∣∣∣∣∣ ≤ δ ∀S, T ⊆ [n] .

Note that the inner product in the above analytic argument can be chosen to be according

to any measure on X , and not just the uniform measure. In particular, taking W ⊆ [n]2

to be the edge-set of a (sparse) d-regular expander with second singular value (say) λ,
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and µ = µ2 to be uniform over W, we obtain the regularity lemma for subgraphs of

expanders. In this case, after obtaining the approximation with respect to µ, one shows

using the expander mixing lemma that if 〈g− h, f 〉µ2
≤ δ, then 〈g− (d/n) · h, f 〉µ1⊗µ1

≤

(d/n) · δ′, where µ1 denotes the uniform measure on [n] and δ′ = δ + λ. This gives a

sparse regularity lemma, since for G ⊆W and g = 1G,

〈
g−

(
d
n

)
h, f
〉

µ⊗2
1

≤ d
n
· δ′ ∀ f ∈ F ⇔

∣∣∣∣∣EG(S, T)−∑
`

c` ·
d
n
|S` ∩ S| |T` ∩ T|

∣∣∣∣∣ ≤ δ′ ·nd ∀S, T .

The algorithmic step in the above proofs, is finding an f` such that 〈g− h, f`〉 > δ. For

the function class F corresponding to cut matrices, this corresponds to solving a prob-

lem of the form maxS,T

∣∣∣1TS M1T

∣∣∣ for an appropriate matrix M at each step. This equals

the cut-norm and can be (approximately) computed using the SDP approximation algo-

rithm of Alon and Naor [AN04]. Moreover, this can be implemented in near-linear time

in the sparsity of M, using known fast, approximate SDP solvers of Lee and Padmanab-

han [LP20] or of Arora and Kale [AK07] (see Section 5.4.5 for details).

Splittable regularity. For our regularity lemma, the class F comprises of “k-split func-

tions” of the form f1⊗ · · · ⊗ fk, where for each ft can be thought of as 1St (or (−1)1St ) for

some St ⊆ [n]. An argument similar to the one above, with the measure µk uniform on

W ⊆ [n]k, can yield an existential version of the splittable regularity lemma, similar to the

one for expander graphs (we now transition from µk to µ⊗k
1 using a simple generalization

of the expander mixing lemma to splittable collections). However, the algorithmic step in

the above procedure, requires computing

max
f1,..., fk∈F

〈g− h, f1 ⊗ · · · ⊗ fk〉

Unfortunately, such an algorithmic problem is hard to even approximate in general, as

opposed to the 2-split case for graphs. Another approach is to first compute an approxi-
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mation of a given g : W → [−1, 1], in terms of 2-split functions of the form f1⊗ f2, where

f1 : W[1, t] → [−1, 1] and f2 : W[t + 1, k] → [−1, 1], and then inductively approximate

f1 and f2 in terms of 2-split functions, and so on. Such an induction does yield an al-

gorithmic regularity lemma, though naively approximating the component functions f1

and f2 at each step, leads to a significantly lossy dependence between the final error, the

splittability parameter τ, and k.

We follow a hybrid of the two approaches above. We give an inductive argument,

which at step t, approximates g via ht which is a sum of t-split functions. However,

instead of simply applying another 2-split to each term in the decomposition ht to com-

pute ht+1, we build an approximation for all of ht using the regularity argument above

from scratch. We rely on the special structure of ht to solve the algorithmic problem

max f1,..., ft+1
〈ht − ht+1, f1 ⊗ · · · ⊗ ft+1〉, reducing it to a matrix cut-norm computation5.

This yields near-optimal dependence of the error on τ and k, needed for our coding ap-

plications.

Decoding direct-sum codes using regularity. We now consider the problem of decod-

ing, from a received, possibly corrupted, ỹ ∈ FW
2 , to obtain the closest y ∈ dsumW(C0)

(or a list) i.e., finding argminz0∈C0
∆(ỹ, dsumW(z0)). Let g : [n]k → {−1, 1} be defined

as g(i1, . . . , ik) = (−1)ỹ(i1,...,ik) if (i1, . . . , ik) ∈ W and 0 otherwise. Also, for any z ∈ Fn
2 ,

define the function χz as χz(i) = (−1)zi . As before, let µ1 denote the uniform measure on

5. Strictly speaking, we also need to be careful about the bit-complexity of our matrix entries, to allow
for near-linear time computation. However, all the entries in matrices we consider will have bit-complexity
Ok,δ(log n).
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[n]. Using that g is 0 outside W, and that |W| = dk−1 · n, we get

1− 2 · ∆(ỹ, dsumW(z)) = E
(i1,...,ik)∈W

[g(i1, . . . , ik) · χz(i1) · · · χz(ik)]

=
(n

d

)k−1
· E
(i1,...,ik)∈[n]k

[g(i1, . . . , ik) · χz(i1) · · · χz(ik)]

=
(n

d

)k−1
·
〈

g, χ⊗k
z

〉
µ⊗k

1
.

At this point, we modify the problem in three ways. First, instead of restricting the op-

timization to z0 ∈ C0, we widen the search to all z ∈ Fn
2 . We will be able to show that

because of the pseudorandom (distance amplification) properties of W, a good (random)

solution z found by our algorithm, will be within the unique decoding radius of C0 (with

high probability). Secondly, using the fact that for splittable W, the function g has an ap-

proximation h = ∑
p
`=1 c` · f`,1 ⊗ · · · ⊗ f`,k given by the regularity lemma, we can restrict

our search to z which (approximately) maximize the objective

〈
h, χ⊗k

z

〉
µ⊗k

1
=

p

∑
`=1

c` · ∏
t∈[k]

〈
f`,t , χz

〉
µ1

Finally, instead of searching for χz : [n] → {−1, 1}, we further widen the search to

f : [n] → [−1, 1]. A random “rounding” choosing each χz(i) independently so that

E[χz] = f should preserve the objective value with high probability. We now claim that

the resulting search for functions f maximizing
〈

h, f⊗k〉
µ⊗k

1
, can be solved via a simple

brute-force search. Note that the objective only depends on the inner products with a fi-

nite number of functions
{

f`,t
}
`∈[p],t∈[k] with range {−1, 1}. Partitioning the space [n] in

2pk “atoms” based on the values of these functions, we can check that it suffices to search

over f , which are constant on each atom. Moreover, it suffices to search the values in each

atom, up to an appropriate discretization η, which can be done in time O
(
(1/η)2pk

)
.

For the problem of list decoding ỹ up to radius 1/2 − β, we show that each z0 ∈
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C0, such that dsumW(z0) is in the list, there must be an f achieving a large value of〈
h, f⊗k〉

µ⊗k
1

which then yields a z within the unique decoding radius of z0. Since we

enumerate over all f , this recovers the entire list. Details of the decoding algorithm are

given in Section 5.5.

5.3 Preliminaries

We now introduce some notation. The asymptotic notation Õ(r(n)) hides polylogarithmic

factors in r(n).

5.3.1 Codes

We briefly recall some standard code terminology. Given z, z′ ∈ Fn
2 , recall that the relative

Hamming distance between z and z′ is ∆(z, z′) :=
∣∣{i | zi 6= z′i}

∣∣ /n. A binary code is any

subset C ⊆ Fn
2 . The distance of C is defined as ∆(C) := minz 6=z′ ∆(z, z′) where z, z′ ∈ C.

We say that C is a linear code if C is a linear subspace of Fn
2 . The rate of C is log2(|C|)/n,

or equivalently dim(C)/n if C is linear.

Definition 5.3.1 (Bias). The bias of a word z ∈ Fn
2 is defined as bias(z) :=

∣∣∣Ei∈[n](−1)zi
∣∣∣. The

bias of a code C is the maximum bias of any non-zero codeword in C.

Definition 5.3.2 (ε-balanced Code). A binary code C is ε-balanced if bias(z + z′) ≤ ε for

every pair of distinct z, z′ ∈ C.

Remark 5.3.3. For linear binary code C, the condition bias(C) ≤ ε is equivalent to C being an

ε-balanced code.
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5.3.2 Direct Sum Lifts

Starting from a code C ⊆ Fn
2 , we amplify its distance by considering the direct sum lifting

operation based on a collection W(k) ⊆ [n]k. The direct sum lifting maps each codeword

of C to a new word in F
|W(k)|
2 by taking the k-XOR of its entries on each element of W(k).

Definition 5.3.4 (Direct Sum Lifting). Let W(k) ⊆ [n]k. For z ∈ Fn
2 , we define the direct sum

lifting as dsumW(k)(z) = y such that y(i1,...,ik) = ∑k
j=1 zij

for all (i1, . . . , ik) ∈ W(k). The

direct sum lifting of a code C ⊆ Fn
2 is

dsumW(k)(C) = {dsumW(k)(z) | z ∈ C}.

We will omit W(k) from this notation when it is clear from context.

Remark 5.3.5. We will be concerned with collections W(k) ⊆ [n]k arising from length-(k− 1)

walks on expanding structures (mostly arising from Ta-Shma’s direct sum construction [TS17]).

We will be interested in cases where the direct sum lifting reduces the bias of the base

code; in [TS17], structures with such a property are called parity samplers, as they emulate

the reduction in bias that occurs by taking the parity of random samples.

Definition 5.3.6 (Parity Sampler). A collection W(k) ⊆ [n]k is called an (ε0, ε)-parity sam-

pler if for all z ∈ Fn
2 with bias(z) ≤ ε0, we have bias(dsumW(k)(z)) ≤ ε.

5.3.3 Splittable Tuples

We now formally define the splittability property for a collection of tuples W(k) ⊆ [n]k.

For 1 ≤ a ≤ b ≤ k, we define W[a, b] ⊆ [n](b−a+1) as

W[a, b] := {(ia, ia+1, . . . , ib) | (i1, i2, . . . , ik) ∈W(k)},
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and use W[a] to stand for W[a, a]. We will work with d-regular tuples in the following

sense.

Definition 5.3.7 (Regular tuple collection). We say that W(k) ⊆ [n]k is d-regular if for every

1 ≤ a ≤ b ≤ k, we have

- |W[a, b]| = db−a · n,

- W[a] = [n].

A collection W(k) being d-regular is analogous to a graph being d-regular.

Example 5.3.8. The collection W(k) of all length-(k− 1) walks on a d-regular connected graph

G = ([n], E) is a d-regular collection of tuples.

The space of functions RW[a,b] is endowed with an inner product associated to the

uniform measure µ[a,b] on W[a, b]. We use the shorthand µb for µ[1,b].

Definition 5.3.9 (Splitable tuple collection). Let τ > 0. We say that a collection W(k) ⊆ [n]k

is τ-splittable if it is d-regular and either k = 1 or for every 1 ≤ a ≤ t < b ≤ k we have

- the split operator SW[a,t],W[t+1,b] ∈ RW[a,t]×W[t+1,b] defined as

(
SW[a,t],W[t+1,b]

)
(ia,...,it),(it+1,...,ib)

:=
1 [(ia, . . . , it, it+1, . . . ib) ∈W[a, b]]

dk−t

satisfy σ2(SW[a,t],W[t+1,b]) ≤ τ, where σ2 denotes the second largest singular value.

Example 5.3.10. The collection W(k) of all length-(k − 1) walks on a d-regular a graph G =

([n], E) whose normalized adjacency matrix has second largest singular value at most τ is a col-

lection of τ-splittable tuples as shown in [AJQ+20].

Example 5.3.11. The collection W(k) of tuples arising (from a slight modification) of the direct

sum construction of Ta-Shma [TS17] is a τ-splittable as shown in [JQST20]. Precise parameters

are recalled later as Theorem D.1.1 of Appendix D.1.
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5.3.4 Factors

It will be convenient to use the language of factors, to search the decompositions iden-

tified by regularity lemmas, for relevant codewords. This concept (from ergodic theory)

takes a rather simple form in our finite settings: it is just a partition of base set X , with an

associated operation of averaging functions defined on X , separately over each piece.

Definition 5.3.12 (Factors and measurable functions). Let X be a finite set. A factor B is a

partition of the set X , and the subsets of the partition are referred to as atoms of the factor. A

function f : X → R is said to measurable with respect to B (B-measurable) if f is constant on

each atom of B.

Definition 5.3.13 (Conditional averages). If f : X → R is a function, µ is a measure on the

space X , and B is a factor, then we define the conditional average function E[ f |B] as

E [ f |B] (x) := E
y∼µ|B(x)

[ f (y)] ,

where B(x) denotes the atom containing x. Note that the function E[ f |B] is measurable with

respect to B.

We will need the following simple observation regarding conditional averages.

Proposition 5.3.14. Let h : X → R be a B-measurable function, and let f : X → R be any

function. Then, for any measure µ over X , we have

〈h, f 〉µ = 〈h, E [ f |B]〉µ .

Proof. By definition of the B-measurability, h is constant on each atom, and thus we can
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write h(x) as h(B(x)).

〈h, f 〉µ = E
x∼µ

[h(x) · f (x)] = E
x∼µ

E
y∼µ|B(x)

[h(y) · f (y)]

= E
x∼µ

[
h(B(x)) · E

y∼µ|B(x)
[ f (y)]

]

= E
x∼µ

[h(x) ·E [ f |B] (x)] = 〈h, E [ f |B]〉µ .

The factors we will consider will be defined by a finite collection of functions appear-

ing in a regularity decomposition.

Definition 5.3.15 (Function factors). LetX andR be finite sets, and letF0 = { f1, . . . , fr : X → R}

be a finite collection of functions. We consider the factor BF0
defined by the functions in F0, as

the factor with atoms {x | f1(x) = c1, . . . , fr(x) = cr} for all (c1, . . . , cr) ∈ Rr.

Remark 5.3.16. Note that when the above function are indicators for sets i.e., each f j = 1Sj
for

some Sj ⊆ X , then the function factor BF0
is the same as the σ-algebra generated by these sets6.

Also, given the functions f1, . . . , fr as above, the function factor BF0
can be computed in time

O(|X | · |R|r).

5.3.5 Functions and Measures

We describe below some classes of functions, and spaces with associated measures, aris-

ing in our proof. The measures we consider are either uniform on the relevant space, or

are products of measures on its component spaces.

6. For a finite X , the σ-algebra generated by S1, . . . , Sp ⊆ X is the smallest subset of the power set of X
containing X , S1, . . . , Sp that is closed under union, intersection and complement. This finite version will
be enough for us in this work (see [Bil95] for the general definition).
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Function classes. Let S ⊆ [n]. We define χS : [n] → {±1} as χS(i) := (−1)1i∈S (we

observe that as defined χS is not a character7). We need the following two collection of

functions for which algorithmic results will be obtained.

Definition 5.3.17 (CUT functions). We define the set of 0/1 CUT cut functions as

CUT⊗k := {±1S1
⊗ · · · ⊗ 1Sk

| S1, . . . , Sk ⊆ [n]},

and defined the set of ±1 CUT functions as

CUT⊗k
± := {±χS1

⊗ · · · ⊗ χSk
| S1, . . . , Sk ⊆ [n]}.

We will use a higher-order version of cut norm.

Definition 5.3.18. Let g ∈ R[n]k , the k-tensor cut norm is

‖g‖�⊗k := max
f∈CUT⊗k

〈g, f 〉 ,

where the inner product is over the counting measure on [n]k.

Some of our results hold for more general class of functions.

Definition 5.3.19 (t-split functions). Suppose W(k) is a regular collection of k-tuples. For

t ∈ {0, . . . , k− 1}, we define a generic class of tensor product functions Ft as

Ft ⊆
{
± f1 ⊗ · · · ⊗ ft ⊗ ft+1 | f j ∈ RW[1] for j ≤ t, ft+1 ∈ RW[t+1,k],

∥∥ f j
∥∥

∞ ≤ 1 for j ≤ t + 1
}

.

To avoid technical issues, we assume that each Ft is finite.

7. Strictly speaking χS is not a character but by identifying the elements of [n] with those of a canonical
basis of Fn

2 it becomes a character for Fn
2 .
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Fixing some F ⊆ RX , we define the set of functions that are linear combinations

of function from F with coefficients of bounded support size and bounded `1-norm as

follows

H(R0, R1,F ) :=

{ p

∑
`=1

c` · f` | p ≤ R0, ∑ |c`| ≤ R1, f` ∈ F
}

.

Measures and inner products. Recall that µ1 := µ[1,1] is the uniform measure on W[1]

(equivalently uniform measure on W[i] since W(k) is regular) and µ[t+1,k] is the uniform

measure on W[t + 1, k]. We define following measure νt as

νt := (µ1)
⊗t ⊗

(
µ[t+1,k]

)
.

Note that ν0 is the equal to µk and νk−1 is equal to µ⊗k
1 . We will need to consider inner

products of functions according to various measures defined above, which we will denote

as 〈·, ·〉µ for the measure µ. When a measure is not indicated, we take the inner product

〈 f , g〉 to be according to the counting measure on the domains of the functions f and g.

5.4 Weak Regularity for Splittable Tuples

We will show how functions supported on a (possibly) sparse splittable collection of tu-

ples W(k) ⊆ [n]k admit weak regular decompositions in the style of Frieze and Kan-

nan [FK96]. In Section 5.4.1, we start by showing an abstract regularity lemma for func-

tions that holds in some generality and does not require splittability. Next, in Section 5.4.2,

we show that splittable collections of tuples satisfy suitable (simple) generalizations of the

expander mixing lemma for graphs which we call splittable mixing lemma. By combin-

ing this abstract weak regularity decomposition with splittable mixing lemmas, we obtain

existential decomposition results for splittable tuples in Section 5.4.3. Then, we proceed

to make these existential results not only algorithmic but near-linear time computable
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in Section 5.4.4. These algorithmic results will rely on fast cut norm like approximation

algorithms tailored to our settings and this is done in Section 5.4.5. As mentioned previ-

ously, this last step borrows heavily from known results [AN04, AK07, LP20].

5.4.1 Abstract Weak Regularity Lemma

We now show a weak regularity decomposition lemma for functions that works in some

generality and does not require splittability. We now fix some notation for this section.

Let X be a finite set endowed with a probability measure µ. Let RX be a Hilbert space

endowed with inner product 〈 f , g〉µ = Eµ [ f · g] and associated norm ‖·‖µ =
√
〈·, ·〉µ.

Let F ⊆ { f : X → R | ‖ f ‖µ ≤ 1} be a finite collection of functions such that F = −F .

In a nutshell, given any g ∈ RX , the abstract weak regularity lemma will allow us

to find an approximator h, with respect to the semi-norm8 g − h 7→ max f∈F 〈g− h, f 〉,

which is a linear combinations of a certain small number of functions from F (where this

number depends only on the approximation accuracy and the norm ‖g‖µ). This means

that g and h have approximately the same correlations with functions from F . We will

produce h in an iterative procedure, where at each step an oracle of the following kind

(cf., Definition 5.4.1) is invoked.

Definition 5.4.1 (Correlation Oracle). Let 1 ≥ δ ≥ δ′ > 0 be accuracy parameters and B > 0.

We say thatOµ,B is a (δ, δ′)-correlation oracle for F if given h ∈ RX with ‖h‖2
µ = O(B) if there

exists f ∈ F with 〈h, f 〉 ≥ δ, then Oµ,B returns some f ′ ∈ F with
〈

h, f ′
〉
≥ δ′.

More precisely, our abstract weak regularity decomposition is as follows.

Lemma 5.4.2 (Abstract Weak Regularity). Let Oµ,B be a (δ, δ′)-correlation oracle for F with

δ ≥ δ′ > 0. Let g : X → R satisfy ‖g‖2
µ ≤ B. Then, we can find h = ∑

p
`=1 c` · f` ∈

8. See [Rud91, Chapter 1] for a definition of semi-norm.
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H(B/(δ′)2, B/δ′,F ) with f` ∈ F , c` ∈ [δ′/(1 + δ′/
√

B)p, δ′] and ‖h‖2
µ ≤ B such that

max
f∈F

〈g− h, f 〉µ ≤ δ.

Furthermore, if Oµ,B runs in time TOµ,B
, then h can be computed in

Õ
(

poly(B, 1/δ′) · (TOµ,B
+ |Supp(µ)|)

)

time, where Supp(µ) is the support of µ. The function h is constructed in Algorithm 5.4.3 as the

final function in a sequence of approximating functions h(`) ∈ H(B/(δ′)2, B/δ′,F ).

The proof is based on the following algorithm.

Algorithm 5.4.3 (Regularity Decomposition Algorithm).

Input g : X → R

Output h = ∑
p
`=1 c` · f`

- Let Π be the projector onto the convex ball {g′ ∈ RX |
∥∥g′
∥∥2

µ ≤ B}.

- Let ` = 0 and h(`) = 0

- While max f∈F
〈

g− h(`), f
〉

µ
≥ δ:

– ` = `+ 1

– Let f` ∈ F be such that
〈

g− h(`−1), f`
〉

µ
≥ δ′ (Correlation OracleOµ,B Step)

– Let c` = δ′

– h(`) = Π(h(`−1) + c` · f`)

- Let p = `

- return h = ∑
p
`=1 c` · f`
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We will need the following general fact about projections9 onto a convex body.

Fact 5.4.4 (Implicit in Lemma 3.1 of [Bub15]). Let Y be a compact convex body in a finite

dimensional Hilbert space V equipped with inner product 〈·, ·〉ν and associated norm ‖·‖ν. Let

ΠY be projector onto Y . Then, for y ∈ Y and x ∈ V , we have

‖y− x‖2
ν ≥

∥∥y−ΠY (x)
∥∥2

ν +
∥∥ΠY (x)− x

∥∥2
ν .

Proof of Lemma 5.4.2. We will show that the norm of
∥∥∥g− h(`)

∥∥∥
µ

strictly decreases as the

algorithm progresses. Computing we obtain

∥∥∥g− h(`)
∥∥∥2

µ
=
∥∥∥g−Π(h(`−1) + c` · f`)

∥∥∥2

µ

≤
∥∥∥g− (h(`−1) + c` · f`)

∥∥∥2

µ
−
∥∥∥(h(`−1) + c` · f`)−Π(h(`−1) + c` · f`)

∥∥∥2

µ
(By Fact 5.4.4)

≤
∥∥∥g− (h(`−1) + c` · f`)

∥∥∥2

µ

=
∥∥∥g− h(`−1)

∥∥∥2

µ
+ c2

` · ‖ f`‖2
µ − 2c` ·

〈
g− h(`−1), f`

〉
µ

≤
∥∥∥g− h(`−1)

∥∥∥2

µ
− (δ′)2

where the inequality follows from c` = δ′, the bound ‖ f`‖µ ≤ 1 and

〈
g− h(`−1), f`

〉
µ
≥ δ′.

Since ‖g‖2
µ ≤ B and

∥∥∥g− h(`)
∥∥∥2

µ
decreases by at least (δ′)2 in each iteration, we conclude

that the algorithm halts in at most p ≤ B/(δ′)2 steps.

By construction each c` is initialized to δ′ and can not increase (it can only decrease

due to projections). Thus, we obtain ∑
p
`=1 |c`| ≤ p · δ′ ≤ B/δ′. Also by construction

at termination ‖h‖2
µ ≤ B. It remains to show that c` ≥ δ′/(1 + δ′/

√
B)p. Note that

9. See [Bub15, Chapter 3] for a defintion of projector.
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the projection Π(h(`−1) + c` · f`) at each iteration either does nothing to the coefficients

c`’s or scales them by a factor of at most (1 + δ′/
√

B) since
∥∥∥h(`−1)

∥∥∥
µ
+ ‖c` · f`‖µ ≤

√
B(1 + δ′/

√
B). This readily implies the claimed lower bound on the coefficients c`’s at

termination. Moreover, we have h(`) ∈ H(B/(δ′)2, B/δ′,F ) also by construction.

Running Time: The decomposition algorithm calls the correlation oracle at most p + 1

times. Since the coefficients c` always lie in [δ′/(1+ δ′/
√

B)p, δ′] ⊆ [δ′/ exp(pδ′/
√

B), δ′],

the bit complexity is C = O(pδ′/
√

B) and computing the projection (which amounts to

computing h(`)/
∥∥∥h(`)

∥∥∥
µ

if
∥∥∥h(`)

∥∥∥2

µ
> B) takes at most Õ(p2 · poly(C) · |Supp(µ)|). Then

the total running time is at most

Õ(p(TOµ,B
+ p2 · poly(C) · |Supp(µ)|)) = Õ

(
poly(B, 1/δ′) · (TOµ,B

+ |Supp(µ)|)
)

,

concluding the proof.

Remark 5.4.5. If we are only interested in an existential version of Lemma 5.4.2, we can always

use a trivial existential (δ, δ)-correlation oracle. However, to obtain weak regularity decomposi-

tions efficiently in our settings, we will later use efficient (δ, δ′)-correlation oracle with δ′ = Ω(δ).

5.4.2 Splittable Mixing Lemma

A splittable collection of tuples gives rise to several expanding split operators (see Defini-

tion 5.3.9). This allows us to show that a splittable collection satisfies some higher-order

analogues of the well known expander mixing lemmas for graphs (cf.,[HLW06][Section

2.4]) as we make precise next.

Lemma 5.4.6 (Splittable Mixing Lemma). Suppose W(k) ⊆ [n]k is a τ-splittable collection of

tuples. For every t ∈ {0, . . . , k− 2} and every f , f ′ ∈ Ft+1, we have

∣∣∣〈 f ′, f
〉

νt+1
−
〈

f ′, f
〉

νt

∣∣∣ ≤ τ.
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Proof. Let f = f1 ⊗ · · · ⊗ ft ⊗ ft+1 ⊗ ft+2 and f ′ = f ′1 ⊗ · · · ⊗ f ′t ⊗ f ′t+1 ⊗ f ′t+2. We have

∣∣∣〈 f ′, f
〉

νt+1
−
〈

f ′, f
〉

νt

∣∣∣ =

∣∣∣∣∣ t

∏
i=1

E
µ1

fi f ′i

∣∣∣∣∣ ·
∣∣∣∣ E
µ1⊗µ[t+2,k]

ft+1 f ′t+1 ⊗ ft+2 f ′t+2 − E
µ[t+1,k]

ft+1 f ′t+1 ⊗ ft+2 f ′t+2

∣∣∣∣
≤
∣∣∣∣ E
µ1⊗µ[t+2,k]

ft+1 f ′t+1 ⊗ ft+2 f ′t+2 − E
µ[t+1,k]

ft+1 f ′t+1 ⊗ ft+2 f ′t+2

∣∣∣∣ .

Let f ′′t+1 = ft+1 f ′t+1 and f ′′t+2 = ft+2 f ′t+2. Note that

E
µ1⊗µ[t+2,k]

f ′′t+1 ⊗ f ′′t+2 − E
µ[t+1,k]

f ′′t+1 ⊗ f ′′t+2 =

〈
f ′′t+1,

(
Jrec

|W[t + 2, k]| − SW[t+1],W[t+2,k]

)
f ′′t+2

〉
µ1

,

where Jrec is the (rectangular) |W[t + 1]| × |W[t + 2, k]| all ones matrix. Using the τ-

splittability assumption, we have the following bound on the largest singular value

σ

(
Jrec

|W[t + 2, k]| − SW[t+1],W[t+2,k]

)
≤ σ2

(
SW[t+1],W[t+2,k]

)
≤ τ.

Then ∣∣∣∣∣ E
µ1⊗µ[t+2,k]

ft+1 f ′t+1 ⊗ ft+2 f ′t+2 − E
µ[t+1,k]

ft+1 f ′t+1 ⊗ ft+2 f ′t+2

∣∣∣∣∣ ≤ τ,

concluding the proof.

We can iterate the preceding lemma to obtain the following.

Lemma 5.4.7 (Splittable Mixing Lemma Iterated). Suppose W(k) ⊆ [n]k is a τ-splittable

collection of tuples. For every f = f1 ⊗ · · · ⊗ fk ∈ Fk−1, we have

∣∣∣∣Eν0
f − E

νk−1
f
∣∣∣∣ ≤ (k− 1) · τ.

Proof. Let 1 ∈ Fk−1 be the constant 1 function. Note that for any t ∈ {0, . . . , k − 1} the

restriction of any f ′ ∈ Fk−1 to the support of νt which we denote by f ′|t belongs to Ft. It
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is immediate that 〈 f , 1〉νt
= 〈 f |t, 1〉νt

. Computing we obtain

∣∣∣∣Eν0
f − E

νk−1
f
∣∣∣∣ =

∣∣∣〈 f , 1〉ν0
− 〈 f , 1〉νk−1

∣∣∣ ≤ k−2

∑
i=0

∣∣∣〈 f , 1〉νi
− 〈 f , 1〉νi+1

∣∣∣
=

k−2

∑
i=0

∣∣∣〈 f |t, 1|t〉νi
− 〈 f |t+1, 1|t+1〉νi+1

∣∣∣
≤

k−2

∑
i=0

τ, (By Lemma 5.4.6)

finishing the proof.

In Section 5.4.4, we will need two corollaries of the splittable mixing lemma which we

prove now.

Claim 5.4.8. Let W(k) ⊆ [n]k be a τ-splittable collection of tuples. Let t ∈ {0, . . . , k− 2} and

ht+1 ∈ H(R0, R1,Ft+1). For every f ∈ Ft+1, we have

∣∣∣〈ht+1, f 〉νt+1
− 〈ht+1, f 〉νt

∣∣∣ ≤ τ · R1.

Proof. Since ht+1 ∈ H(R0, R1,Ft+1), we can write ht+1 = ∑` c` · f`, where f` ∈ Ft+1 and

∑` |c`| ≤ R1. By the splittable mixing lemma, cf., Lemma 5.4.6, we have

∣∣∣〈ht+1, f 〉νt+1
− 〈ht+1, f 〉νt

∣∣∣ ≤ ∑
`

|c`| ·
∣∣∣〈 f`, f 〉νt+1

− 〈 f`, f 〉νt

∣∣∣ ≤ τ · R1.

Claim 5.4.9. Let W(k) ⊆ [n]k be a τ-splittable collection of tuples. Let t ∈ {0, . . . , k− 2} and

ht+1 ∈ H(R0, R1,Ft+1). Then

∣∣∣‖ht+1‖2
νt+1

− ‖ht+1‖2
νt

∣∣∣ ≤ τ · R2
1.

Proof. Since ht+1 ∈ H(R0, R1,Ft+1), we can write ht+1 = ∑` c` · f`, where f` ∈ Ft+1 and
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∑` |c`| ≤ R1. By the splittable mixing lemma, cf., Lemma 5.4.6, we have

∣∣∣〈ht+1, ht+1〉νt+1
− 〈ht+1, ht+1〉νt

∣∣∣ ≤ ∑
`,`′
|c`| · |c`′ | ·

∣∣∣〈 f`, f`′〉νt+1
− 〈 f`, f`′〉νt

∣∣∣ ≤ τ ·R2
1.

5.4.3 Existential Weak Regularity Decomposition

Using the abstract weak regularity lemma, Lemma 5.4.2, together splittable mixing lem-

mas of Section 5.4.2, we can obtain (non-constructive) existential weak regularity decom-

positions for splittable structures.

Lemma 5.4.10 (Existential Weak Regularity for Splittable Tuples). Let W(k) ⊆ [n]k be a

τ-splittable structure. Let g ∈ RW[1]k be supported on W(k) with ‖g‖µk
≤ 1. Let F = Fk−1

(cf., Definition 5.3.19) be arbitrary. For every δ > 0, if τ ≤ O(δ2/(k − 1)), then there exists

h ∈ RW[1]k supported on O(1/δ2) functions in F such that

max
f∈F

〈g− h, f 〉 ≤ δ · |W(k)| ,

where the inner product is over the counting measure on W[1]k.

Proof. Apply the weak regularity Lemma 5.4.2, with parameters δ and δ′ equal to δ,

collection F , input function g, measure µ = µk (i.e., uniform measure on W(k)) and

a non-explicit correlation oracle based on the existential guarantee. This yields h =

∑
p
`=1 c` · f` ∈ H(1/δ2, 1/δ,F ) where

max
f∈F

〈g− h, f 〉µk
≤ δ.

Let f ∈ F . We claim that h′ = h · |W(k)| / |W[1]|k satisfies the conclusion of the current
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lemma. For this, we bound

∣∣∣|W(k)| 〈g− h, f 〉µk
−
〈

g− h′, f
〉∣∣∣ ≤ ∣∣∣|W(k)| 〈g, f 〉µk

− 〈g, f 〉
∣∣∣ +

p

∑
`=1
|c`| ·

∣∣∣∣∣|W(k)| 〈 f`, f 〉µk
− |W(k)|
|W[1]|k

〈 f`, f 〉
∣∣∣∣∣ .

The first term in the RHS above is zero since

|W(k)| 〈g, f 〉µk
= ∑

s∈W(k)
g(s) · f (s) = 〈g, f 〉 ,

where in the second equality we used that g is supported on W(k). Suppose that f =

f1⊗ · · · ⊗ fk and f` = f`,1⊗ · · · ⊗ f`,k. Set f ′` = ( f1 · f`,1)⊗ · · · ⊗ ( fk · fk,1) where ( f j · f j,1)

is the pointwise product of f j and f j,1. Note that

〈 f`, f 〉µk
= E

ν0

[
f ′`
]

and
〈 f`, f 〉
|W[1]|k

= E
νk−1

[
f ′`
]

,

where we recall that µk is equal to ν0 and µ⊗k
1 is equal to νk−1. Moreover, f ′` is the tensor

product of k functions in RX[1] of `∞-norm at most 1. By the splittable mixing lemma

(cf., Lemma 5.4.7), we have

∣∣∣∣Eν0

[
f ′`
]
− E

νk−1

[
f ′`
]∣∣∣∣ ≤ (k− 1) · τ.

Hence, we obtain

∣∣∣|W(k)| 〈g− h, f 〉µk
−
〈

g− h′, f
〉∣∣∣ ≤ p

∑
`=1
|c`| · |W(k)| ·

∣∣∣∣Eν0

[
f ′`
]
− E

νk−1

[
f ′`
]∣∣∣∣

≤
p

∑
`=1
|c`| · (k− 1) · τ · |W(k)| ≤ δ · |W(k)| ,

from which the lemma readily follows.
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5.4.4 Efficient Weak Regularity Decomposition

The goal of this section is to prove an efficient version of weak regularity that can be

computed in near-linear time. We obtain parameters somewhat comparable to those pa-

rameters of the existential weak regularity in Lemma 5.4.10 above with a mild polynomial

factor loss of Θ(1/k2) on the splittability requirement.

Theorem 5.4.11. [Efficient Weak Regularity] Let W(k) ⊆ [n]k be a τ-splittable collection of

tuples. Let g ∈ RW[1]k be supported on W(k) with ‖g‖µk
≤ 1. Suppose F is either CUT⊗k

or CUT⊗k
± . For every δ > 0, if τ ≤ δ2/(k3 · 220), then we can find h = ∑

p
`=1 c` · f` with

p = O(k2/δ2), c1, . . . , cp ∈ R and functions f1, . . . , fp ∈ F , such that ‖h‖
µ⊗k

1
≤ 2 and h is a

good approximator to g in the following sense

max
f∈F

〈
g−

(
d
n

)k−1
h, f

〉
≤ δ · |W(k)| ,

where the inner product is over the counting measure on W[1]k. Furthermore, h can be found in

Õ(22Õ(k2/δ2) · |W(k)|) time.

Warm-up: We first sketch a simpler naive algorithmic weak regularity decompoistion for

CUT⊗k whose parameters are much worse than the existential parameters of Lemma 5.4.10,

but it can be computed in near-linear time. The fast accumulation of errors will ex-

plain our motivation in designing the efficient algorithm underlying Theorem 5.4.11. The

reader only interested in the latter is welcome to skip ahead.

Lemma 5.4.12 (Naive Efficient Weak Regularity). Let W′ ⊆W(k) where W(k) is τ-splittable.

Let F be either CUT⊗k or CUT⊗k
± . For every δ > 0, if τ ≤ (O(δ))2k

, then we can find h

supported on (O(1/δ))2k
functions of F such that

max
f∈F

〈1W′ − h, f 〉 ≤ (k− 1) · δ · |W(k)| ,
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where the inner product is over the counting measure on W[1]k. Furthermore, this can be done in

time Õδ(|W(k)|).

Proof Sketch: In this sketch, our goal is to show the fast accumulation of errors when

applying the weak regularity decomposition for matrices. For simplicity, we assume that

this can be done in near-linear time on the number of non-zero entries of the matrix.

Precise details and much better parameters are given in the proof of Theorem 5.4.11.

Applying the matrix regularity decomposition to 1W′ , viewed a matrix in RW[1,k−1]×W[k]

supported on W[1, k], with accuracy parameter δ1 > 0, we get in Õδ1
(|W[1, k]|) time

∥∥∥∥∥∥1W′ −
d
n

p1

∑
`1=1

c`1
· 1S`1

⊗ 1T`1

∥∥∥∥∥∥
�

≤ δ1 · |W[1, k]| ,

where p1 = O(1/δ2
1) and ∑`1

∣∣∣c`1

∣∣∣ ≤ O(1/δ1).

In turn, for each 1S`1
viewed a matrix in RW[1,k−2]×W[k−1] supported on W[1, k− 1],

we apply the matrix regularity decomposition with accuracy parameter δ2 > 0 getting in

Õδ2
(|W[1, k− 1]|) time

∥∥∥∥∥∥1S`1
− d

n

p2

∑
`2=1

c`2,`1
· 1S`2,`1

⊗ 1T`2,`1

∥∥∥∥∥∥
�

≤ δ2 · |W[1, k− 1]| ,

where p2 = O(1/δ2
2) and ∑`2

∣∣∣c`2,`1

∣∣∣ ≤ O(1/δ2). Continuing this process inductively

with accuracy parameters δ3, . . . , δk−1, we obtain

h :=
(

d
n

)k−1 p1

∑
`1

· · ·
pk−1

∑
`k−1=1

c`1
. . . c`1,...,`k−1

· 1T`1,...,`k−1
⊗ · · · ⊗ 1T`1

,

in time Õδ1,...,δk−1
(|W(k)|). We show that h is close in k-tensor cut norm (cf., Defini-
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tion 5.3.18) to 1W′ . Computing we have

‖1W′ − h‖�⊗k ≤
k−2

∑
j=0

p1

∑
`1=1
· · ·

pj

∑
`j=1

∣∣∣c`1
. . . c`1,...,`j

∣∣∣ ·
∥∥∥∥∥∥1S`1,...,`j

−
(

d
n

)k−j−1 pj+1

∑
`j+1=1

c`1,...,`j+1
· 1S`1,...,`j+1

⊗ 1T`1,...,`j+1

∥∥∥∥∥∥
�⊗k−j

·

(
d
n

)j
·
∥∥∥∥1T`1,...,`j

⊗ · · · ⊗ 1T`1

∥∥∥∥
�⊗j

≤
k−2

∑
j=0

p1

∑
`1=1
· · ·

pj

∑
`j=1

dj ·
∣∣∣c`1

. . . c`1,...,`j

∣∣∣ ·
∥∥∥∥∥∥1S`1,...,`j

−
(

d
n

)k−j−1 p

∑
`j+1=1

c`1,...,`j+1
· 1S`1,...,`j+1

⊗ 1T`1,...,`j+1

∥∥∥∥∥∥
�

≤
k−2

∑
j=0

p1

∑
`1=1
· · ·

pj

∑
`j=1

dj ·
∣∣∣c`1

. . . c`1,...,`j

∣∣∣ · δj+1 · |W[1, k− j]|

≤ |W(k)|
k−2

∑
j=0

δj+1

j

∏
`=1

O(1/δ`).

By setting δj = Θ(δ2j
), the LHS becomes at most (k− 1) · δ · |W(k)|. �

We now proceed to prove our main result in this section, namely Theorem 5.4.11.

Fist, we establish some extra notation now. Let W(k) be a d-regular collection of tuples.

Most of our derivations which are existential hold for a generic Ft (cf., Definition 5.3.19).

However, we only derive near-linear time algorithmic results when Ft is either the CUT

functions

F0/1
t :=

{
±1S1

⊗ · · · ⊗ 1St ⊗ 1T | Sj ⊆W[1], T ⊆W[t + 1, k]
}

,
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or “signed” CUT functions

F±1
t :=

{
±χS1

⊗ · · · ⊗ χSt ⊗ χT | Sj ⊆W[1], T ⊆W[t + 1, k]
}

,

where above we recall that for S ⊆ [n], we have χS(i) = (−1)1i∈S for i ∈ [n]. Observe

that the condition Sj ⊆W[1] is equivalent to Sj ⊆W[i] since W(k) is d-regular.

For quick reference, we collect the notation needed in our algorithmic weak regularity

decomposition in the following table.

Ft :=
{
± f1 ⊗ · · · ⊗ ft ⊗ ft+1 | f j ⊆ RW[1] for i ≤ t, ft+1 ⊆ RW[t+1,k],

∥∥∥ f j

∥∥∥
∞
≤ 1

}
F0/1

t :=
{
±1S1

⊗ · · · ⊗ 1St ⊗ 1T | Sj ⊆W[1], T ⊆W[t + 1, k]
}
⊆ Ft

F±1
t :=

{
±χS1

⊗ · · · ⊗ χSt ⊗ χT | Sj ⊆W[1], T ⊆W[t + 1, k]
}
⊆ Ft

H(R0, R1,F ) :=
{

∑
p
`=1 c` · f` | p ≤ R0, ∑ |c`| ≤ R1, f` ∈ F

}
µ1 is the uniform distribution on W[1] and µ[t+1,k] is the uniform distribution on W[t + 1, k]

νt := (µ1)
⊗t ⊗

(
µ[t+1,k]

)
Our main result of this section, namely, the near-linear time weak regularity decom-

position Theorem 5.4.11, can be readily deduced from Lemma 5.4.13 below.

Lemma 5.4.13 (Efficient Weak Regularity Induction). Let W(k) ⊆ [n]k be a τ-splittable d-

regular collection of tuples. Let g ∈ F0 and t ∈ {0, . . . , k − 1} with ‖g‖µk
≤ 1. For every

δ > 0, if τ ≤ δ2/(k · 218), then there exists ht ∈ H(O(1/δ2), 28(1 + 1/k)t/δ,Ft) with

‖ht‖2
νt
≤ (1 + 1/k)t such that

max
f∈Ft

〈
g−

(
d
n

)t
ht, f

〉
νt

≤ 2 ·
(

d
n

)t
· t · δ.
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Furthermore, the function ht can be found in Õ((2t)2O(1/δ2) · |W(k)|) time.

We restate Theorem 5.4.11 below and then prove it assuming Lemma 5.4.13.

Theorem 5.4.11. [Efficient Weak Regularity] Let W(k) ⊆ [n]k be a τ-splittable collection of

tuples. Let g ∈ RW[1]k be supported on W(k) with ‖g‖µk
≤ 1. Suppose F is either CUT⊗k

or CUT⊗k
± . For every δ > 0, if τ ≤ δ2/(k3 · 220), then we can find h = ∑

p
`=1 c` · f` with

p = O(k2/δ2), c1, . . . , cp ∈ R and functions f1, . . . , fp ∈ F , such that ‖h‖
µ⊗k

1
≤ 2 and h is a

good approximator to g in the following sense

max
f∈F

〈
g−

(
d
n

)k−1
h, f

〉
≤ δ · |W(k)| ,

where the inner product is over the counting measure on W[1]k. Furthermore, h can be found in

Õ(22Õ(k2/δ2) · |W(k)|) time.

Proof. SetFt = F0/1
t ifF = CUT⊗k or setFt = F±1

t ifF = CUT⊗k
± . We apply Lemma 5.4.13

with t = k− 1, accuracy δ as δ/(2k) and input function g. This gives ht = ∑
p
`=1 c′` · f` ∈

H(O(k2/δ2), O(k/δ),Ft) such that

max
f∈Ft

〈
g−

(
d
n

)t
ht, f

〉
νt

≤ 2 ·
(

d
n

)t
· t · δ. (5.1)

Note that νt = νk−1 = µ⊗k
1 is the uniform measure on W[1]k. Since W(k) is d-regular,

|W(k)| = |W[1]|k · (d/n)k−1. Set h = ·ht. Then the guarantee in Eq. (5.1) becomes

max
f∈F

〈
g−

(
d
n

)k−1
h, f

〉
≤ δ · |W(k)| ,

where the inner product is under the counting measure. By Lemma 5.4.13, we have

‖ht‖2
νt
≤ (1 + 1/k)t ≤ e, so ‖ht‖νt

≤ 2. Then ‖h‖
µ⊗k

1
≤ 2. The running time follows

from Lemma 5.4.13 completing the proof.
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We now prove Lemma 5.4.13 above assuming the following algorithmic result which

we prove later.

Lemma 5.4.14. [Algorithmic Weak Regularity Step] Let δ > 0 and t ∈ {0, . . . , k− 2}. Let ht ∈

H(O(B/δ2), O(B/δ),Ft) with ‖ht‖2
νt
≤ B. Then there exists ht+1 ∈ H(O(B/δ2), 28B/δ,Ft+1)

with ‖ht+1‖2
νt
≤ B such that

max
f∈Ft+1

〈ht − ht+1, f 〉νt
≤ δ.

Furthermore, each ht+1 can be found in time Õ((2t)2O(1/δ2) · |W(k)|).

Proof of Lemma 5.4.13. We will prove the lemma with the following simple equivalent con-

clusion

〈
g−

(
d
n

)t
ht, f

〉
νt

≤ 2 ·
(

d
n

)t
· t · δ ⇔

〈(n
d

)t
g− ht, f

〉
νt

≤ 2 · t · δ,

which we will prove holds for every f ∈ Ft. The base case t = 0 follows immediately

by setting h0 = g. Let t ∈ {0, . . . , k− 2}. Since ht ∈ H(O(1/δ2), 28(1 + 1/k)t/δ,Ft), in-

voking Lemma 5.4.14 with accuracy parameter δ and input function ht, we obtain ht+1 ∈

H(O(1/δ2), 28(1 + 1/k)t+1/δ,Ft+1) satisfying

max
f∈Ft+1

〈ht − ht+1, f 〉νt
≤ δ. (5.2)

Let f ∈ Ft+1. We will show that ht+1 satisfies the conclusion of the lemma. Expanding
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we have

〈(n
d

)t+1
g− ht+1, f

〉
νt+1

=

〈(n
d

)t
g− ht, f

〉
νt︸ ︷︷ ︸

(i)

+
(n

d

)t
·
(n

d
〈g, f 〉νt+1

− 〈g, f 〉νt

)
︸ ︷︷ ︸

(ii)

+ 〈ht − ht+1, f 〉νt︸ ︷︷ ︸
(iii)

+ 〈ht+1, f 〉νt
− 〈ht+1, f 〉νt+1︸ ︷︷ ︸
(iv)

.

We will bound each of the terms in RHS above.

Term (i): Suppose f = f1⊗ · · · ⊗ ft+1⊗ ft+2 ∈ Ft+1. Let f ′ = f1⊗ · · · ⊗ ft⊗ f ′t+1, where

f ′t+1 = ( ft+1 ⊗ ft+2)|W[t+2,k], so that f ′ ∈ Ft. Using the induction hypothesis, we have

〈(n
d

)t
g− ht, f

〉
νt

=

〈(n
d

)t
g− ht, f ′

〉
νt

≤ 2 · t · δ.

Term (ii): Since g ∈ F0, it is supported on W(k) and so we have

〈g, f 〉νt
=

1

|W[1]|t |W[t + 1, k]| ∑
s∈W(k)

g(s) · f (s)

=
n
d
· 1

|W[1]|t+1 |W[t + 2, k]|
∑

s∈W(k)
g(s) · f (s) =

n
d
· 〈g, f 〉νt+1

.

where the second equality follows from |W[t + 1, k]| = d · |W[t + 2, k]| by the d-regular

assumption.

Term (iii): By Eq. (5.2), we have 〈ht − ht+1, f 〉νt
≤ δ.

Term (iv): For notional convenience, set R1 = 28(1+ 1/k)t+1/δ. Since ht+1 ∈ H(∞, R1,Ft+1)

and the splittability parameter τ satisfies τ ≤ δ2/(k · 218), from Claim 5.4.8 we obtain

〈ht+1, f 〉νt
− 〈ht+1, f 〉νt+1

≤ τ · R1 ≤ δ.
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Putting everything together yields

〈(n
d

)t+1
g− ht, f

〉
νt+1

≤ 2 · t · δ︸ ︷︷ ︸
(i)

+
(n

d

)t
· 0︸︷︷︸
(ii)

+ δ︸︷︷︸
(iii)

+ δ︸︷︷︸
(iv)

≤ 2 · (t + 1) · δ,

concluding the claimed inequality.

Now we use the bound ‖ht+1‖2
νt
≤ ‖ht‖2

νt
from Lemma 5.4.14 together with the split-

tability assumption τ ≤ δ2/(k · 218) to bound the norm ‖ht+1‖2
νt+1

under the new mea-

sure νt+1. Under these assumptions and using Claim 5.4.9 we get

∣∣∣‖ht+1‖2
νt+1
− ‖ht+1‖2

νt

∣∣∣ ≤ τ · R2
1 ≤

δ2

k · 218 ·
216(1 + 1/k)2(t+1)

δ2

≤ (1 + 1/k)t

k
.

where we used the bounds on τ, R1 and (1 + 1/k)(t+2) ≤ 4 for 0 ≤ t ≤ k − 2. From

the previous inequality and the induction hypothesis ‖ht‖2
νt
≤ (1 + 1/k)t, we finally get

‖ht+1‖2
νt+1
≤ (1 + 1/k)t+1 as desired.

We now show a near-linear time weak regularity decomposition for special functions

of the form ht ∈ H(O(1/δ2), O(1/δ),Ft) that admit a tensor product structure. The

goal is to design a correlation oracle that exploits the special tensor product structure of

the function (ht − h(`)t+1), where h(`)t+1 is the `th approximator of ht in the abstract weak

regularity algorithm (cf., Algorithm 5.4.3).

Lemma 5.4.14. [Algorithmic Weak Regularity Step] Let δ > 0 and t ∈ {0, . . . , k− 2}. Let ht ∈

H(O(B/δ2), O(B/δ),Ft) with ‖ht‖2
νt
≤ B. Then there exists ht+1 ∈ H(O(B/δ2), 28B/δ,Ft+1)

with ‖ht+1‖2
νt
≤ B such that

max
f∈Ft+1

〈ht − ht+1, f 〉νt
≤ δ.
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Furthermore, each ht+1 can be found in time Õ((2t)2O(1/δ2) · |W(k)|).

Our correlation oracle for higher-order tensors will make calls to a correlation oracle

for matrices Theorem 5.4.15 (i.e., 2-tensors) stated below. This matrix oracle is presented

in Section 5.4.5 and it follows from a simple combination of a matrix cut norm approxima-

tion algorithm by Alon and Naor [AN04] with known fast SDP solvers for sparse matrices

such as those by Lee and Padmanabhan [LP20] and Arora and Kale [AK07].

Theorem 5.4.15. [Alon–Naor Correlation Oracle] Let F be either CUT⊗2 or CUT⊗2
± and µ be

the uniform measure supported on at most m elements of [n′]× [n′]. There exists an algorithmic

(δ, αAN · δ)-correlation oracle Oµ,B running in time TOµ,B
= Õ

(
poly(B/δ) · (m + n′)

)
, where

αAN ≥ 1/24 is an approximation ratio constant.

Proof. We will apply the abstract weak regularity lemma, cf.,Lemma 5.4.2, withF = Ft+1,

δ, δ′ = δ/28 and µ = νt. This will result in a function fromH(O(B/δ2), 28B/δ,Ft+1).

Correlation oracle task: To make this application take near-linear time, we need to specify

a correlation oracle Oνt = Oνt,O(1) and now we take advantage of the special tensor

structure in our setting. We want an oracle that given

ht =
p

∑
`=1

c` · g`, g` ∈ Ft, g` = g`,1 ⊗ · · · ⊗ g`,t ⊗ g`,t+1︸ ︷︷ ︸
∈RW[t+1,k]

and

ht+1 =
p

∑
`=1

c′` · g
′
`, g′` ∈ Ft+1, g′` = g′`,1 ⊗ · · · ⊗ g′`,t ⊗ g′`,t+1︸ ︷︷ ︸

∈RW[1]

⊗ g′`,t+2︸ ︷︷ ︸
∈RW[t+2,k]

,

if there exists

f = f1 ⊗ · · · ⊗ ft ⊗ ft+1︸︷︷︸
∈RW[1]

⊗ ft+2︸︷︷︸
∈RW[t+2,k]

∈ Ft+1

satisfying

〈ht − ht+1, f 〉νt
≥ δ,
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for some f ∈ Ft+1, finds f ′ ∈ Ft+1 in near-linear time such that

〈
ht − ht+1, f ′

〉
νt
≥ δ′ =

δ

28 .

Here, ht+1 is the current approximator of ht in the abstract weak regularity algorithm and,

by Lemma 5.4.2, ht+1 ∈ H(O(1/δ2), 28(1+ 1/k)t+1/δ,Ft+1). Expanding 〈ht − ht+1, f 〉νt

we get

〈ht − ht+1, f 〉νt
=

p

∑
`=1

c`
t

∏
j=1

〈
g`,j, f j

〉
µ1︸ ︷︷ ︸

γ`

·
〈

g`,t+1, ft+1 ⊗ ft+2
〉

µ[t+1,k]
−

p

∑
`=1

c′`
t

∏
j=1

〈
g′`,j, f j

〉
µ1︸ ︷︷ ︸

γ′`

·
〈

g′`,t+1 ⊗ g′`,t+2, ft+1 ⊗ ft+2

〉
µ[t+1,k]

,

where we define γ` := ∏t
j=1

〈
g`,j, f j

〉
µ1

and γ′` := ∏t
j=1

〈
g′`,j, f j

〉
µ1

for ` ∈ [p], j ∈ [t].

Suppose g`,j = fS`,j
and g′`,j = fS′`,j

for ` ∈ [p], j ∈ [t], where fS`,j
, fS′`,j

are either 1S`,j
, 1S′`,j

or χS`,j
, χS′`,j

depending on Ft being F0/1
t or F±1

t , respectively.

Sigma-algebra brute force: Now for each j ∈ [t], we form the σ-algebra Σj generated by

{S`,j, S′`,j}`∈[p] which can be done in 2p · Õ(|W[1]|) time by Remark 5.3.16 and yields at

most 2p atoms. Hence, the generation of all these σ-algebras takes at most t · 2p · Õ(|W[1]|)

time. Suppose f j = fSj
for some Sj ⊆ W[1]. Let η > 0 be an approximation parameter

to be specified shortly. For each atom σj′ ∈ Σj, we enumerate over all possible values for

the ratio
∣∣∣σj′ ∩ Sj

∣∣∣ /
∣∣∣σj′
∣∣∣ up to accuracy η. More precisely, if

∣∣∣σj′
∣∣∣ ≥ 1/η, we consider the

values

0, 1 · η, 2 · η, . . . , b1/ηc · η,

and we consider 0, 1/
∣∣∣σj′
∣∣∣ , 2/

∣∣∣σj′
∣∣∣ , . . . ,

∣∣∣σj′
∣∣∣ /
∣∣∣σj′
∣∣∣ otherwise. Let

∣∣∣Σj

∣∣∣ denote the number
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of atoms in Σj. This enumeration results in ∏t
j=1(1/η)

∣∣∣Σj

∣∣∣ configurations which allows

us to approximate any realizable values for
〈

g`,j, f j

〉
µ1

within additive error at most 4 · η

since either

〈
g`,j, f j

〉
µ1

= Eµ1

[
1S`,j
· 1Sj

]
=

∣∣∣S`,j ∩ Sj

∣∣∣
|W[1]| =

1
|W[1]| ∑

σj′⊆S`,j

∣∣∣σj′ ∩ Sj

∣∣∣ or

〈
g`,j, f j

〉
µ1

= Eµ1

[
χS`,j · χSj

]
=
|W[1]| − 2(

∣∣S`,j
∣∣+ ∣∣Sj

∣∣− 2
∣∣S`,j ∩ Sj

∣∣)
|W[1]|

=
|W[1]| − 2(

∣∣S`,j
∣∣+ ∑σj′

∣∣σj′ ∩ Sj
∣∣− 2 ∑σj′⊆S`,j

∣∣σj′ ∩ Sj
∣∣)

|W[1]| ,

according to Ft+1. We can approximate
〈

g′`,j, f j

〉
µ1

similarly. In turn, we can approxi-

mate each of the realizable values in {γ`, γ′`}`∈[p] within additive error 4 · t · η by some

configuration of fractional value assignment to the atoms of each σ-algebra.

Invoking the matrix correlation oracle: Let A := ∑`

(
c` · γ` · g`,t+1 + c′` · γ

′
` · g
′
`,t+1 ⊗ g′`,t+2

)
.

We conveniently view A as a sparse matrix of dimension |W[t + 1]| × |W[t + 2, k]| with at

most |W[t + 1, k]| non-zeros entries. Define ϕA( ft+1, ft+2) := 〈A, ft+1 ⊗ ft+2〉µ[t+1,k]
. De-

fine

OPT(A) := max
ft+1, ft+2

ϕA( ft+1, ft+2), (5.3)

where ft+1, ft+2 range over valid fSt+1
, fSt+2

(again according to kind of Ft+1 we have).

In the computation of OPT(A), we have incurred so far an additive error of at most

4 · t · η ·∑
`

(|c`|+
∣∣c′`∣∣).

Let Ã be obtained from A by zeroing out all entries of absolute value smaller than δ/8.

Note that OPT(Ã) ≥ OPT(A)− δ/8 and the absolute value of the entries of Ã lie [δ/8, O(1/δ)].
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For each entry of A, we compute a rational approximation±P/Q where Q = Θ(1/δ) and

P ∈ [1, O(1/δ)] obtaining Ã′ such that

OPT(Ã′) ≥ OPT(Ã)− δ/8 ≥ OPT(Ã) ≥ OPT(A)− δ/4.

Using Theorem 5.4.15 with accuracy parameter δ/4 and input matrix Ã′, we obtain in

TA := Õ(poly(1/δ) · |W[t + 1, k]|) time, with an extra additive error of δ/4 and a multi-

plicative guarantee of αAN, a 2-tensor f̃t+1 ⊗ f̃t+2 satisfying

ϕ
Ã
( f̃t+1, f̃t+2) ≥ αAN ·

(
OPT(A) − 2 · δ

4
− 4 · t · η ·∑

`

(|c`|+
∣∣c′`∣∣)

)
.

Since ht ∈ H(O(1/δ2), 28 · (1+ 1/k)t/δ,Ft) and ht+1 ∈ H(O(1/δ2), 28 · (1+ 1/k)t+1/δ,Ft+1),

we have ∑`(|c`|+
∣∣c′`∣∣) ≤ 210/δ and p = O(1/δ2). By choosing η ≤ O(δ2/t) appropri-

ately, we can bound

4 · t · η ·∑
`

(|c`|+
∣∣c′`∣∣) ≤ 4 · t · 210

δ
· η ≤ δ

4
.

Hence, ϕ
Ã
( f̃t+1, f̃t+2) ≥ αAN · δ/4 since we are under the assumption that OPT(A) ≥ δ.

Running Time: First, observe that with our choices of parameters the total number of

configurations mconfig is at most

mconfig ≤
t

∏
j=1

(1/η)

∣∣∣Σj

∣∣∣ ≤ (
t

δ2

)2p

≤ (2t)2O(1/δ2)
,

so that the correlation oracle Oνt takes time at most

mconfig · TA ≤ (2t)2O(1/δ2)
· Õ(poly(1/δ) · |W[t + 1, k]|) = Õ((2t)2O(1/δ2)

· |W[t + 1, k]|).
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Using the running time of the oracle Oνt , the total running time of the weak regularity

decomposition follows from Lemma 5.4.2 which concludes the proof.

5.4.5 Near-linear Time Matrix Correlation Oracles

The main result of this section, Theorem 5.4.15 below, is a near-linear time correlation or-

acle for CUT⊗2 and CUT⊗2
± . We combine the constant factor approximation algorithms

of Alon–Naor [AN04] for ‖A‖∞→1 and ‖A‖� based on semi-definite programming (SDP)

with the faster SDP solvers for sparse matrices such as those by Lee and Padmanabhan

[LP20] and by Arora and Kale [AK07]. We point out that these SDP solvers provide addi-

tive approximation guarantees which are sufficient for approximating several CSPs, e.g.,

MaxCut, but they do not seem to provide non-trivial multiplicative approximation guar-

antees for ‖A‖∞→1 or ‖A‖� in general. Since in our applications of computing regularity

decomposition we are only interested in additive approximations, those solvers provide

non-trivial sufficient approximation guarantees for ‖A‖∞→1 or ‖A‖� in our settings.

Theorem 5.4.15. [Alon–Naor Correlation Oracle] Let F be either CUT⊗2 or CUT⊗2
± and µ be

the uniform measure supported on at most m elements of [n′]× [n′]. There exists an algorithmic

(δ, αAN · δ)-correlation oracle Oµ,B running in time TOµ,B
= Õ

(
poly(B/δ) · (m + n′)

)
, where

αAN ≥ 1/24 is an approximation ratio constant.

Theorem 5.4.15 is a simple consequence of the following theorem.

Theorem 5.4.16. Let A ∈ Rn×n be a matrix of integers with at most m non-zero entries. Let

δ ∈ (0, 2−5] be an accuracy parameter. Suppose that

OPT := max
xi,yi∈{±1}

n
∑

i,j=1
Ai,jxiyj ≥ δ ·m.

Then, with high probability,i.e., on(1), we we can find in Õ (poly(‖A‖∞ /δ) · (m + n)) time
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vectors x̃, ỹ ∈ {±1}n such that

n
∑

i,j=1
Ai,j x̃iỹj ≥

1
4
·OPT,

and find sets S̃, T̃ ⊆ [n] such that

∣∣∣∣∣∣ ∑
i∈S̃,j∈T̃

Ai,j

∣∣∣∣∣∣ ≥ 1
24 · ‖A‖� ,

where ‖A‖� is the cut norm of A.

The proof of the preceding theorem will rely on the following result which encapsu-

lates the known sparse SDP solvers [AK07, LP20]. For concreteness, we will rely on [LP20]

although the guarantee from [AK07] also suffice for us.

Lemma 5.4.17. [Sparse SDP Solver Wrapper based on [LP20] and partially on [AK07]] Let

C ∈ Rn×n be a matrix with at most m non-zero entries. For every accuracy γ > 0, with high

probability we can find in time Õ((m + n)/poly(γ)) vectors u1, . . . , un ∈ Rn in the unit ball

(i.e., ‖ui‖ ≤ 1) such that that the matrix X̃i,j :=
〈

ui, uj

〉
satisfies

Tr
(
C · X̃

)
≥ max

X�0,Xi,i≤1
Tr (C · X)− γ ∑

i,j

∣∣∣Ci,j

∣∣∣ .

Proof of Theorem 5.4.16. We now implement the strategy mentioned above of combing the

approximation algorithms of Alon–Naor [AN04] with the near-linear time sparse SDP

solvers. We still need to argue that this indeed leads to the claimed approximation guar-

antees while being computable in near-linear time overall. We point out that Alon–Naor

actually give a constant factor SDP based approximation algorithm for ‖A‖∞→1 from

which a constant factor approximation algorithm for ‖A‖� can be readily deduced from
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in near-linear time incurring an extra 1/4 factor approximation loss10. Using the matrix

A, we set

C :=
1
2

 0 A

A† 0

 .

The SDP relaxation of Alon–Naor for ‖A‖∞→1 becomes

max Tr(C · X) =: SDP∗

s.t. Xi,i ≤ 1 ∀i ∈ [2n]

X � 0,

except for the constraints Xi,i ≤ 1 which they instead take to be Xi,i = 1. This technical

difference will play a (small) role in the rounding of this SDP since Alon–Naor analysis

relies on Gram vectors of X being on the unit sphere. Moreover, we will be solving this

SDP within only a weak additive approximation guarantee11. Although these technical

differences need to be handled, this will be simple to do.

Applying the solver of Lemma 5.4.17 with accuracy parameter γ = δ2/ ‖A‖∞ to the

above SDP, we obtain in Õ(poly(‖A‖∞ /δ) · (m + n)) time vectors u1, . . . , u2n ∈ R2n in

the unit ball so that the matrix X̃i,j :=
〈

ui, uj

〉
satisfy

Tr
(
C · X̃

)
≥ max

X�0,Xi,i≤1
Tr (C · X) − δ2 ·m.

By assumption, we have SDP∗ := maxX�0,Xi,i≤1 Tr (C · X) ≥ OPT ≥ δ ·m, in which case

10. In Section 5.4 of Alon–Naor [AN04], there is a transformation avoiding any loss in the approximation
ratio. Since constant factors are not asymptotically important for us, we rely on the simpler transformation
which loses a factor of 1/4. It simply consists in choosing S̃ ∈ {{i | x̃i = 1}, {i | x̃i = −1}} and T̃ ∈ {{j |
ỹj = 1}, {j | ỹj = −1}}maximizing 1t

S̃
A1T̃ , which can be done in near-linear time given as input x̃, ỹ.

11. This may not be sufficient to obtain Xi,i ≈ 1 by an extremality argument
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the above guarantee becomes

Tr
(
C · X̃

)
≥ (1− δ) · SDP∗.

To obtain diagonal entries equal to 1 in our SDP solution we simply consider the new

SDP solution X̃′ = X̃ + Λ, where Λ is the diagonal matrix defined as Λi,i := 1 − X̃i,i.

Gram vectors u′1, . . . , u′2n of X̃′ can be obtained in near-linear time from u1, . . . , u2n and Λ

by setting

u′i := ui ⊕
√

Λi,i · ei ∈ R2m ⊕R2m,

where ei ∈ R2m has a one at the ith position and zero everywhere else. Observe that for

our particular C, we have

Tr
(
C · X̃′

)
= Tr

(
C · X̃

)
.

We now proceed to round X̃′ according to the rounding scheme of Alon–Naor [AN04]

(cf.,Section 5.1) which was chosen because it is simple enough to easily afford a near-

linear time computation while providing a≈ 0.27 ≥ 1/4 approximation guarantee 12 This

rounding consists in sampling a Gaussian vector g ∼ N(0, Id) and setting x̃i := sgn
〈
u′i, g

〉
and ỹi+n := sgn

〈
u′i+n, g

〉
for i ∈ [n]. To analyze the approximation guarantee, the

following identity is used.

Fact 5.4.18 (Alon–Naor [AN04], cf.,Eq. 5). Let u, w ∈ Rd be unit vectors in `2-norm. Then

π

2
·E [sgn 〈u, g〉 sgn 〈w, g〉] = 〈u, w〉+ E

[(
〈u, g〉 −

√
π

2
sgn 〈u, g〉

)(
〈w, g〉 −

√
π

2
sgn 〈w, g〉

)]
,

where the expectations are taken with respect to a random Gaussian vector g ∼ N(0, Id).

12. Alon–Naor [AN04] have a more sophisticated rounding scheme that achieves 0.56 ≥ 1/2 approxi-
mation. In our applications, it is important to have a constant factor approximation, but the distinction
between 1/2 and the weaker 1/4 factor approximation guarantee is not asymptotically relevant.
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Using Fact 5.4.18, the expected value of the rounding, i.e.,

E

∑
i,j

Ai,j sgn
〈
u′i, g

〉
sgn

〈
u′j+n, g

〉 ,

becomes

2
π
·∑

i,j
Ai,j

〈
u′i, u′j+n

〉
+

2
π
·∑

i,j
Ai,jE

[(〈
u′i, g

〉
−
√

π

2
sgn

〈
u′i, g

〉)(〈
u′j+n, g

〉
−
√

π

2
sgn

〈
u′j+n, g

〉)]
,

As in Alon–Naor [AN04], we will use the fact that
〈
u′i, g

〉
−
√

π
2 sgn

〈
u′i, g

〉
and

〈
u′j+n, g

〉
−√

π
2 sgn

〈
u′j+n, g

〉
are themselves vectors on a Hilbert space with norm squared π/2− 1.

Then, in our setting we obtain

E

[
∑
i,j

Ai,j sgn
〈
u′i, g

〉
sgn

〈
u′j+n, g

〉]
≥ 2

π
(1− δ) · SDP∗ −

(
1− 2

π

)
· SDP∗

≥ 2
π

(
2− π

2
− δ
)
· SDP∗

≥
(

1
4
+ Ω(1)

)
· SDP∗ (Since δ ≤ 2−5)

≥
(

1
4
+ Ω(1)

)
·OPT,

as claimed. By standard techniques, this guarantee on the expected value of the rounded

solution can be used to give with high probability a guarantee of 1/4 · OPT (namely, by

repeating this rounding scheme O(poly(1/γ) · log(n)) times).

We now proceed to establish the sparse SDP solver wrapper claimed in Lemma 5.4.17.

For concreteness, we will use the following sparse SDP solver result of Lee–Padmanabhan

[LP20]. The analogous result of Arora–Kale [AK07] with slightly worse parameters also

suffices for our purposes, but the main result of [LP20] is stated in more convenient form.

Theorem 5.4.19 (Adapted from Theorem 1.1 of [LP20]). Given a matrix C ∈ Rn×n with m

non-zero entries, parameter γ ∈ (0, 1/2], with high probability, in time Õ((m + n)/γ3.5), it is
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possible to find a symmetric matrix Y ∈ Rn×n with O(m) non-zero entries and diagonal matrix

S ∈ Rn×n so that X̃ = S · expY · S satisfies

- X̃ � 0,

- X̃i,i ≤ 1 for every 1 ≤ i ≤ n, and

- Tr(C · X̃) ≥ maxX�0,Xi,i≤1 Tr (C · X)− γ ∑i,j

∣∣∣Ci,j

∣∣∣.
Furthermore, we have ‖Y‖op ≤ O(log(n)/γ) (cf.,Lemma C.2.3 of [LP20]).

Remark 5.4.20. We observe that Theorem 5.4.19 differs from Theorem 1.1 of [LP20] only by an

additional bound on ‖Y‖op. This bound is important in analyzing the error when approximating

(matrix) exponential of Y.

We now show how we can approximate the Gram vectors of the SDP solution of The-

orem 5.4.19. We rely on part of the analysis in Arora–Kale [AK07].

Claim 5.4.21. Let C ∈ Rn×n be a matrix with at most m non-zero entries and γ ∈ (0, 1/2].

Suppose X̃ = S · expY · S satisfy the conclusions of Theorem 5.4.19 given C ∈ Rn×n and

accuracy γ. Then with high probability we can find in Õ(poly(1/γ) · (m+ n)) time approximate

Gram vectors u1, . . . , un ∈ Rn such that X̃′i,j :=
〈

ui, uj

〉
satisfy

- X̃′i,i ≤ 1 for every 1 ≤ i ≤ n, and

- Tr(C · X̃′) ≥ Tr
(
C · X̃

)
− γ ∑i,j

∣∣∣Ci,j

∣∣∣.
Proof. Since X̃ = (S · exp(Y/2))(S · exp(Y/2))t, the rows of S · exp(Y/2) can be taken as

Gram vectors u1, . . . , un ∈ Rn of X̃. If we knew the rows of exp(Y/2), we could read-

ily recover these Gram vectors since S is diagonal. As observed in Arora–Kale [AK07],

computing exp(Y/2) may be computationally expensive, so instead one can approximate

the matrix-vector product exp(Y/2)u using d = O(log(n)/γ2) random Gaussian vectors
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u ∼ N(0, In). By the Johnson–Lindenstrauss Lemma and scaling by
√

n/d, with high

probability we obtain vectors ũ1, . . . , ũn satisfying for every i, j ∈ [n] say

∣∣∣〈ui, uj

〉
−
〈

ũi, ũj

〉∣∣∣ ≤ γ

6
.

In particular, whp ‖ũi‖2
2 ≤ 1 + γ/6. Thus, by normalizing the vectors ũi with ‖ũi‖2 > 1

to have `2-norm one the preceding approximation deteriorates to

∣∣∣〈ui, uj

〉
−
〈

ũi, ũj

〉∣∣∣ ≤ γ/2.

To compute each the matrix-vector product exp(Y/2)u in Õ(poly(1/γ) · (m+ n)), we rely

on the following lemma.

Lemma 5.4.22 (Arora–Kale [AK07], cf.,Lemma 6). Let TY be the time needed to compute the

matrix-vector product Yu. Then the vector v := ∑k
i=0 Y

iu/(i!) can be computed in O(k · TY)

time and if k ≥ max{e2 · ‖Y‖op , ln(1/δ)}, then ‖exp(Y)u− v‖2 ≤ δ.

By noting that ‖Y‖op ≤ O(log(n)/γ) and the time TY (cf., Lemma 5.4.22) Yu is

Õ((m+ n)/γ), applying Lemma 5.4.22 with say δ ≤ poly(γ/n) we can approximate each

exp(Y/2)u in time Õ((m + n)/γ). Therefore, the total running is Õ(poly(1/γ) · (m + n))

as claimed. Then the actual Gram vectors still satisfy

∣∣∣〈ui, uj

〉
−
〈

ũi, ũj

〉∣∣∣ ≤ γ.

Hence, we get

Tr(C · X̃′) ≥ Tr
(
C · X̃

)
− γ ∑

i,j

∣∣∣Ci,j

∣∣∣ ,

concluding the proof.

We are ready to prove Lemma 5.4.17 which is restated below for convenience.
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Lemma 5.4.17. [Sparse SDP Solver Wrapper based on [LP20] and partially on [AK07]] Let

C ∈ Rn×n be a matrix with at most m non-zero entries. For every accuracy γ > 0, with high

probability we can find in time Õ((m + n)/poly(γ)) vectors u1, . . . , un ∈ Rn in the unit ball

(i.e., ‖ui‖ ≤ 1) such that that the matrix X̃i,j :=
〈

ui, uj

〉
satisfies

Tr
(
C · X̃

)
≥ max

X�0,Xi,i≤1
Tr (C · X)− γ ∑

i,j

∣∣∣Ci,j

∣∣∣ .

Proof of Lemma 5.4.17. Follows by combining the SDP solution X̃ of Theorem 5.4.19 with

the fast approximate Gram vector computation of Claim 5.4.21, the latter yielding another

approximated SDP solution X̃′. In both of these computations, we use accuracy parame-

ter γ/2 so that

Tr(C · X̃′) ≥ Tr
(
C · X̃

)
− γ

2 ∑
i,j

∣∣∣Ci,j

∣∣∣
≥ max

X�0,Xi,i≤1
Tr (C · X)− γ

2 ∑
i,j

∣∣∣Ci,j

∣∣∣− γ

2 ∑
i,j

∣∣∣Ci,j

∣∣∣ .

Moreover, each step takes Õ(poly(1/γ) · (m + n)) which concludes the proof.

5.5 Regularity Based Decoding for Direct-Sum Codes

We now develop list-decoding algorithms for direct-sum codes, using the regularity lem-

mas obtained in the previous section. We will prove the following theorem.

Theorem 5.5.1. Let C0 ⊂ Fn
2 be a code with bias(C0) ≤ ε0, which is unique-decodable to

distance (1−ε0)/4 in time T0. Let W ⊆ [n]k be a d-regular, τ-splittable collection of tuples, and let

C = dsumW(C0) be the corresponding direct-sum lifting of C0 with bias(C) ≤ ε. Let β be such

that

β ≥ max

{
√

ε,
(

220 · τ · k3
)1/2

, 2 ·
(

1
2
+ 2ε0

)k/2
}

.
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Then, there exists a randomized algorithm, which given ỹ ∈ FW
2 , recovers the list Lβ(ỹ) :=

{y ∈ C | ∆(ỹ, y) ≤ 1/2− β} with probability 1− o(1), in time Õ(Cβ,k,ε0
· (|W|+ T0)), where

Ck,β,ε0
= (6/ε0)

2O(k3/β2)
.

To obtain the decoding algorithm, we first define a function g : [n]k → {−1, 1} sup-

ported on W as

g(i1, . . . , ik) :=


(−1)ỹ(i1,...,ik) if (i1, . . . , ik) ∈W

0 otherwise

For each z ∈ Fn
2 , we also consider the similar function χz : [n] → {−1, 1} defined as

χz(i) = (−1)zi . We first re-state the decoding problem in terms of the functions g and χz.

Claim 5.5.2. Let z ∈ Fn
2 , and let the functions g and χz be as above. Then,

∆(ỹ, dsumW(z)) ≤ 1
2
− β ⇔

〈
g, χ⊗k

z

〉
µk

=
(n

d

)k−1
·
〈

g, χ⊗k
z

〉
µ⊗k

1
≥ 2β .

Proof. We have

∆(ỹ, dsumW(z)) = E
(i1,...,ik)∼W

[
1{ỹ(i1,...,ik)

6= zi1
+···+zik

mod 2}

]
= E

(i1,...,ik)∼µk

[
1− g(i1, . . . , ik) ·∏t∈[k] χz(it)

2

]
=

1
2
− 1

2
·
〈

g, χ⊗k
z

〉
µk

.

Finally, using the fact that g is only supported on W, and |W| = dk−1 · n by d-regularity,

we have 〈g, f 〉µk
= (n/d)k−1 · 〈g, f 〉

µ⊗k
1

for any function f : [n]k → R.

Note that each element of the list Lβ(ỹ) must be equal to dsumW(z) for some z ∈ C0.

Thus, to search for all such z, we will consider the decomposition h of the function g,
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given by Theorem 5.4.11 with respect to the class of functions F = CUT⊗k
± . Since the

functions χ⊗k
z belong to F , it will suffice to only consider the inner product

〈
h, χ⊗k

z

〉
µ⊗k

1
.

Also, since the approximating function h is determined by a small number of func-

tions, say { f1, . . . , fr : [n]→ {−1, 1}}, it will suffice to (essentially) consider only the func-

tions measurable in the factor B determined by f1, . . . , fr. Recall that the factor B is sim-

ply a partition of [n] in 2r pieces according to the values of f1, . . . , fr. Also, since any

B-measurable function is constant on each piece, it is completely specified by |B| real

values. We will only consider functions taking values in [−1, 1], and discretize this space

to an appropriate accuracy η, to identify all relevant B-measurable functions with the set

{0,±η,±2η, . . . ,±1}|B|. The decoding procedure is described in the following algorithm.
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Algorithm 5.5.3 (List Decoding).

Input ỹ ∈ FW
2

Output List L ⊆ C

- Obtain the approximator h given by Theorem 5.4.11 for F = CUT⊗k
± , δ = β, and the

function g : [n]k → {−1, 1} defined as

g(i1, . . . , ik) :=


(−1)ỹ(i1,...,ik) if (i1, . . . , ik) ∈W

0 otherwise

- Let h be of the form h = ∑
p
j=1 cj · f j1 ⊗ · · · ⊗ f jk , with each f jt : [n]→ {−1, 1}. Let B be

the factor determined by the functions
{

f jt

}
j∈[p],t∈[k]

.

- Let L = ∅ and let η = 1/d(2/ε0)e. For each B-measurable function f given by a value

in Dη := {0,±η,±2η, . . . ,±1} for every atom of B:

– Sample a random function χ : [n] → {−1, 1} by independently sampling χ(i) ∈

{−1, 1} for each i, such that E[χ(i)] = f (i). Take z̃ ∈ Fn
2 to be such that χ = χz̃.

– If there exists z ∈ C0 such that

∆(z̃, z) ≤ (1− ε0)

4
and ∆(ỹ, dsumW(z)) ≤ 1

2
− β ,

then L ← L∪ {dsumW(z)}.

- Return L.

Note that by our choice of the β in Theorem 5.5.1, we have that τ ≤ β2/(220k3).

Thus, we can indeed apply Theorem 5.4.11 to obtain the function h as required by the

algorithm. To show that the algorithm can recover the list, we will need to show that

for each z such that dsumW(z) ∈ Lβ, the sampling procedure finds a z̃ close to z with
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significant probability. To analyze this probability, we first prove the following claim.

Claim 5.5.4. Let z ∈ Fn
2 and let f : [n] → Dη be a minimizer of ‖E[χz|B]− f ‖∞ among all

B-measurable functions in D|B|η . Then, over the random choice of χ such that E[χ] = f , we have

E
χ

[
〈χ, χz〉µ1

]
=
〈

f , χz
〉

µ1
≥ ‖E [χz|B]‖2

µ1
− η .

Proof. By linearity of the inner product, we have

E
χ

[
〈χ, χz〉µ1

]
= 〈E [χ] , χz〉µ1

=
〈

f , χz
〉

µ1
=
〈

f , E [χz|B]
〉

µ1
,

where the last equality used Proposition 5.3.14 and the fact that f is B-measurable. Since

E[χz|B] takes values in [−1, 1] and f is the minimizer over all functions in D|B|η , we must

have ‖E[χz|B]− f ‖∞ ≤ η. Using this pointwise bound, we get

〈
f , E [χz|B]

〉
µ1

= E
i∼µ1

[
f (i) ·E [χz|B] (i)

]
≥ E

i∼µ1

[
(E [χz|B] (i))2 − η · |E [χz|B] (i)|

]
≥ ‖E [χz|B]‖2

µ1
− η .

We next show that when z ∈ Fn
2 is such that

〈
g, χ⊗k

z

〉
is large, then the norm of the

conditional expectation E[χz|B] is also large, and hence the sampling procedure finds a z̃

close to z. When we have a z ∈ C0 with such a property, we can use z̃ to recover z using

the unique decoding algorithm for C0.

Lemma 5.5.5. Let z ∈ Fn
2 be such that

〈
g, χ⊗k

z

〉
µk

=
(n

d

)k−1
·
〈

g, χ⊗k
z

〉
µ⊗k

1
≥ 2β .

Then, we have ‖E[χz|B]‖2
µ1
≥ (β/2)2/k.
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Proof. Let h be the approximating function obtained by applying Theorem 5.4.11 to g with

approximation error δ = β. Note that we have ‖h‖
µ⊗k

1
≤ 2, and for any f ∈ CUT⊗k

± ,

(n
d

)k−1
·
〈

g−
(

d
n

)k−1
· h , f

〉
µ⊗k

1

≤ δ .

Using f = χ⊗k
z and δ = β, we get

〈
h, χ⊗k

z

〉
µ⊗k

1
≥ 2β− δ ≥ β .

Using Proposition 5.3.14, and the fact that B is defined so that all functions in the decom-

position of h are (by definition) B-measurable, we have

〈
h, χ⊗k

z

〉
µ⊗k

1

=
p

∑
j=1

cj

k

∏
t=1

〈
f jt , χz

〉
µ1

=
p

∑
j=1

cj

k

∏
t=1

〈
f jt , E [χz|B]

〉
µ1

=
〈

h, (E [χz|B])⊗k
〉

µ⊗k
1

.

Combining the above with Cauchy-Schwarz, we get

β ≤
〈

h, χ⊗k
z

〉
µ⊗k

1
≤ ‖h‖

µ⊗k
1
·
∥∥∥(E [χz|B])⊗k

∥∥∥
µ⊗k

1
= ‖h‖

µ⊗k
1
· ‖E [χz|B]‖k

µ1
.

Using ‖h‖
µ⊗k

1
≤ 2 then gives ‖E[χz|B]‖2

µ1
≥ (β/2)2/k.

Using the above results, we can now complete the analysis of the algorithm.

Proof of Theorem 5.5.1. We first argue that for any codeword z ∈ C0 such that dsumW(z) ∈

Lβ, sampling a random function χ (with E[χ] = f for an appropriate f ) finds a z̃ close to z

with significant probability. Let f ∈ DBη be the minimizer of ‖χz− f ‖∞, for such a z ∈ C0.

We have by Claim 5.5.4 that Eχ[〈χ, χz〉µ1
] ≥ ‖E[χz|B]‖2

µ1
− η. Since ∆(ỹ, dsumW(z)) ≤

1/2− β, we have by Claim 5.5.2 that
〈

g, χ⊗k
z

〉
µk
≥ 2β. Thus, by Lemma 5.5.5, we have

that ‖E[χz|B]‖2
µ1
≥ (β/2)2/k. Combining these, and using the lower bound on β, we get

321



that

E
χ

[
〈χ, χz〉µ1

]
≥

(
β

2

)2/k
− η ≥ 1

2
+ 2ε0 − η ≥ 1

2
+

3ε0
2

.

Since 〈χ, χz〉µ1
is the average of n independent (not necessarily identical) random vari-

ables {χ(i) · χz(i)}i∈[n] in the range [−1, 1], we get by Hoeffding’s inequality that

P
χ

[
〈χ, χz〉µ1

≤ 1
2
+ ε0

]
≤ P

χ

[∣∣∣∣〈χ, χz〉µ1
−E

χ

[
〈χ, χz〉µ1

]∣∣∣∣ ≥ ε0
2

]
≤ 2 · exp

(
−ε2

0 · n/8
)

.

Thus, given a good sample χ satisfying 〈χ, χz〉µ1
≥ 1/2+ ε0, we can recover the above

z ∈ C0 such that dsumW(z) ∈ Lβ, via the unique decoding algorithm for C0. Also, given

the right f , we sample a good χ with probability at least 1− 2 · exp(−ε2
0 · n/8). A union

bound then gives

P
[
L = Lβ

]
≥ 1 −

∣∣∣Lβ

∣∣∣ · 2 · exp(−ε2
0 · n/8) .

Using β ≥
√

ε, we get that
∣∣∣Lβ

∣∣∣ ≤ (1/ε) by the Johnson bound, which yields the desired

probability bound13.

Running time. Using Theorem 5.4.11, the regularity decomposition h can be computed

in time Õ(Cβ,k,ε0
· |W|). Given the functions f1, . . . , fr forming the decomposition h, the

factor B can be computed in time O(2r · n). For a chosen f in the sampling step, a sample

χ can be computed in time O(n), and the decoding problem for the corresponding z̃ can

be solved in time T0. Also, the distance ∆(ỹ, dsumW(z)) can be computed in time O(|W|).

Since the total number of sampling steps is at most (3/η)|B| and the number of functions

in the decomposition h is O(k3/β2) from Theorem 5.4.11, we get that the total number of

13. We thank the announymous reviewer for pointing out that this last part of the proof works whenever
the choice of β ensures that

∣∣Lβ

∣∣ = Oβ,ε0(1). Thus, Theorem 5.5.1 can be adpated to this more general
condition, the original Johnson bound regime condition (i.e., β ≥

√
ε) providing just a sufficient condition.
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sampling steps is (6/ε0)
2O(k3/β2)

. Thus, the total running time is bounded by Õ(Cβ,k,ε0
·

(|W|+ T0)), where Cβ,k,ε0
= (6/ε0)

2O(k3/β2)
.

5.6 Near-linear Time Decoding of Ta-Shma’s Codes

We now proceed to prove our main result, namely Theorem 5.1.1, which establishes a

near-linear time unique decoding algorithm for Ta-Shma’s codes [TS17]. It will follow

from the regularity based list decoding algorithm for direct sum codes, Theorem 5.5.1,

applied to the decoding of a slight modification of Ta-Shma’s construction from [JQST20]

that yields a splittable collection of tuples for the direct sum.

Theorem 5.1.1 (Near-linear Time Unique Decoding). For every ε > 0 sufficiently small, there

are explicit binary linear Ta-Shma codes CN,ε,α ⊆ FN
2 for infinitely many values N ∈N with

(i) distance at least 1/2− ε/2 (actually ε-balanced),

(ii) rate Ω(ε2+α) where α = O(1/(log2(1/ε))1/6), and

(iii) an r(ε) · Õ(N) time unique decoding algorithm that that decodes within radius 1/4− ε/4

and works with high probability,

where r(ε) = exp(exp(polylog(1/ε))).

We now state the properties and guarantees needed in our work of this slightly mod-

ified version of Ta-Shma’s direct sum construction of near optimal ε-balanced codes. To

make the decoding task more transparent, we will additionally require the base code in

Ta-Shma’s construction have the following technical property.

Definition 5.6.1. We say that a code has symbol multiplicity m ∈ N if it can be obtained from

another code by repeating each symbol of its codeword m times.
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Theorem D.1.1. [Ta-Shma’s Codes (implicit in [TS17])] Let c > 0 be an universal constant.

For every ε > 0 sufficiently small, there exists k = k(ε) satisfying Ω(log(1/ε)1/3) ≤ k ≤

O(log(1/ε)), ε0 = ε0(ε) > 0, and positive integer m = m(ε) ≤ (1/ε)o(1) such that Ta-Shma’s

construction yields a collection of τ-splittable tuples W = W(k) ⊆ [n]k satisfying:

(i) For every linear ε0-balanced code C0 ⊆ Fn
2 with symbol multiplicity m, the direct sum code

dsumW(C0) is:

(i.1) ε-balanced (parity sampling).

(i.2) if C0 has rate Ω(εc
0/m), then dsumW(C0) has rate Ω(ε2+o(1)) (near optimal rate)

(ii) τ ≤ exp(−Θ(log(1/ε)1/6)) (splittability).

(iii) W is constructible in poly(|W|) time (explicit construction).

Ta-Shma’s construction is based on a generalization of the zig-zag product of Rein-

gold, Vadhan and Wigderson [RVW00]. To make the exposition more self-contained, we

recall the slight modification from [JQST20] in Appendix D.1, but it is not exhaustive ex-

position. The interested reader is referred to Ta-Shma [TS17] for the original construction

for aspects not covered here.

Ta-Shma’s code construction requires an ε0-balanced base code C0 ⊆ Fn
2 whose dis-

tance will be amplified by taking the direct sum with a carefully chosen collection of

tuples W yielding an ε-balanced code C = dsumW(C0). Since our goal is to achieve near-

linear time encoding and decoding of C, we take an “off-the-shelf” base code C0 that is

linear time encodable and decodable (near-linear time also suffices). A convenient choice

is the linear binary code family of Guruswami–Indyk [GI05] that can be encoded and de-

coded in linear time. The rate versus distance trade-off is at the so-called Zyablov bound.

In particular, it yields codes of distance 1/2 − ε0 with rate Ω(ε3
0), but for our applica-

tions rate poly(ε0) suffices (or with some extra steps even any rate depending only on ε0
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suffices, see Remark 5.6.5). We will use Corollary 5.6.2 implicit in [GI05].

Corollary 5.6.2. [Implicit in Guruswami–Indyk [GI05]] For every ε0 > 0, there exists a family

of ε0-balanced binary linear codes C0 ⊆ Fn
2 of rate Ω(ε3

0) which can be encoded in Oε0(n) time

and can be decoded in O(exp(poly(1/ε0)) · n) time from up to a fraction 1/4− ε0 of errors.

Furthermore, every code in the family is explicitly specified given a binary linear code of block-

length poly(1/ε0) which can be constructed in probabilistic O(poly(1/ε0)) or deterministic

2O(poly(1/ε0)) time.

We first prove the (gentle) list decoding result of Ta-Shma’s codes.

Theorem 5.1.2 (Near-linear Time Gentle List Decoding). For every ε > 0 sufficiently small,

there are explicit binary linear Ta-Shma codes CN,ε,α ⊆ FN
2 for infinitely many values N ∈ N

with

(i) distance at least 1/2− ε/2 (actually ε-balanced),

(ii) rate Ω(ε2+α) where α = O(1/(log2(1/ε))1/6), and

(iii) an r(ε) · Õ(N) time list decoding algorithm that decodes within radius 1/2− 2−Θ((log2(1/ε))1/6)

and works with high probability,

where r(ε) = exp(exp(poly(1/ε))).

Proof. We start by dealing with a simple technical issue of making the base code in Ta-

Shma’s construction have the required symbol multiplicity. Let C ′0 ⊆ Fn′
2 be an ε0-

balanced code from Corollary 5.6.2 which we will use to obtain a base code in Ta-Shma’s

construction where ε0 > 0 is a suitable value prescribed by this construction.

Ta-Shma’s construction then takes C ′0 ⊆ Fn′
2 and forms a new code C0 ⊆ Fn

2 by

repeating each codeword symbol m ≤ (1/ε)o(1) times. By Claim 5.6.6, C0 is an ε0-

balanced code that can be unique decoded within the same (fractional) radius of C ′0 in
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time T0(n) = r · T0(n′) + Õ(r2 · n′), where T0(n′) is the running time of an unique de-

coder for C ′0. Since by Corollary 5.6.2 T0(n′) = O(exp(poly(1/ε0)) · n′) and ε0 � ε, the

decoding time of C0 becomes T0(n) = O(exp(poly(1/ε)) · n).

Let W = W(k) be a collection of tuples from Ta-Shma’s construction Theorem D.1.1 so

that C = dsumW(C0) is ε-balanced, τ ≤ exp(−Θ(log(1/ε)1/6)) and k = Ω(log(1/ε)1/3).

We will invoke our list decoding algorithm Theorem 5.5.1 whose list decoding radius

1/2− β has to satisfy

β ≥ max

{
√

ε,
(

220 · τ · k3
)1/2

, 2 ·
(

1
2
+ 2ε0

)k/2
}

.

Using our values of τ and k together with the fact that ε0 < 1 is bounded away from 1 by

a constant amount gives

β ≥ max
{√

ε, , exp(−Θ((log(1/ε))1/6)), exp(−Θ((log(1/ε))1/3))
}

.

Hence, we can take β = exp(−Θ(log(1/ε)1/6)). Now, we compute the list decoding

running proving a (crude) upper bound on its dependence on ε. By Theorem 5.5.1, the

list decoding time

Õ(Cβ,k,ε0
· (|W|+ T0(n))),

where Ck,β,ε0
= (6/ε0)

2O(k3/β2)
. For our choices of parameters, this decoding time can be

(crudely) bounded by Õ(exp(exp(poly(1/ε))) · N).

The gentle list decoding theorem above readily implies our main result for unique

decoding if we are only interested in Õε(N) decoding time without a more precise de-

pendence on ε. We prove our main result, Theorem 5.1.1, for unique decoding making

more precise the dependence of the running time on ε.
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Proof. Proof of Theorem 5.1.1 We proceed as in the proof of Theorem 5.1.2 expect that

we take β = 1/4 in the list decoding radius 1/2− β so that by performing list decoding

we can recover all codewords in the unique decoding radius of the corrupted codeword

regardless of the bias of the code CN,ε,α.

We now recompute the running time. By Theorem 5.5.1, the list decoding time

Õ(Cβ,k,ε0
· (|W|+ T0(n))),

where Ck,β,ε0
= (6/ε0)

2O(k3/β2)
. For our choices of parameters, this decoding time can be

(crudely) bounded by Õ(exp(exp(polylog(1/ε))) · N).

5.6.1 Choosing the Base Code

We now describe the (essentially) “off-the-shelf” base codes from Guruswami and In-

dyk [GI05] which we use in Ta-Shma’s construction. We will need to prove that balanced

codes can be easily obtained from [GI05]. The argument is quite simple and borrows from

standard considerations related to the Zyablov and Gilbert–Varshamov bounds.

Corollary 5.6.2. [Implicit in Guruswami–Indyk [GI05]] For every ε0 > 0, there exists a family

of ε0-balanced binary linear codes C0 ⊆ Fn
2 of rate Ω(ε3

0) which can be encoded in Oε0(n) time

and can be decoded in O(exp(poly(1/ε0)) · n) time from up to a fraction 1/4− ε0 of errors.

Furthermore, every code in the family is explicitly specified given a binary linear code of block-

length poly(1/ε0) which can be constructed in probabilistic O(poly(1/ε0)) or deterministic

2O(poly(1/ε0)) time.

Theorem 5.6.3 (Guruswami–Indyk [GI05], cf.,Theorem 5). For every γ > 0 and for every

0 < R < 1, there exists a family of binary linear concatenated codes of rate R, which can be
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encoded in linear time and can be decoded in linear time from up to a fraction e of errors, where

e ≥ max
R<r<1

(1− r− γ) · H−1
2 (1− R/r)

2
. (5.4)

H−1
2 (x) is defined as the unique ρ in the range 0 ≤ ρ ≤ 1/2 satisfying H2(ρ) = x. Every code in

the family is explicitly specified given a constant sized binary linear code which can be constructed

in probabilistic O(log(1/γ)R−1/γ4) or deterministic 2O(log(1/γ)R−1/γ4) time 14.

As stated the codes in Theorem 5.6.3 are not necessarily balanced. We will see shortly

that this can be easily achieved by choosing balanced inner codes in the concatenated

code construction of Guruswami–Indyk [GI05]. To compute bounds on the parameters,

we will use the following property about binary entropy.

Fact 5.6.4 ([GRS19],cf.,Lemma 3.3.7 abridged). Let H−1
2 be the inverse of the restriction of H2

to [0, 1/2] (where H2 is bijective). For every small enough ε > 0,

H−1
2 (x− ε2/C2) ≥ H−1

2 (x)− ε,

where C2 is a constant.

Proof of Corollary 5.6.2. To achieve a final binary code of rate R, Guruswami and Indyk [GI05]

concatenate an outer code of rate r > R and distance 1− r− γ (over a non-binary alpha-

bet of size Oγ(1)) with an inner binary linear code of rate R/r at the GV bound whose

distance ρ ∈ [0, 1/2] satisfy R/r = 1− H2(ρ) (since it is at the GV bound), or equiva-

lently ρ = H−1
2 (1− R/r). By choosing γ = Θ(ε0) and R = Θ(ε3

0) in Theorem 5.6.3, the

decoding error e can be lower bounded by letting r = Θ(ε0) so that Fact 5.6.4 implies

14. Note that dependence log(1/γ)R−1/γ4 is slightly worse than that claimed in [GI05], but not qualita-
tively relevant here nor in [GI05].
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that Eq. (5.4) becomes

e ≥ max
R<r<1

(1− r− γ) · H−1
2 (1− R/r)

2
≥ 1

4
− ε0.

To obtain codes that are ε0-balanced, we require that the inner codes used in this code

concatenation not only lie on the Gilbert–Varshamov bound but are also balanced. It

is well known that with high probability a random binary linear code at the GV bound

designed to have minimum distance 1/2−γ/2 also has maximum distance at most 1/2+

γ/2, i.e., the code is γ-balanced. Therefore, we assume that our inner codes are balanced.

For our concrete choices of parameters, ρ = 1/2 − Θ(ε0) and we also require the

inner code to be Θ(ε0)-balanced. Note that any non-zero codeword of the concatenated is

obtained as follows: each of the ≥ (1− r− γ) non-zero symbols of the outer codeword is

replaced by an inner codeword of bias bias Θ(ε0) and the remaining≤ r+γ zero symbols

are mapped to zero (since the inner code is linear). Hence, the bias of the concatenated

codeword is at most

(1− r− γ) ·Θ(ε0) + 1 · (r + γ),

which can be taken to be ε0 by suitable choices of hidden constants.

Remark 5.6.5. Guruswami–Indyk [GI05] codes have several nice properties making them a con-

venient choice for base codes in Ta-Shma’s construction, but they are not crucial here. We observe

that for our purposes we could have started with any family of good binary linear codes admitting

near-linear time encoding and decoding. From this family, we could boost its distance using a

simpler version of Ta-Shma’s construction (rounds I and II of [JQST20][Section 8]) and our near-

linear time decoder Theorem 5.5.1 for direct sum. This would result in an alternative family of

linear binary ε0-balanced codes of rate Ω(ε2+α
0 ), for some arbitrarily small constant α > 0, that

can be encoded and decoded in near-linear time. We also point out that for these base codes any

rate poly(ε0) suffices our purposes.
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To handle the technical requirement of a base code in Ta-Shma’s construction having

a symbol multiplicity property (cf., Definition 5.6.1), we use the following observation.

Claim 5.6.6. Let C0 ⊆ Fn
2 be an ε0-balanced linear code of dimension D0. Suppose that C0

is uniquely decodable within (fractional) radius δ0 ∈ (0, 1] in time T0(n). Let m ∈ N and

C ⊆ Fm·n
2 be the code formed by replicating m times each codeword from C0, i.e.,

C := {z1 · · · zm ∈ Fm·n
2 | z1 = · · · = zm ∈ C0}.

Then, C is an ε0-balanced linear code of dimension D0 that can be uniquely decoded within (frac-

tional) radius δ0 in time m · T0(n) + Õ(m2 · n).

Proof. The only non-immediate property is the unique decoding guarantees of C. Given

ỹ ∈ Fm·n
2 within δ0 (relative) distance of C. Let βi be the fraction of errors in the ith Fn

2

component ỹ. By assumption Ei∈[m]βi ≤ δ0, so there is at least one of such component

that can be correctly uniquely decoded. We issue unique decoding calls for Co on each

component i ∈ [m]. For each successful decoding say z ∈ C0, we let y = z . . . z ∈ Fm·n
2

and check whether ∆(ỹ, y) ≤ δ0 returning y if this succeeds. Finally, observe that this

procedure indeed takes at most the claimed running time.
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APPENDIX A

APPENDIX TO CHAPTER 2

A.1 From Local to Global Correlation

We include the key result we use from [BRS11], namely, their Lemma 5.4 (below). While

they proved the lemma for regular graphs, we include the details in the proof for gen-

eral weighted graphs, since even for HDXs regular at the top level, the swap graphs are

not necesarily regular. The extension to general graphs is straighforward (and [BRS11]

indicated the same) but we include the details for the sake of completeness 1.

Lemma A.1.1 (Lemma 5.4 from [BRS11] (restatement of Lemma 2.7.5)). Let G = (V, E, Π2)

be a weighted graph, {Y1, . . . , Yn} a local PSD ensemble, where we have Supp(Yi) ≤ q for every

i ∈ V, and q ≥ 0. If ε ≥ 0 is a lower bound on the expected statistical difference between

independent and correlated sampling along the edges,i.e.,

ε ≤ E
{i,j}∼Π2

[∥∥∥{Yij} − {Yi}{Yj}
∥∥∥

1

]
.

Then, conditioning on a random vertex decreases the variances,

E
i,j∼Π1

[
E
{Yj}

[
Var

[
Yi | Yj

]]]
≤ E

i∼Π1
[Var [Yi]]−

ε4

4q4 · rankε2/(4q2)(G)
.

The key ingredient in proving Lemma 5.4 is a “local to global” argument generalizing

the expander case to low threshold rank graphs. This new argument is proven in two

steps with Lemma A.1.2 being the first one.

1. For expander graphs it is possible to obtain an improved bound of Ω((ε/q)2) instead of Ω((ε/q)4)
given by Lemma A.1.1, simply by using the definition of the second smallest eigenvalue of the Laplacian.
While BRS analyzed Ei,j[

〈
vi, vj

〉2
] for low-threshold rank graphs, it is possible to directly analyze the quan-

tity Ei,j[
〈
vi, vj

〉
] for expanders, leading to the improved bound.
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Lemma A.1.2 (Adapted from Lemma 6.1 of [BRS11]). Let G be an undirected weighted graph.

Suppose v1, . . . , vn ∈ Rn are such that

E
i∼V(G)

[〈vi, vi〉] = 1, E
ij∼E(G)

[〈
vi, vj

〉]
≥ 1− ε,

but

E
i,j∼V(G)

[〈
vi, vj

〉2
]
≤ 1

m
.

Then for c > 1, we have

λ(
1− 1

c

)2
m
≥ 1− c · ε.

In particular, λm/4 ≥ 1− 2ε.

Proof. Let Y be the Gram matrix defined as Yi,j =
〈

vi, vj

〉
. Clearly, Y is positive semi-

definite. Without loss of generality suppose that the edge weights {w({i, j}) | ij ∈ E(G)}

form a probability distribution. Set w(i) = ∑j∼i w({i, j}). Let D to be the diagonal matrix

such that D(i, i) = w(i), i.e., the matrix of generalized degrees. Let A be such that Ai,j =

w({i, j})/2 and AG = D−1/2AD−1/2 be its normalized adjacency matrix.

Suppose AG = ∑n
i=1 λiuiu>i is a spectral decomposition of AG. Set Y′ = D1/2YD1/2.

For convenience, define the matrix X as X(i, j) =
〈

ui,Y′uj

〉
and set p(i) = X(i, i). We

claim that p is a probability distribution. Since Y′ is positive semi-definite, we have that

p(i) ≥ 0. Moreover, ∑n
i=1 p(i) = 1 as

1 = E
i∼V(G)

[〈vi, vi〉] = Tr(Y′) = Tr(X) =
n
∑
i=1

X(i, i) =
n
∑
i=1

p(i).
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Let m′ be the largest value in [n] satisfying λm′ ≥ 1− c · ε. By Cauchy-Schwarz2,

q =
m′

∑
i=1

p(i) ≤
√

m′

√√√√ m′

∑
i=1

p(i)2 ≤
√

m′
√

∑
i,j
(X(i, j))2 ≤

√
m′

m
,

where the last inequality follows from our assumption that

1
m
≥ E

i,j∼V(G)

[〈
vi, vj

〉2
]
=
〈
Y′,Y′

〉
= 〈X,X〉 = ∑

i,j
X(i, j)2.

Then

1− ε ≤ E
ij∼E(G)

[〈
vi, vj

〉]
= 〈A,Y〉 = 〈AG,X〉 =

n
∑
i=1

λiX(i, i),

implies that

1− ε ≤
n
∑
i=1

λi · X(i, i) ≤
m′

∑
i=1

p(i) + (1− c · ε)
n
∑

i=m′+1
p(i) = 1− c · ε (1− q) .

Finally, using the bound on q we obtain

(
1− 1

c

)√
m ≤

√
m′,

from which the lemma readily follows.

As a corollary it follows that local correlation implies global correlation.

Corollary A.1.3 (Adapted from Lemma 4.1 of [BRS11]). Let G be an undirected weighted

graph. Suppose v1, . . . , vn ∈ Rn are vectors in the unit ball such that

E
ij∼E(G)

[〈
vi, vj

〉]
≥ ρ,

2. In [BRS11], there was a minor bug in the application this Cauchy-Schwarz, which led to a bound of
(1− 1/c) instead of (1− 1/c)2 in the lemma, leading to a global correlation bound of Ω(ρ) instead of Ω(ρ2)
as indicated in Corollary A.1.3.
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then

E
i,j∼V(G)

[〈
vi, vj

〉2
]
≥ ρ2

4 · rankρ/4(G)
.

In particular, we have

E
i,j∼V(G)

[
|
〈

vi, vj

〉
|
]
≥ ρ2

4 · rankρ/4(G)
.

Proof. If all v1, . . . , vn are zero, the result trivially follows so assume that this is not the

case. Then α = Ei∼V(G)[〈vi, vi〉] > 0. Also, α ≤ 1 since the vectors lie in the unit ball. Let

v′i = vi/
√

α. By construction

E
i∼V(G)

[〈
v′i, v′i

〉]
= 1, E

ij∼E(G)

[〈
v′i, v′j

〉]
≥ ρ

α
. (A.1)

Under these assumptions we want to apply Lemma A.1.2 in the contra-positive, but first

we set some parameters. Let ρ′ = ρ/(2α), ε = 1− ρ′ and c = (1− ρ′/2)/(1− ρ′). Then

1− 1
c
=

ρ′/2
1− ρ′/2

≤ ρ′,

and

1− c · ε = ρ′

2
.

Now, considering the contra-positive of the Lemma A.1.2 under the Eq. (A.1) we obtain

E
i,j∼V(G)

[〈
v′i, v′j

〉2
]
>

1
m
≥ (ρ′)2

rankρ′/2(G)
,

since rankρ′/2(G) < (ρ′)2m as λ(ρ′)2m < ρ′/2. Or equivalently

E
i,j∼V(G)


〈

vi, vj

〉2

α2

 = E
i,j∼V(G)

[〈
v′i, v′j

〉2
]
≥ ρ2

4α2 · rankρ/(4α)(G)
≥ ρ2

4α2 · rankρ/4(G)
,
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where the last inequality follows form the fact that α ≤ 1.

To finish the proof of Lemma 5.4, we state the following Fact A.1.4 extracted from [BRS11].

Fact A.1.4 (Adapted from [BRS11]). Let {Y1, . . . , Yn} be a 2-local PSD ensemble where each

Yi can take at most q values. Suppose

ε = E
{i,j}∼Π2

[∥∥∥{Yij} − {Yi}{Yj}
∥∥∥

1

]
.

Then there exist vectors v1, . . . , vn in the unit ball such that

E
ij∼E(G)

[〈
vi, vj

〉]
≥ 1

q2 · E
ij∼Π2

[∥∥∥{Yij} − {Yi}{Yj}
∥∥∥2

1

]
≥ ε2

q2 , (A.2)

and

E
i,j∼V(G)

[
Var [Yi]− E

{Yj}

[
Var

[
Yi | Yj

]]]
≥ E

i,j∼V(G)

[∣∣∣〈vi, vj

〉∣∣∣] . (A.3)

Now we are ready to prove the key result from [BRS11] used in our proof.

Lemma A.1.5 (Lemma 5.4 from [BRS11] (restatement of Lemma 2.7.5)). Let G = (V, E, Π2)

be a weighted graph, {Y1, . . . , Yn} a local PSD ensemble, where we have Supp(Yi) ≤ q for every

i ∈ V, and q ≥ 0. If ε ≥ 0 is a lower bound on the expected statistical difference between

independent and correlated sampling along the edges,i.e.,

ε ≤ E
{i,j}∼Π2

[∥∥∥{Yij} − {Yi}{Yj}
∥∥∥

1

]
.

Then, conditioning on a random vertex decreases the variances,

E
i,j∼Π1

[
E
{Yj}

[
Var

[
Yi | Yj

]]]
≤ E

i∼Π1
[Var [Yi]]−

ε4

4q4 · rankε2/(4q2)(G)
.
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Proof. Using Eq. (A.2) there exist vectors v1, . . . , vn such that Fact A.1.4 implies

E
ij∼E(G)

[〈
vi, vj

〉]
≥ ε2

q2 .

From Corollary A.1.3 we obtain

E
i,j∼V(G)

[∣∣∣〈vi, vj

〉∣∣∣] ≥ ε4

4q4 · rankε2/(4q2)(G)
.

Finally, using Eq. (A.3) we get

E
i,j∼V(G)

[
Var [Yi]− E

{Yj}

[
Var

[
Yi | Yj

]]]
≥ E

i,j∼V(G)

[∣∣∣〈vi, vj

〉∣∣∣] ≥ ε4

4q4 · rankε2/(4q2)(G)
,

as claimed.

A.2 Harmonic Analysis on HDXs

We provide the proofs of known facts used in Section 2.5.2.

Definition A.2.1 (From [DDFH18]). We say that d-sized complex X is proper provided ker (Ui)

is trivial for 1 ≤ i < d.

We will need the following decomposition.

Claim A.2.2. Let A : V →W where V and W are finite dimensional inner product spaces. Then

V = kerA⊕ imA†.

Proof. We show that kerA =
(

imA†
)⊥

. Recall that v ∈
(

imA†
)⊥

if and only if
〈
A†w, v

〉
=

0 for every w ∈W. This is equivalent to 〈w,Av〉 = 0 for every w ∈W, implying Av = 0.
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Lemma A.2.3 (From [DDFH18]). We have

Ck =
k
∑
i=0

Ck
i .

Moreover, if X is proper then

Ck =
k⊕

i=0
Ck

i ,

and dim Ck
i = |X(i)| − |X(i− 1)|.

Proof. We induct on k. For k = 0, X(0) = {∅} and C0 = C0
0 . Now suppose k > 0. Since

Dk and Uk−1 are adjoints, we have Ck = kerDk ⊕ imUk−1 or equivalently

Ck = kerDk ⊕ Uk−1Ck−1. (A.4)

Using the induction hypothesis Ck−1 = ∑k−1
i=0 Ck−1

i . Note that

Uk−1Ck−1
i =

{
Uk−1U

k−1−ihi | hi ∈ Hi

}
= Ck

i .

Thus Ck = Ck
k + ∑k−1

i=0 Ck
i . Assuming ker (Ui) is trivial for 0 ≤ i < k we obtain

dim Ck
i = dim Hi = dim Ci − dim Ci−1 = |X(i)| − |X(i− 1)|,

where the second equality follows from Eq. (A.4). Hence dim Ck = ∑k
i=0 dim Ck

i . This

implies that each Ck
i ∩∑j 6=i Ck

j is trivial and so we have a direct sum as claimed.

Corollary A.2.4 (From [DDFH18]). Let f ∈ Ck. If X is proper, then f can be written uniquely

as

f = f0 + · · ·+ fk,

where fi ∈ Ck
i .
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APPENDIX B

APPENDIX TO CHAPTER 3

B.1 Auxiliary Basic Facts of Probability

In this section, we collect some basic facts of probability used in the text.

Fact B.1.1 (First Moment Bound). Let R be a random variable in [0, 1] with E [R] = α. Let

β ∈ (0, 1) be an arbitrary approximation parameter. Then

P [R ≥ (1− β) · α] ≥ β · α.

In particular,

P
[
R ≥ α

2

]
≥ α

2
.

Fact B.1.2 (Chernoff Bound [MU17]). Let R1, . . . , Rn be independent and identically distributed

random variables where Ri is uniformly distributed on {±1}. For every a > 0,

P

[∣∣∣∣∣ n
∑
i=1

Ri

∣∣∣∣∣ ≥ a

]
≤ 2 · exp

(
− a2

2n

)
.

Fact B.1.3 (Hoeffding Bound [MU17]). Let R1, . . . , Rn be independent random variables such

that E [Ri] = µ and P [a ≤ Ri ≤ b] = 1 for i ∈ [n]. For every β > 0,

P

[∣∣∣∣∣ 1n n
∑
i=1

Ri − µ

∣∣∣∣∣ ≥ β

]
≤ 2 · exp

(
−2 · β2 · n
(a− b)2

)
.

B.2 Further Properties of Liftings

We show that a uniformly random odd function g : {±1}k → {±1} yields a parity lifting

w.v.h.p. in k. Thus, parity liftings abound and we are not restricted to k-XOR in the frame-
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work. In fact, SOS abstracts the specific combinatorial properties of the lifting function

being able to handle them in a unified way.

Lemma B.2.1. Let k ∈N+ be odd. For every p, β, θ > 0 satisfying θ ≥
√

log(2/β)/
√

pk,

P
g

[∣∣∣Ex∼Bern(p)⊗k

[
g(χ⊗k(x))

]∣∣∣ ≥ β
]
≤ 2 · k · exp

(
−β2 ·

(
k

b(1− θ)pkc

)
/8
)

,

where g : {±1}k → {±1} is a uniformly random odd function and χ : (F2,+) → ({±1}, ·) is

the non-trivial character.

Proof. It is enough to consider p ∈ (0, 1/2] since the case p ∈ [1/2, 1) can be reduced to

the current case by taking the complement of the bit strings appearing in this analysis.

Applying the Hoeffding bound Fact B.1.3 yields

Ex∼Bern(p)⊗k [g(x)] = Ew∼Binom(k,p)

[
g(χ⊗k(x))1w∈[pk±C·pk]

]
± 2 · exp(−C2)

= Ew∼Binom(k,p)

[
g(χ⊗k(x))1w∈[pk±C·pk]

]
± β

2
,

where the last equality follows from choosing C = θ
√

pk and the assumption that θ ≥√
log(2/β)/

√
pk.

Since p ≤ 1/2, ` = ( k
b(1−θ)·p·kc) is a lower bound on the number of binary strings of

the Boolean k-hypercube in a single layer of Hamming weight in the interval [pk±C · pk].

A second application of the Hoeffding bound Fact B.1.3 gives that the bias within this

layer is

P
g

[∣∣∣Ex∈Fk
2 : ‖x‖=`

[
g(χ⊗k(x))

]∣∣∣ ≥ β/2
]
≤ 2 · exp

(
β2 · `/8

)
.

By union bound over the layers the result follows.
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B.3 Derandomization

We show how to derandomize the list decoding framework (which amounts to deran-

domize Algorithm 3.6.29) when the lifting function is a parity sampler and it satisfies a

bounded degree condition (cf Eq. (B.1)). We observe that this is the setting of our two

concrete instantiations, namely, for HDXs and expander walks. In the former case, we

work with D-flat distributions and in the latter case with walk length and graph degree

that are both functions of ε. Roughly speaking, we show that replacing a random sample

by the majority works as long as parity sampling is sufficiently strong.

Lemma B.3.1 (Majority Word). Let z∗ ∈ {±1}X(1) where X(1) = [n]. Suppose that y∗ =

dsumX(k)(z
∗) satisfy

Ez∼{Z⊗|(S,σ)}
[∣∣∣Es∼Πk

y∗s · dsum(z)s
∣∣∣] ≥ 3 · ε,

and

P
s∼Πk

[s 3 i] ≤ g(ε)
n

. (B.1)

If also dsumX(k) is a (1− ξ, 2ε)-parity sampler for some ξ ∈ (0, 1),

ξ ≥ 2 exp
(
−C · ε2 · g(ε)2 · n

)
= on(1),

where C > 0 is an universal constant and ξ ≥ 1/(n(1− ξ − on(1))), then

∣∣∣Ei∈[n]z
∗
i · z
′
i

∣∣∣ ≥ 1− 7
√

ξ,

where z′ ∈ {±1}n is the majority defined as z′i = argmaxb∈{±1}P{Z⊗|(S,σ)}[Zi = b].

Proof. Define f (z) :=
∣∣∣Es∼Πk

y∗s · dsum(z)s
∣∣∣. Then, using Eq. (B.1) we claim that f (z) is
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O(g(ε)/n)-Lipschitz with respect to `1 since

| f (z)− f (z̃)| ≤ ∑
i∈X(1)

2 · P
s∼Πk

[s 3 i] · |zi − z̃i| ≤ O
(

g(ε)
n

)
· ‖z− z̃‖1 .

Since the underlying distribution of {Z⊗|(S,σ)} is a product distribution on {±1}n

and f is O(g(ε)/n)-Lipschitz, applying Hoeffding’s inequality yields

P
z∼{Z⊗|(S,σ)}

[ f (z) ≤ ε] ≤ P
z∼{Z⊗|(S,σ)}

[∣∣∣ f (z)−Ez∼{Z⊗|(S,σ)} f (z)
∣∣∣ ≥ ε

]
≤ exp

(
−Θ(g′(ε) · n)

)
,

where g′(ε) = ε2 · g(ε)2.

Using the assumption that dsum is a (1− ξ, 2ε)-parity sampler, we obtain

Ez∼{Z⊗|(S,σ)} [|〈z
∗, z〉|] ≥ 1− ξ − 2 exp

(
−Θ(g′(ε) · n)

)
.

By Jensen’s inequality,

Ez∼{Z⊗|(S,σ)}
[
〈z∗, z〉2

]
≥
(

Ez∼{Z⊗|(S,σ)} [|〈z
∗, z〉|]

)2
≥ (1− ξ − 2 exp

(
−Θ(g′(ε) · n)

)
)2.

Using indepdence, we get

Ez∼{Z⊗|(S,σ)}
[
Ei,j∈[n]z

∗
i zizjz

∗
j

]
≤ Ei,j∈[n]z

∗
i E [zi]E

[
zj

]
z∗j +

1
n
=
(

Ei∈[n]z
∗
i E [zi]

)2
+

1
n

.

Thus, in particular
∣∣∣Ei∈[n]z

∗
i E [zi]

∣∣∣ ≥ (1− ξ − on(1)) − 1/((1− ξ − on(1))n) ≥ 1− 3ξ
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which implies

1− 3ξ ≤
∣∣∣∣∣Ei∈[n]z

∗
i

(
P
|(S,σ)

[Zi = 1]− P
|(S,σ)

[Zi = −1]

)∣∣∣∣∣
≤ Ei∈[n]

∣∣∣∣∣ P
|(S,σ)

[Zi = 1]− P
|(S,σ)

[Zi = −1]

∣∣∣∣∣ .

Since

Ei∈[n]1−
∣∣∣∣∣ P
|(S,σ)

[Zi = 1]− P
|(S,σ)

[Zi = −1]

∣∣∣∣∣ ≤ 3ξ,

Markov’s inequality yields

P
i∈[n]

[
1−

√
ξ ≥

∣∣∣∣∣ P
|(S,σ)

[Zi = 1]− P
|(S,σ)

[Zi = −1]

∣∣∣∣∣
]
≤ 3

√
ξ.

Now, let z′ ∈ {±1}n be as in the statement of the lemma. Then,

1− 3ξ − 4
√

ξ ≤
∣∣∣Ei∈[n]z

∗
i · z
′
i

∣∣∣ .

Hence, we conclude that
∣∣∣Ei∈[n]z

∗
i · z
′
i

∣∣∣ ≥ 1− 7
√

ξ.

Remark B.3.2. The parity sampling requierment might be slightly stronger with this derandom-

ized version but it does not change the asymptotic nature of our results. More precisely, we are

only asking for (1− ξ, 2ε)-parity sampler for a different constant value ξ > 0.
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APPENDIX C

APPENDIX TO CHAPTER 4

C.1 Auxiliary Results to Obtain Tensoriality

A key result used in the SOS rounding analysis is embodied in Lemma C.1.1 below.

Roughly speaking, it quantifies the decrease in the potential ΦG, under conditioning on a

random Yi for i ∼ V, when the ensemble {Yi} has non-trivial correlation over the edges

and G is a strong enough expander graph. A generalization of this result to low thresh-

old rank graphs was present in [BRS11]. To derive sharper parameters in the simpler

expander case and to make the presentation self-contained, we give (essentially) a full

proof of this result.

Lemma C.1.1 (Progress Lemma). Suppose G satisfies λ2(G) ≤ β2/q4. If

E
i∼j

[∥∥∥{YiYj} − {Yi}{Yj}
∥∥∥

1

]
≥ β,

then

E
j∼V

[
ΦG
|Yj

]
≤ ΦG − β2

4 · q4 .

C.1.1 Expander Case

We will need the following characterization of the spectral gap of regular graph G. We

denote by AG its adjacency operator and by LG its Laplacian operator [Chu97].

Fact C.1.2 (Spectral Gap [Chu97]).

λ2(LG) = min
v1,...,vn∈Rn

Ei∼j

∥∥∥vi − vj

∥∥∥2

Ei,j∼V

∥∥∥vi − vj

∥∥∥2 .
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Using the above characterization, we derive the following local-to-global result.

Lemma C.1.3 (Local-to-Global). Let v1, . . . , vn ∈ Rn be vectors in the unit ball. Suppose

λ2(LG) ≥ 1− β/2 (equivalently λ2(AG) ≤ β/2). If Ei∼j

〈
vi, vj

〉
≥ β, then

Ei,j∼V

〈
vi, vj

〉
≥ β

2
.

Proof. Using Fact C.1.2, we have

λ2(LG) ≤
Ei∼V ‖vi‖2 −Ei∼j

〈
vi, vj

〉
Ei∼V ‖vi‖2 −Ei,j∼V

〈
vi, vj

〉 .

Set λ2 = λ2(LG). We consider two cases: λ2 ≤ 1 and λ2 > 1. First, suppose λ2 ≤ 1. Then

Ei,j∼V

〈
vi, vj

〉
≥ 1

λ2
Ei∼j

〈
vi, vj

〉
−
(

1− λ2
λ2

)
Ei∼V ‖vi‖2

≥ 1
λ2

(β− (1− λ2))

≥ 1
λ2

(
β−

(
β

2

))
≥ β

2
.

Now suppose λ2 > 1. Then

Ei,j∼V

〈
vi, vj

〉
≥ 1

λ2
Ei∼j

〈
vi, vj

〉
−
(

1− λ2
λ2

)
Ei∼V ‖vi‖2

≥ 1
λ2

Ei∼j

〈
vi, vj

〉
≥ 1

λ2
· β ≥ β

2
,

where the last inequality follows from λ2 ≤ 2 for any graph G.

More Preliminaries

We will need some standard notions in information theory [CT06].
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Definition C.1.4 (Relative Entropy/Kullback-Leibler Divergence). The relative entropy of

two distributions D1 and D2 with support contained in Q is

KL(D1, D2) := ∑
a∈Q

D1(a) log
(

D1(a)
D2(a)

)
.

Notation C.1.5. Let X be a random variable. We denote by {X} the distribution of X.

Definition C.1.6 (Mutual Information). Let X, Y be two random variables. The mutual infor-

mation I(X, Y) is

I(X, Y) := KL({X, Y}, {X}{Y}).

Fact C.1.7.

I(X, Y) = H(X)−H(X|Y).

Fact C.1.8 (Fact B.5 of Raghavendra and Tan [RT12]). Let Xa and Xb be indicator random

variables. Then

Cov(Xa, Xb)
2 ≤ 2 · I(Xa, Xb).

Progress Lemma

We are ready to prove Lemma C.1.1 which we restate below for convenience.

Lemma C.1.9 (Progress Lemma (restatement of Lemma C.1.1)). Suppose G satisfy λ2(G) ≤

β2/q4. If

E
i∼j

[∥∥∥{YiYj} − {Yi}{Yj}
∥∥∥

1

]
≥ β,

then

E
j∼V

[
ΦG
|Yj

]
≤ ΦG − β2

4 · q4 .

Proof. Firstly, we show how to relate the distances
∥∥∥{YiYj} − {Yi}{Yj}

∥∥∥
1

over the edges
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i ∼ j to certain covariances. Let a, b ∈ [q]2. Observe that

∣∣∣Cov
(

Yi,a, Yj,b

)∣∣∣ =
∣∣∣P[Yi = a ∧ Yj = b]−P[Yi = a]P[Yj = b]

∣∣∣ .

We have

E
i∼j

 1
q2 ∑

a,b∈[q]2
Cov

(
Yi,a, Yj,b

)2
 ≥

 E
i∼j

 1
q2 ∑

a,b∈[q]2

∣∣∣Cov
(

Yi,a, Yj,b

)∣∣∣
2

≥ 1
q4

(
E

i∼j

[∥∥∥{YiYj} − {Yi}{Yj}
∥∥∥

1

])2

≥ β2

q4 .

Note that the graph F := G ⊗ J/q is an expander with λ2(G ⊗ J/q) = λ2(G). More-

over, the matrix C := {Cov
(

Yi,a, Yj,b

)
}i,j∈V;a,b∈[q]2 is PSD since the vectorization {vi,a −

E[Yi,a] · v∅}i∈V;a∈[q] gives a Gram matrix decomposition of C. Thus, the covariance ma-

trix {Cov
(

Yi,a, Yj,b

)2
}i,j∈V;a,b∈[q]2 is also PSD since it is the Schur product (i.e., entrywise

product) of two PSD matrices, namely, C ◦ C. Therefore, we are in position of applying

the local-to-global Lemma C.1.3 with the expander F and a vectorization for C ◦ C. We
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have

β2

q4 ≤ E
i∼j

 1
q2 ∑

a,b∈[q]2
Cov

(
Yi,a, Yj,b

)2


≤ 2 E
i,j∼V⊗2

 1
q2 ∑

a,b∈[q]2
Cov

(
Yi,a, Yj,b

)2
 (local-to-global Lemma C.1.3)

≤ 4
q2 E

i,j∼V⊗2

 ∑
a,b∈[q]2

I
(

Yi,a, Yj,b

) (Fact C.1.8)

≤ 4
q2 E

i,j∼V⊗2

 ∑
a,b∈[q]2

H
(
Yi,a

)
−H

(
Yi,a|Yj,b

)
≤ 4

q

 E
i∼V

 ∑
a∈[q]

H
(
Yi,a

)− E
i,j∼V⊗2

 ∑
a∈[q]

H
(

Yi,a|Yj

)
= 4

[
E

i∼V
[H (Yi)]− E

i,j∼V⊗2

[
H
(

Yi|Yj

)]]

= 4

[
ΦG − E

j∼V

[
ΦG
|Yj

]]
.

Therefore, we have Ej∼V [ΦG
|Yj

] ≤ ΦG − β2/(4 · q4), as claimed.

C.2 Explicit Structures

We recall some explicit structures used in Ta-Shma’s construction.

C.2.1 Explicit Ramanujan Graphs

The outer graph G in the s-wide replacement product was chosen to be a Ramanujan

graph. Ta-Shma provides a convenient lemma to efficiently obtain explicit Ramanujan

graphs given the intended number of vertices n (which might end up being nearly twice

this much), the expansion λ and an error parameter θ > 0. These Ramanujan graphs are
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based on the LPS construction [LPS88]. Due to number theoretic reasons, we might be

forced to work with slightly different parameters, but this is not an issue.

Lemma C.2.1 (Lemma 12 [TS17]). For every θ > 0, there exists an algorithm that given n and

λ ∈ (0, 1) runs in time poly(n) and outputs a Ramanujan graph G such that

- G has degree d ≤ 8/λ2,

- σ2(G) ≤ λ, and

- |V(G)| is either in the range [(1− θ)n, n] or in the range [(1− θ)2n, 2n].

Moreover, the algorithm outputs a locally invertible function ϕ : [d]→ [d] computable in polyno-

mial time in its input length.

C.2.2 Explicit Biased Distribution

The inner graph H in the s-wide replacement product is chosen to be a Cayley graph on

Zm
2 for some positive integer m. Ta-Shma uses the construction of Alon et al. [AGHP92]

(AGHP) to deduce a result similar to Lemma C.2.2 below. To compute the refined pa-

rameter version of our main result Theorem 5.1.1, we will need the specifics of the AGHP

construction.

Lemma C.2.2 (Based on Lemma 6 [TS17]). For every β = β(m), there exists a fully explicit

set A ⊆ Zm
2 such that

- |A| ≤ 4 ·m2/β2, and

- for every S ⊆ [m], we have |Ez∈AχS(z)| ≤ β.

Furthermore, if m/β is a power of 2, then |A| = m2/β2. In particular, the graph Cay(Zm
2 , A) is

a (n = 2m, d = |A| , λ = β) expander graph.
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Remark C.2.3. Given d, m ∈ N+ such that d is the square of a power of 2 with d ≤ 2m, by

setting β = m/
√

d we can use Lemma C.2.2 with β and m (note that m/β is a power of 2) to

obtain a Cayley graph Cay(Zm
2 , A) with parameters (n = 2m, d = |A| , λ = β).

C.3 Zig-Zag Spectral Bound

We prove the zig-zag spectral bound Fact D.1.5.

Claim C.3.1. Let G be an outer graph and H be an inner graph used in the s-wide replacement

product. For any integer 0 ≤ i ≤ s− 1,

σ2((I⊗ AH)Gi(I⊗ AH)) ≤ σ2(G) + 2 · σ2(H) + σ2(H)2.

Proof. Let v be a unit vector such that v⊥1, and decompose it into v = u + w such that

u ∈ W‖ = span{a⊗ b ∈ RV(G) ⊗RV(H) | b = 1} and w ∈ W⊥ = (W‖)⊥.

|〈v, (I⊗ AH)Gi(I⊗ AH)v〉| ≤ |〈u, (I⊗ AH)Gi(I⊗ AH)u〉|+ |〈u, (I⊗ AH)Gi(I⊗ AH)w〉|+

|〈w, (I⊗ AH)Gi(I⊗ AH)u〉|+ |〈w, (I⊗ AH)Gi(I⊗ AH)w〉|

≤ |〈u,Giu〉|+ ‖(I⊗ AH)w‖+

‖(I⊗ AH)w‖+ ‖(I⊗ AH)w‖2

≤ |〈u,Giu〉|+ 2σ2(H) + σ2
2 (H)

To bound |〈u, (I⊗ AH)Gi(I⊗ AH)u〉|, observe that u = x⊗ 1 for some x ∈ RV(G). Then,

0 = 〈v, 1〉 = 〈u, 1〉+ 〈w, 1〉 = 〈u, 1〉 = 〈x, 1G〉

so that x⊥1G. Because u is uniform over the H-component, |〈u,Giu〉| = |〈x,Gx〉| ≤ σ2(G),

which completes the proof.
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We also derive a (simple) tighter bound for the expansion of the zig-zag product in a

particular parameter regime.

Claim C.3.2. Let G be a λ1-two-sided expander and H be a λ2-two-sided expander such that both

are regular graphs. If λ1 ≤ λ2, then

σ2(G z H) ≤ 2 · λ2.

Proof. Let v = a · v‖ + b · v⊥ with a2 + b2 = 1 be such that v ⊥ 1. In particular, if

v‖ = vG ⊗ 1H, then vG ⊥ 1G since otherwise 〈v, 1〉 =
〈

vG, 1G
〉
6= 0. We have

max
a,b∈R : a2+b2=1

a2 · λ1 + 2ab · λ2 + b2 · λ2
2 ≤ max

a,b∈R : a2+b2=1
a2 · λ2 + 2ab · λ2 + b2 · λ2

= max
a,b∈R : a2+b2=1

λ2 + 2ab · λ2,

where the inequality follows from the assumption λ1 ≤ λ2 (and trivially λ2
2 ≤ λ2) and

the equality follows from a2 + b2 = 1. Since we also have 2ab = (a + b)2 − (a2 + b2) ≤ 1,

the result follows.

C.4 Derandomization

To deterministically uniquely decode in fixed polynomial time (i.e., poly(n/ε)), we need

to prune the list of coupled words L covering the list L∗(ỹ) = {(z, y = dsum(z)) | z ∈

C, ∆(ỹ, y) ≤ 1/2 −
√

n} of codewords we want to retrieve. To do so, given (z∗, y∗ =

dsum(z∗)) ∈ L∗(ỹ), we need to have (z, y = dsum(z)) ∈ L such that

1. |〈y∗, dsum(z)〉| is not too small, and

2. 〈ỹ, dsum(z)〉 is not too small (in order to apply Lemma 4.6.11).
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The slice (S, σ) of the SOS solution from which y∗ is recoverable satisfies in expectation

Ez∼{Z⊗|(S,σ)}
[
〈y∗, dsum(z)〉2

]
≥ 3η2,

and

Ez∼{Z⊗|(S,σ)} [〈ỹ, dsum(z)〉] ≥ 3
√

η/2.

Moreover, since z 7→ 〈y∗, dsum(z)〉2 and z 7→ 〈ỹ, dsum(z)〉 are O(1/n)-Lipschitz 1 with

respect to the `1-norm, Hoeffding’s inequality gives

P
z∼{Z⊗|(S,σ)}

[
〈y∗, dsum(z)〉2 < η2

]
≤ exp (−Θ(n)) ,

and

P
z∼{Z⊗|(S,σ)}

[〈ỹ, dsum(z)〉 < √η] ≤ exp (−Θ(n)) .

At least randomly, such a z can be easily found. In [AJQ+20], alternatively to satisfy-

ing Item 1 it was shown that by choosing z′ ∈ {±1}n by majority vote, i.e.

z′i = argmax
b∈{±1}

P[Zi = b]

for i ∈ [n], one has that
∣∣〈z∗, z′

〉∣∣ is large which is enough to address the first item. More

precisely, implicit in [AJQ+20], for any constant β ∈ (0, 1) as long as parity sampling is

sufficiently strong we have

Ez∼{Z⊗|(S,σ)}
[〈

z′, z
〉2
]
≥ 1− β.

1. In this fixed polynomial time regime, the parameters s, d1, d2, ε0, η are constant independent of the
final bias ε.
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Similarly z 7→
〈
z′, z

〉2 is O(1/n)-Lipschitz with respect to the `1-norm, so Hoeffding’s

inequality yields

P
z∼{Z⊗|(S,σ)}

[〈
z′, z

〉2
< 1− β/2

]
≤ exp (−Θ(n)) .

However, we want to efficiently and deterministically find a z satisfying
〈
z′, z

〉2 ≥ 1−

β/2 as well as satisfying Item 2. Note that at this stage in the decoding process y∗ is

not known (without issuing a recursive unique decoding call), so running expectation

maximization to satisfy item Item 1 would not be possible. Fortunately, the majority z′

can be cheaply computed without a recursive call to a unique decoder. On the other hand

z satisfying only Item 2 can be found by expectation maximization. We need to satisfy

both conditions at the same time. For this reason, we design a simultaneous expectation

maximization derandomization procedure tailored to our setting.

C.4.1 Abstract Derandomization: Simultaneous Expectation Maximization

Suppose that Ω is a probability space where two random variables A and B are defined

satisfying the following first moment conditions

E [A] ≥ a and E [B] ≥ 1− β.

We provide sufficient conditions so that ω ∈ Ω satisfying

A(ω) ≥ a′ and B(ω) ≥ 1− β′

can be efficiently deterministically found with the aid of an oracle, where a ≈ a′ and

β ≈ β′. More precisely, we have the following lemma.
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Lemma C.4.1. Let Ω = ({−1, 1}n, ν1 × · · · × νn) be a probability space with a product dis-

tribution. Suppose A ∈ [−1, 1] is a random variable on Ω satisfying, for a > 0 and for some

function eA : N→ R+,

P [A < a] ≤ eA(n).

Suppose B ∈ [−1, 1] is a random variable on Ω satisfying, for some function eB : N×R+ →

R+,

P [B < 1− β] ≤ eB(n, β).

Suppose that there is an oracle to evaluate E
[
AB2k

]
under any product distribution µ′1 × · · · ×

µ′n for k ∈N. Given δ, β ∈ (0, 1), if

eA(n) + eB(n, β/(4(d− ln(a(1− β))/δe+ 1))) ≤ a
β

2
, (C.1)

then it is possible to find ω ∈ {±1}n using 2n invocations to the oracle and satisfying

A(ω) ≥ a(1− β) and |B(ω)| ≥ 1− δ.

Proof. Set k = d− ln(a(1− β))/δe+ 1. Set β′ = β/(4k). Note that

E
[
AB2k

]
≥ a

(
1− β

4k

)2k
− eA(n)− eB(n, β′) ≥ a (1− β) ,

where we use Eq. (C.1) in the last inequality. Do expectation maximization to determinis-

tically find ω ∈ {±1}n, with 2 · n invocations to the oracle of E
[
AB2k

]
, such that

A(ω)B(ω)2k ≥ a (1− β) .

Since B(ω)2k ≤ 1, we have A(ω) ≥ a (1− β). Towards a contradiction suppose |B(ω)| ≤
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1− δ. Using that A(ω) ≤ 1, we have

e−2k·δ ≥ (1− δ)2k ≥ A(ω)B(ω)2k ≥ a(1− β). (C.2)

By our choice of k, we get

e−2k·δ < a(1− β),

contradicting Eq. (C.2).

C.4.2 Implementing the Oracle

Now, we provide an efficient deterministic oracle for our setting. We take

A := 〈ỹ, dsum(z)〉 and B :=
〈
z′, z

〉2 ,

where z′i = argmaxb∈{±1}P[Zi = b]. Note that

AB2k = ∑
T⊂[n] : |T|=O(1)

αT ∏
i∈T

zi.

To compute E
[
AB2k

]
under any product distribution µ′1 × · · · × µ′n, use linearity of ex-

pectation and sum at most nO(1) terms αTE [∏i∈T zi] where each can be computed in

O(1) since restricted to T we have a product distribution taking values in {±1}T.
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APPENDIX D

APPENDIX TO CHAPTER 5

D.1 Properties of Ta-Shma’s Construction

The goal of this section is to provide a reasonably self-contained compilation of the prop-

erties of the slightly modified version of Ta-Shma code construction [TS17] from [JQST20].

The properties we need are collected in Theorem D.1.1.

Theorem D.1.1. [Ta-Shma’s Codes (implicit in [TS17])] Let c > 0 be an universal constant.

For every ε > 0 sufficiently small, there exists k = k(ε) satisfying Ω(log(1/ε)1/3) ≤ k ≤

O(log(1/ε)), ε0 = ε0(ε) > 0, and positive integer m = m(ε) ≤ (1/ε)o(1) such that Ta-Shma’s

construction yields a collection of τ-splittable tuples W = W(k) ⊆ [n]k satisfying:

(i) For every linear ε0-balanced code C0 ⊆ Fn
2 with symbol multiplicity m, the direct sum code

dsumW(C0) is:

(i.1) ε-balanced (parity sampling).

(i.2) if C0 has rate Ω(εc
0/m), then dsumW(C0) has rate Ω(ε2+o(1)) (near optimal rate)

(ii) τ ≤ exp(−Θ(log(1/ε)1/6)) (splittability).

(iii) W is constructible in poly(|W|) time (explicit construction).

We first recall the s-wide replacement product in Appendix D.1.1, then describe Ta-

Shma’s original construction based on it in Appendix D.1.2, describe our modification to

obtain splittability in Appendix D.1.3, derive the splittability property in Appendix D.1.4,

and finally choose parameters in terms of desired bias ε of the code we construct in Ap-

pendix D.1.5. We refer the reader to [TS17] for formal details beyond those we actually

need here.
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D.1.1 The s-wide Replacement Product

Ta-Shma’s code construction is based on the so-called s-wide replacement product [TS17].

This is a derandomization of random walks on a graph G that will be defined via a prod-

uct operation of G with another graph H (see Definition D.1.3 for a formal definition). We

will refer to G as the outer graph and H as the inner graph in this construction.

Let G be a d1-regular graph on vertex set [n] and H be a d2-regular graph on vertex

set [d1]
s, where s is any positive integer. Suppose the neighbors of each vertex of G are

labeled 1, 2, . . . , d1. For v ∈ V(G), let vG[j] be the j-th neighbor of v. The s-wide replace-

ment product is defined by replacing each vertex of G with a copy of H, called a “cloud”.

While the edges within each cloud are determined by H, the edges between clouds are

based on the edges of G, which we will define via operators G0,G1, . . . ,Gs−1. The i-th op-

erator Gi specifies one inter-cloud edge for each vertex (v, (a0, . . . , as−1)) ∈ V(G)×V(H),

which goes to the cloud whose G component is vG[ai], the neighbor of v in G indexed by

the i-th coordinate of the H component. (We will resolve the question of what happens to

the H component after taking such a step momentarily.)

Walks on the s-wide replacement product consist of steps with two different parts: an

intra-cloud part followed by an inter-cloud part. All of the intra-cloud substeps simply

move to a random neighbor in the current cloud, which corresponds to applying the

operator I ⊗ AH, where AH is the normalized adjacency matrix of H. The inter-cloud

substeps are all deterministic, with the first moving according to G0, the second according

to G1, and so on, returning to G0 for step number s + 1. The operator for such a walk

taking k− 1 steps on the s-wide replacement product is

k−2

∏
i=0

Gi mod s(I⊗ AH).

Observe that a walk on the s-wide replacement product yields a walk on the outer
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graph G by recording the G component after each step of the walk. The number of (k− 1)-

step walks on the s-wide replacement product is

|V(G)| · |V(H)| · dk−1
2 = n · ds

1 · d
k−1
2 ,

since a walk is completely determined by its intra-cloud steps. If d2 is much smaller than

d1 and k is large compared to s, this is less than ndk−1
1 , the number of (k− 1)-step walks

on G itself. Thus the s-wide replacement product will be used to simulate random walks

on G while requiring a reduced amount of randomness (of course this simulation is only

possible under special conditions, namely, when we are uniformly distributed on each

cloud).

To formally define the s-wide replacement product, we must consider the labeling of

neighbors in G more carefully.

Definition D.1.2 (Rotation Map). Suppose G is a d1-regular graph on [n]. For each v ∈ [n]

and j ∈ [d1], let vG[j] be the j-th neighbor of v in G. Based on the indexing of the neighbors

of each vertex, we define the rotation map 1 rotG : [n] × [d1] → [n] × [d1] such that for every

(v, j) ∈ [n]× [d1],

rotG((v, j)) = (v′, j′)⇔ vG[j] = v′ and v′G[j
′] = v.

Furthermore, if there exists a bijection ϕ : [d1]→ [d1] such that for every (v, j) ∈ [n]× [d1],

rotG((v, j)) = (vG[j], ϕ(j)),

then we call rotG locally invertible.

If G has a locally invertible rotation map, the cloud label after applying the rotation

1. This kind of map is denoted rotation map in the zig-zag terminology [RVW00].
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map only depends on the current cloud label, not the vertex of G. In the s-wide replace-

ment product, this corresponds to the H component of the rotation map only depending

on a vertex’s H component, not its G component. We define the s-wide replacement prod-

uct as described before, with the inter-cloud operator Gi using the i-th coordinate of the

H component, which is a value in [d1], to determine the inter-cloud step.

Definition D.1.3 (s-wide replacement product). Suppose we are given the following:

- A d1-regular graph G = ([n′], E) together with a locally invertible rotation map rotG : [n′]×

[d1]→ [n′]× [d1].

- A d2-regular graph H = ([d1]
s, E′).

And we define:

- For i ∈ {0, 1, . . . , s− 1}, we define Roti : [n′]× [d1]
s → [n′]× [d1]

s as, for every v ∈ [n′]

and (a0, . . . , as−1) ∈ [d1]
s,

Roti((v, (a0, . . . , as−1))) := (v′, (a0, . . . , ai−1, a′i, ai+1, . . . , as−1)),

where (v′, a′i) = rotG(v, ai).

- Denote by Gi the operator realizing Roti and let AH be the normalized random walk operator

of H. Note that Gi is a permutation operator corresponding to a product of transpositions.

Then k− 1 steps of the s-wide replacement product are given by the operator

k−2

∏
i=0

Gi mod s(I⊗ AH).

Ta-Shma instantiates the s-wide replacement product with an outer graph G that is a

Cayley graph, for which locally invertible rotation maps exist generically.
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Remark D.1.4. Let R be a group and A ⊆ R where the set A is closed under inversion. For every

Cayley graph Cay(R, A), the map ϕ : A → A defined as ϕ(g) = g−1 gives rise to the locally

invertible rotation map

rotCay(R,A)((r, a)) = (r · a, a−1),

for every r ∈ R, a ∈ A.

D.1.2 The Construction

Let n′ = |V(G)|, m = ds
1 = |V(H)| and n = n′ ·m = |V(G)×V(H)|. Ta-Shma’s code con-

struction works by starting with a constant bias code C ′0 in Fn′
2 , repeating each codeword

m = ds
1 times to get a new ε0-biased code C0 in Fn

2 , and boosting C0 to arbitrarily small

bias using direct sum liftings. Recall that the direct sum lifting is based on a collection

W(k) ⊆ [n]k, which Ta-Shma obtains using k − 1 steps of random walk on the s-wide

replacement product of two regular expander graphs G and H. The graph G is on n′

vertices and other parameters like degrees d1 and d2 of G and H respectively are chosen

based on target code parameters.

To elaborate, every k − 1 length walk on the replacement product gives a sequence

of k vertices in the replacement product graph, which can be seen as an element of [n]k.

This gives the collection W(k) with |W(k)| = n′ · ds
1 · d

k−1
2 which means the rate of lifted

code is smaller than the rate of C ′0 by a factor of ds
1dk−1

2 . However, the collection W(k) is

a parity sampler and this means that the bias decreases (or the distance increases) from

that of C0. The relationship between this decrease in bias and decrease in rate with some

careful parameter choices allows Ta-Shma to obtain nearly optimal ε-balanced codes.
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D.1.3 Tweaking the Construction

Recall the first s steps in Ta-Shma’s construction are given by the operator

Gs−1(I⊗ AH)Gs−2 · · ·G1(I⊗ AH)G0(I⊗ AH).

Naively decomposing the above operator into the product of operators ∏s−1
i=0 Gi(I⊗AH) is

not good enough to obtain the splittability property which would hold provided σ2(Gi(I⊗

AH)) was small for every i in {0, . . . , s− 1}. However, each Gi(I⊗AH) has |V(G)| singular

values equal to 1 since Gi is an orthogonal operator and (I ⊗ AH) has |V(G)| singular

values equal to 1. To avoid this issue we will tweak the construction to be the following

product
s−1

∏
i=0

(I⊗ AH)Gi(I⊗ AH).

The operator (I⊗ AH)Gi(I⊗ AH) is exactly the walk operator of the zig-zag product

G z H of G and H with a rotation map given by the (rotation map) operator Gi. This

tweaked construction is slightly simpler in the sense that G z H is an undirected graph.

We know by the zig-zag analysis that (I⊗ AH)Gi(I⊗ AH) is expanding as long G and H

are themselves expanders. More precisely, we have a bound that follows from [RVW00].

Fact D.1.5. Let G be an outer graph and H be an inner graph used in the s-wide replacement

product. For any integer 0 ≤ i ≤ s− 1,

σ2((I ⊗ AH)Gi(I ⊗ AH)) ≤ σ2(G) + 2 · σ2(H) + σ2(H)2.

This bound will imply splittability as shown in Appendix D.1.4. We will need to argue

that this modification still preserves the correctness of the parity sampling and that it can

be achieved with similar parameter trade-offs.
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The formal definition of a length-t walk on this slightly modified construction is given

below.

Definition D.1.6. Let k ∈ N, G be a d1-regular graph and H be a d2-regular graph on ds
1

vertices. Given a starting vertex (v, u) ∈ V(G) × V(H), a (k − 1)-step walk on the tweaked

s-wide replacement product of G and H is a tuple ((v1, u1), . . . , (vk, uk)) ∈ (V(G)× V(H))k

such that

- (v1, u1) = (v, u), and

- for every 1 ≤ i < k, we have (vi, ui) adjacent to (vi+1, ui+1) in (I⊗AH)G(i−1) mod s(I⊗

AH).

Note that each (I⊗ AH)G(i−1) mod s(I⊗ AH) is a walk operator of a d2
2-regular graph. There-

fore, the starting vertex (v, u) together with a degree sequence (m1, . . . , mk) ∈ [d2
2]

k−1 uniquely

defines a (k− 1)-step walk.

Parity Sampling

We argue informally why parity sampling still holds with similar parameter trade-offs. In

particular, we formalize a key result underlying parity sampling and, in Appendix D.1.5,

we compute the new trade-off between bias and rate in some regimes. In Appendix D.1.1,

the definition of the original s-wide replacement product as a purely graph theoretic op-

eration was given. Now, we explain how Ta-Shma used this construction for parity sam-

pling obtaining codes near the GV bound.

For a word z ∈ F
V(G)
2 in the base code, let Pz be the diagonal matrix, whose rows

and columns are indexed by V(G) × V(H), with (Pz)(v,u),(v,u) = (−1)zv . Note that Pz

commutes with I ⊗ AH.
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Proving parity sampling requires analyzing the operator norm of the following prod-

uct

Pz
s−1

∏
i=0

(I⊗ AH)GiPz(I⊗ AH), (D.1)

when bias(z) ≤ ε0. Let 1 ∈ RV(G)×V(H) be the all-ones vector, scaled to be of unit length

under the `2 norm, and W be the collection of all (t− 1)-step walks on the tweaked s-wide

replacement product. Ta-Shma showed (and it is not difficult to verify) that

bias (dsumW(z)) =

∣∣∣∣∣
〈

1,Pz
k−2

∏
i=0

(I⊗ AH)Gi mod sPz(I⊗ AH)1

〉∣∣∣∣∣ .

The measure used in this inner product is the usual counting measure over RV(G)×V(H).

From the previous equation, one readily deduces that

bias (dsumW(z)) ≤ σ1

(
Pz

s−1

∏
i=0

(I⊗ AH)GiPz(I⊗ AH)

)b(k−1)/sc
.

The key technical result obtained by Ta-Shma is the following, which is used to an-

alyze the bias reduction as a function of the total number walk steps k − 1. Here θ is a

parameter used in obtaining explicit Ramanujan graphs.

Fact D.1.7 (Theorem 24 abridged [TS17]). If H is a Cayley graph on F
s log d1
2 and ε0 + 2 · θ +

2 · σ2(G) ≤ σ2(H)2, then

∥∥∥∥∥s−1

∏
i=0

PzGi(I⊗ AH)

∥∥∥∥∥
op

≤ σ2(H)s + s · σ2(H)s−1 + s2 · σ2(H)s−3,

where Pz ∈ R(V(G)×V(H))×(V(G)×V(H)) is the sign operator of a ε0 biased word z ∈ F
V(G)
2

defined as a diagonal matrix with (Pz)(v,u),(v,u) = (−1)zv for every (v, u) ∈ V(G)×V(H).

We reduce the analysis of Ta-Shma’s tweaked construction to an analog of Fact D.1.7.

380



In doing so, we only lose one extra step as shown below.

Corollary D.1.8. If H2 is a Cayley graph on F
s log d1
2 and ε0 + 2 · θ + 2 · σ2(G) ≤ σ2(H)4, then

∥∥∥∥∥s−1

∏
i=0

(I⊗ AH)PzGi(I⊗ AH)

∥∥∥∥∥
op

≤ σ2(H2)s−1 + (s− 1) · σ2(H2)s−2 + (s− 1)2 · σ2(H2)s−4,

where Pz is the sign operator of an ε0-biased word z ∈ F
V(G)
2 as in Fact D.1.7.

Proof. We have

∥∥∥∥∥s−1

∏
i=0

(I⊗ AH)PzGi(I⊗ AH)

∥∥∥∥∥
op

≤ ‖(I⊗ AH)‖op

∥∥∥∥∥s−1

∏
i=1

PzGi(I⊗ A2
H)

∥∥∥∥∥
op

‖PzG0(I⊗ AH)‖op

≤
∥∥∥∥∥s−1

∏
i=1

PzGi(I⊗ A2
H)

∥∥∥∥∥
op

≤ σ2(H2)s−1 + (s− 1) · σ2(H2)s−2 + (s− 1)2 · σ2(H2)s−4,

where the last inequality follows from Fact D.1.7.

Remark D.1.9. We know that in the modified construction H2 is a Cayley graph since H is a

Cayley graph.

D.1.4 Splittability

In this subsection, we focus on the splittability parameters arising out of the construction

described above. The collection W(k) ⊆ [n]k is obtained from taking k− 1 step walks on

s-wide replacement as described above, which is d2
2-regular. Recall from Definition 5.3.9

that we need to show σ2(SW[a,t],W[t+1,b]) ≤ τ for all 1 ≤ a < t < b ≤ k, where,
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(
SW[a,t],W[t+1,b]

)
(ia,··· ,it),(it+1,··· ,ib)

:=
1[(ia, · · · , it, it+1, · · · , ib) ∈W[a, b]]

d2(b−s)
2

Lemma D.1.10. Let 1 ≤ a < t < b ≤ k. Suppose G is a d1-regular outer graph on vertex

set [n] with walk operator Gt used at step s of a walk on the s-wide replacement product and H

is a d2-regular inner graph on vertex set [m] with normalized random walk operator AH. Then

there are orderings of the rows and columns of the representations of SW[a,t],W[t+1,b] and AH as

matrices such that

SW[a,t],W[t+1,b] = ((I ⊗ AH)Gt(I ⊗ AH))⊗ J/d2(b−t−1)
2 ,

where J ∈ R[d2]
2(t−a)×[d2]

2(b−t−1)
is the all ones matrix.

Proof. Partition the set of walks W[a, t] into the sets W1,1, . . . , Wn′,m, where w ∈ Wi,j if

the last vertex of the walk it = (vt, ut) satisfies vt = i and ut = j. Similarly, partition

W[t + 1, b] into the sets W′1,1, . . . , W′n′,m, where (it+1, · · · , ib) ∈ W′i,j if the first vertex of

the walk it+1 = (vt+1, ut+1) satisfies vt+1 = i and ut+1 = j. Note that
∣∣∣Wi,j

∣∣∣ = d2(t−a)
2

and
∣∣∣W′i,j∣∣∣ = d2(b−t−1)

2 for all (i, j) ∈ [n′]× [m], since there are d2
2 choices for each step of

the walk.

Now order the rows of the matrix SW[a,t],W[t+1,b] so that all of the rows correspond-

ing to walks in W1,1 appear first, followed by those for walks in W1,2, and so on in lexi-

cographic order of the indices (i, j) of Wi,j, with an arbitrary order within each set. Do a
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similar re-ordering of the columns for the sets W′1,1, . . . , W′n′,m. Observe that

(
SW[a,t],W[t+1,b]

)
(ia,··· ,it),(it+1,··· ,ib) =

1(ia,··· ,it,it+1,··· ,ib)∈W[a,b]

d2(b−t)
2

=
d2

2 · (weight of transition from it to it+1 in (I ⊗ AH)Gt(I ⊗ AH))

d2(b−t)
2

,

which only depends on the adjacency of the last vertex of (ia, · · · , it) and the first vertex

of (it+1, · · · , ib). If the vertices it = (vt, ut) and it+1 = (vt+1, ut+1) are adjacent, then

(
SW[a,t],W[t+1,b]

)
(ia,··· ,it),(it+1,··· ,ib)

= ((I ⊗ AH)Gt(I ⊗ AH))(vt,ut),(vt+1,ut+1)
/d2(b−t−1)

2 ,

for every (ia, · · · , it) ∈W[a, t] and (it+1, · · · , ib) ∈W[t + 1, b]; and otherwise(
SW[a,t],W[t+1,b]

)
(ia,··· ,it),(it+1,··· ,ib)

= 0. Since the walks in the rows and columns are

sorted according to their last and first vertices, respectively, the matrix SW[a,t],W[t+1,b]

exactly matches the tensor product ((I ⊗ AH)Gt(I ⊗ AH))⊗ J/d2(b−t−1)
2 .

Corollary D.1.11. Let 1 ≤ a < t < b ≤ k. Suppose G is a d1-regular outer graph with walk

operator Gt used at step t of a walk on the s-wide replacement product and H is a d2-regular inner

graph with normalized random walk operator AH. Then

σ2(SW[a,t],W[t+1,b]) = σ2((I ⊗ AH)Gt(I ⊗ AH)).

Proof. Using Lemma D.1.10 and the fact that

σ2(((I ⊗ AH)Gt(I ⊗ AH))⊗ J/d2(b−t−1)
2 ) = σ2((I ⊗ AH)Gt(I ⊗ AH)),

the result follows.

Remark D.1.12. Corollary D.1.11 is what causes the splittability argument to break down for
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Ta-Shma’s original construction, as σ2(Gt(I⊗ AH)) = 1.

D.1.5 Parameter Choices

In this section, we choose parameters to finally obtain Theorem D.1.1, for which we must

argue about bias, rate and splittability.

A graph is said to be an (n, d, λ)-graph provided it has n vertices, is d-regular, and has

second largest singular value of its normalized adjacency matrix at most λ.

Notation D.1.13. We use the following notation for the graphs G and H used in the s-wide

replacement product.

- The outer graph G will be an (n′′, d1, λ1)-graph.

- The inner graph H will be a (ds
1, d2, λ2)-graph.

The parameters n′′, d1, d2, λ1, λ2 and s are yet to be chosen.

We are given the dimension D of the desired code and its bias ε ∈ (0, 1/2). We set a

parameter α ≤ 1/128 such that (for convenience) 1/α is a power of 2 and

α5

4 log2(1/α)
≥ 1

log2(1/ε)
. (D.2)

By replacing log2(1/α) with its upper bound 1/α, we observe that the value α =

Θ(1/ log2(1/ε)1/6) satisfies this bound, and so we choose s = Θ(log2(1/ε)1/6).

The inner graph H. The choice of H is same as Ta-Shma’s choice. More precisely, we

set s = 1/α and d2 = s4s. We obtain a Cayley graph H = Cay(F
4s log2(d2)
2 , A) such that

H is an (n2 = d4s
2 , d2, λ2) graph where λ2 = b2/

√
d2 and b2 = 4s log2(d2). (The set

of generators, A, comes from a small bias code derived from a construction of Alon et

al. [AGHP92].)
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The base code C0. This is dealt with in detail in Section 5.5. We choose ε0 = 1/d2
2 and use

Corollary 5.6.2 to obtain a code C ′0 in Fn′
2 that is ε0-biased and has a blocklength Ω(D/εc

0)

for some constant c. Call this blocklength of C ′0 to be n′. Next we replicate the codewords

m = ds
1 times to get code C0 in Fn

2 with the same bias but a rate that is worse by a factor

of m. In the proofs below, we only use properties of C0 that is of multiplicity m, has rate

Ω(εc
0)/m and has bias ε0, as specified in Theorem D.1.1.

The outer graph G. Set d1 = d4
2 so that n2 = ds

1 as required by the s-wide replacement

product. We apply Ta-Shma’s explicit Ramanujan graph lemma (Lemma 2.10 in [TS17])

with parameters n′, d1 and θ to obtain an (n′′, d1, λ1) Ramanujan graph G with λ1 ≤

2
√

2/
√

d1 and n′′ ∈ [(1− θ)n′, n′] or n′′ ∈ [(1− θ)2n′, 2n′]. Here, θ is an error parameter

that we set as θ = λ4
2/6 (this choice of θ differs from Ta-Shma). Because we can construct

words with block length 2n′ (if needed) by duplicating each codeword, we may assume

w.l.o.g. that n′′ is close to n′ and (n′ − n′′) ≤ θn′ ≤ 2θn′′. See [TS17] for a more formal

description of this graph.

Note that λ1 ≤ λ4
2/6 since λ1 ≤ 3/

√
d1 = 3/d2

2 = 3 · λ4
2/b4

2 ≤ λ4
2/6. Hence, ε0 +

2θ + 2λ1 ≤ λ4
2, as needed to apply Corollary D.1.8.

The walk length. Set the walk length k− 1 to be the smallest integer such that

(λ2
2)

(1−5α)(1−α)(k−1) ≤ ε.

This will imply using Ta-Shma’s analysis that the bias of the final code is at most ε as

shown later.
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s = 1/α, s = Θ(log(1/ε)1/6), so that α3

4 log2(1/α)
≥ 1

log2(1/ε)

H : (n2, d2, λ2), n2 = ds
1, d2 = s4s, λ2 = b2√

d2
, b2 = 4s log d2

C ′0 : bias ε0 = 1/d2
2, blocklength n′ = O(D/εc

0)

C0 : bias ε0 = 1/d2
2, multiplicity m = ds

1, blocklength n = O(mD/εc
0)

G : (n′′, d1, λ1), n′′ ≈ n′ = O(D/εc
0), d1 = d4

2, λ1 ≤ 2
√

2
d1

k : smallest integer such that (λ2
2)

(1−5α)(1−α)(k−1) ≤ ε

Proof of Theorem D.1.1. We will prove it in the following claims. We denote by W(k) ⊆ [n]k

the collection of walks on the s-wide replacement product obtained above, and we denote

by C the final code obtained by doing the direct sum operation on C0 using the collection

of tuples W(k). The explicitness of W(k) follows from Ta-Shma’s construction since all

the objects used in the construction have explicit constructions.

Next, the multiplicity m = ds
1 = d4s

2 = s16s2
= 216s2 log s ≤ (2s6

)o(1) = (1/ε)o(1).

Claim D.1.14. We have k− 1 ≥ s/α = s2, and that k− 1 ≤ 2s5, so that

Θ(log(1/ε)1/3) ≤ k ≤ Θ(log(1/ε))

Proof. Using d2 = s4s and Eq. (D.2), we have

(
1

λ2
2

)(1−5α)(1−α)s/α

≤
(

1
λ2

2

)s/α

=

(
d2
b2

2

)s/α

≤ (d2)
s/α = s4s2/α

= 24s2 log2(s)/α = 24 log2(1/α)/α3
≤ 2log2(1/ε) =

1
ε

.

Hence, ε ≥ (λ2
2)

(1−5α)(1−α)s/α and thus k− 1 must be at least s/α.

In the other direction, we show that (λ2
2)

(1−5α)(1−α)2s5 ≤ ε, which will imply k ≤

Θ(s5)⇒ k ≤ Θ(s6) = Θ(log(1/ε)).
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(λ2
2)

(1−5α)(1−α)2s5
≤
(

b2
2

d2

)s5

≤
(

1
s3s

)s5

= 2−Θ(s6 log s) ≤ 2−Θ(s6) = 2− log(1/ε) ≤ ε

Remark D.1.15. By the minimality of k, we have (λ2
2)

(1−5α)(1−α)(k−2) ≥ ε. Since 1/(k− 1) ≤

α, we get (λ2
2)

(1−5α)(1−α)2(k−1) ≥ ε. This will be useful in rate computation.

Claim D.1.16. The code C is ε-balanced.

Proof. Using Corollary D.1.8, we have that the final bias

b :=
(

σ2(H2)s−1 + (s− 1) · σ2(H2)s−2 + (s− 1)2 · σ2(H2)s−4
)b(k−1)/sc

is bounded by

b ≤ (3(s− 1)2σ2(H2)s−4)((k−1)/s)−1 (Using σ2(H2) ≤ 1/3s2)

≤ ((σ2(H2)s−5)(k−1−s)/s

= σ2(H2)(1−5/s)(1−s/(k−1))(k−1)

≤ σ2(H2)(1−5α)(1−α)(k−1)

=
(

λ2
2

)(1−5α)(1−α)(k−1)
≤ ε,

where the last inequality follows from s = 1/α and k− 1 ≥ s/α, the latter from Claim D.1.14.

Claim D.1.17. C has rate Ω(ε2+28·α).

Proof. The support size is the number of walks of length k on the s-wide replacement
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product of G and H (each step of the walk has d2
2 options), which is

|V(G)||V(H)|d2(k−1)
2 = n′′ · ds

1 · d
2(k−1)
2 = n′′ · d2(k−1)+4s

2 ≤ n′ · d2(k−1)+4s
2

= Θ

(
D
εc

0
· d2(k−1)+4s

2

)

= Θ
(

D · (d2
2)

k−1+2s+c
)

= O
(

D · (d2
2)

(1+3α)(k−1)
)

,

where the penultimate equality follows from the assumption that ε0 is a constant.

Note that dα
2 = d1/s

2 = s4 ≥ b2 since b2 = 4s log2(d2) = 16s2 log2(s) ≤ s4 . Thus,

d1−2α
2 =

d2
d2α

2
≤ d2

b2
2
=

1
σ2(H2)

.

We obtain

(d2
2)

(k−1) ≤
(

1
σ2(H2)

) 2(k−1)
1−2α

≤
(

1
ε

) 2
(1−2α)(1−5α)(1−α)2

(Using Remark D.1.15)

≤
(

1
ε

)2(1+10α)

,

which implies a block length of

O
(

D · (d2
2)

(1+3α)(k−1)
)
= O

(
D
(

1
ε

)2(1+10α)(1+3α)
)

= O

(
D
(

1
ε

)2(1+14α)
)

.

Claim D.1.18. W(k) is τ-splittable for τ ≤ 2−Θ(log(1/ε)1/6).
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Proof. As we saw in Corollary Corollary D.1.11, the splittability τ can be upper bounded

by σ2((I ⊗ AH)Gt(I ⊗ AH)), which is at most σ2(G) + 2 · σ2(H) + σ2(H)2 by Fact D.1.5.

So, the collection W(k) is τ-splittable for

τ ≤ σ2(G) + 2 · σ2(H) + σ2(H)2 ≤ 4λ2 = 4b2/d1/2
2

= 64s2 log s/s2s

= 2−Θ(s log s)

≤ 2−Θ(s)

= 2−Θ(log(1/ε)1/6)

389


	Acknowledgments
	Abstract
	Introduction
	Chapter Outlines

	Approximating CSPs on High-Dimensional Expanders
	Introduction
	Preliminaries and Notation
	Linear Algebra
	High-Dimensional Expanders
	Constraint Satisfaction Problems (CSPs)
	Sum-of-Squares Relaxations and t-local PSD Ensembles

	Proof Overview: Approximating MAX 4-XOR
	Walks
	The Canonical and the Swap Walks on a Simplicial Complex
	Swap Walks are Height Independent
	Canonical Walks in Terms of the Swap Walks
	Inversion: Swap Walks in Terms of Canonical Walks

	Spectral Analysis of Swap Walks
	Square Swap Walks Sk, k
	Expanding Posets and Balanced Operators
	Quadratic Forms over Balanced Operators
	Rectangular Swap Walks Sk, l
	Bipartite Kneser Graphs - Complete Complex

	Approximating Max-k-CSP
	Breaking Correlations for Expanding CSPs: Proof of thm:brshdx 
	The Glorified Triangle Inequality: Proof of lem:splitrectangular

	High-Dimensional Threshold Rank
	Breaking Correlations for Splittable CSPs: Proof of thm:brstreesplit

	Quantum k-local Hamiltonian

	List Decoding of Direct Sum Codes
	Introduction
	Preliminaries
	Simplicial Complexes
	Codes and Lifts
	Constraint Satisfaction Problems (CSPs)
	Sum-of-Squares Relaxations and t-local PSD Ensembles

	Proof Strategy and Organization
	Pseudorandom Hypergraphs and Robustness of Direct Sum
	Expander Walks and Parity Sampling
	High-dimensional Expanders
	HDXs are Parity Samplers
	Rate of the Direct Sum Lifting

	Unique Decoding
	Unique Decoding on Parity Samplers
	Concrete Instantiations

	Abstract List Decoding Framework
	Entropic Proxy
	SOS Program for List Decoding
	Properties of the Entropic Proxy
	Propagation Rounding
	Tensorial Structures
	Further Building Blocks and Analysis

	Instantiation I: Direct Sum on HDXs
	HDXs are Two-Step Tensorial
	Instantiation to Linear Base Codes
	Instantiation to General Base Codes

	List Decoding Direct Product Codes
	Direct Product Codes
	Direct Product List Decoding

	Instantiation II: Direct Sum on Expander Walks
	Expander Walks are Two-Step Tensorial
	Instantiation to Linear Base Codes
	Instantiation to General Base Codes


	Decoding Explicit -balanced Codes Near the Gilbert–Varshamov Bound
	Introduction
	Preliminaries and Notation
	Codes
	Direct Sum Lifts
	Linear Algebra Conventions

	Proof Overview
	Ta-Shma's Construction: A Summary and Some Tweaks
	The s-wide Replacement Product
	The Construction
	Tweaking the Construction

	Code Cascading
	Warm-up: Code Cascading Expander Walks
	Code Cascading Ta-Shma's Construction

	Unique Decoding of Ta-Shma Codes
	Unique Decoding via Code Cascading
	Fixed Polynomial Time

	Satisfying the List Decoding Framework Requirements
	Parity Sampling for the Code Cascade
	Splittability of Ta-Shma's Construction
	Integration with Sum-of-Squares
	Splittability Implies Tensoriality

	Choosing Parameters for Ta-Shma's Construction
	Round I: Initial Analysis
	Round II: A More Careful Analysis
	Round III: Vanishing  as  Vanishes
	Round IV: Arbitrary Gentle List Decoding

	Instantiating the List Decoding Framework
	List Decoding Framework


	Near-Linear Time Decoding of Ta-Shma's Codes via Splittable Regularity
	Introduction
	A Technical Overview
	Preliminaries
	Codes
	Direct Sum Lifts
	Splittable Tuples
	Factors
	Functions and Measures

	Weak Regularity for Splittable Tuples
	Abstract Weak Regularity Lemma
	Splittable Mixing Lemma
	Existential Weak Regularity Decomposition
	Efficient Weak Regularity Decomposition
	Near-linear Time Matrix Correlation Oracles

	Regularity Based Decoding for Direct-Sum Codes
	Near-linear Time Decoding of Ta-Shma's Codes
	Choosing the Base Code


	Appendix to Chapter 2
	From Local to Global Correlation
	Harmonic Analysis on HDXs

	Appendix to Chapter 3
	Auxiliary Basic Facts of Probability
	Further Properties of Liftings
	Derandomization

	Appendix to Chapter 4
	Auxiliary Results to Obtain Tensoriality
	Expander Case

	Explicit Structures
	Explicit Ramanujan Graphs
	Explicit Biased Distribution

	Zig-Zag Spectral Bound
	Derandomization
	Abstract Derandomization: Simultaneous Expectation Maximization
	Implementing the Oracle


	Appendix to Chapter 5
	Properties of Ta-Shma's Construction
	The s-wide Replacement Product
	The Construction
	Tweaking the Construction
	Splittability
	Parameter Choices



