THE UNIVERSITY OF CHICAGO

A CONSTRAINED RANDOM WALK THROUGH CODING THEORY

A DISSERTATION SUBMITTED TO
THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES
IN CANDIDACY FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY
FERNANDO GRANHA JERONIMO

CHICAGO, ILLINOIS
JULY 2021



Copyright © 2021 by Fernando Granha Jeronimo
All Rights Reserved



To my wife, Renata, for her love and unwavering support.

To my parents for their love and support.



“Education is not preparation for life; education is life itself.” — John Dewey



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . ... X
ABSTRACT . . . . . xiii
1 INTRODUCTION . . . . ... . e 1
1.1 ChapterOutlines . . . .. .. ... ... ... . ... . . 6

2 APPROXIMATING CSPS ON HIGH-DIMENSIONAL EXPANDERS . . . .. .. 9
21 Introduction . .. ... ... .. .. 9
2.2 Preliminaries and Notation . .. ... .. ... ... ... ... .. ...... 15
221 LinearAlgebra . .. ... .. ... ... ... ... ... ... 15

2.2.2 High-Dimensional Expanders . . . . . .. ... ............. 15

2.2.3 Constraint Satisfaction Problems (CSPs) . . . . . ... ... .. .... 18

224 Sum-of-Squares Relaxations and t-local PSD Ensembles . . . . . . .. 19

2.3 Proof Overview: Approximating MAX 4-XOR . . . ... ... ... ..... 21
24 Walks . . . .. 27
241 The Canonical and the Swap Walks on a Simplicial Complex . . . . . 30

242 Swap Walks are Height Independent . . . . . ... ... ........ 33

2.4.3 Canonical Walks in Terms of the Swap Walks . . . . .. ... ... .. 36

244 Inversion: Swap Walks in Terms of Canonical Walks . . . . . ... .. 37

2.5 Spectral Analysisof SwapWalks . . . ... ...... .. .. ... ... . 39
251 SquareSwapWalks Sy .. oo oo 39

2.5.2 Expanding Posets and Balanced Operators . . . ... ... ... ... 43

2.5.3 Quadratic Forms over Balanced Operators . . . .. ... ... .. .. 46

254 Rectangular Swap Walks S, . . .. ... ... 57

2.5.5 Bipartite Kneser Graphs - Complete Complex . . .. ... ... ... 61

2.6 Approximating Max-k-CSP . . . ... ... ... ... . L 64
2.6.1 Breaking Correlations for Expanding CSPs: Proof of Theorem 2.6.3 . 71

2.6.2 The Glorified Triangle Inequality: Proof of Lemma 2.6.6. . . . . . .. 76

2.7 High-Dimensional Threshold Rank . . . . . ... ... ... ......... 79
2.7.1 Breaking Correlations for Splittable CSPs: Proof of Theorem 3.9.19 . 82

2.8 Quantum k-local Hamiltonian . . . . . . .. ... ... ... .. ........ 84

3 LIST DECODING OF DIRECTSUMCODES . ... ................. 91

A%



3.1 Introduction . . . . . . . . . . . . 91

3.2 Preliminaries . . . . . . . ... 97
321 Simplicial Complexes . . ... ... ... .. ... ... .. 97
322 Codesand Lifts . . . ... ... ... ... o 98
3.2.3 Constraint Satisfaction Problems (CSPs) . . . . . .. ... ... .... 100
3.24 Sum-of-Squares Relaxations and t-local PSD Ensembles . . . . . . .. 101
3.3 Proof Strategy and Organization . .. ... ... ... .. ........... 106
3.4 Pseudorandom Hypergraphs and Robustness of Direct Sum . . . . ... .. 110
3.4.1 Expander Walks and Parity Sampling . . . . ... ... ........ 111
3.4.2 High-dimensional Expanders . . . .. ... ............... 111
3.43 HDXs are Parity Samplers . . . .. .. ... ... . L. 113
3.44 Rate of the Direct Sum Lifting . . . . . ... ... ............ 116
35 UniqueDecoding . . . .. ... ... ... . ... 119
3.5.1 Unique Decoding on Parity Samplers . . ... ... ... ....... 119
3.5.2 Concrete Instantiations . . . . .. ... ... ... 0 L 121
3.6  Abstract List Decoding Framework . . . . .. ... ... ... .. ....... 124
3.6.1 EntropicProxy . .. ... ... ... . ... .o o 124
3.6.2 SOS Program for List Decoding . . . . ... ............... 125
3.6.3 Properties of the EntropicProxy . . . ... ... . ... ....... 125
3.6.4 PropagationRounding . . . .. ... ... . ... ... ... 129
3.6.5 Tensorial Structures . . . ... ... ... 0oL 131
3.6.6 Further Building Blocks and Analysis . . . .. ... .......... 134
3.7 Instantiation I: Direct Sumon HDXs . . . . ... ... ............. 150
3.71 HDXs are Two-Step Tensorial . . . . . ... ... ... ....... 152
3.7.2 Instantiation to Linear Base Codes . . . . . . ... ... ... ..... 154
3.7.3 Instantiation to General Base Codes . . . . . ... ... ........ 157
3.8 List Decoding Direct ProductCodes . . . ... ... ... ........... 158
381 Direct ProductCodes. . . . . . ... ... ... ... .. ... 158
3.8.2 Direct Product List Decoding . . . . . ... ... ............ 159
3.9 Instantiation II: Direct Sum on Expander Walks . . . . . ... ... ... ... 166
3.9.1 Expander Walks are Two-Step Tensorial . . . . ... ... ....... 168
3.9.2 Instantiation to Linear Base Codes . . . . . . ... ... ... ..... 180
3.9.3 Instantiation to General Base Codes . . . . . ... ... ........ 183

4 DECODING EXPLICIT e-BALANCED CODES NEAR THE GILBERT-VARSHAMOV

vi



BOUND . . 184

41 Introduction . .. .. ... ... ... 184
4.2 Preliminaries and Notation . . ... ... ... . ... .. ... . ....... 191
421 Codes . ... ... ... 191
422 DirectSumlLifts. . .. ... .. ... ... . o o o 191
423 Linear Algebra Conventions . . ... .................. 192
43 Proof Overview . .. . ... .. ... ... 193
44 Ta-Shma’s Construction: A Summary and Some Tweaks . . . . . ... .. .. 199
441 Thes-wide Replacement Product . . . . ... ... ... . ....... 200
442 TheConstruction . . ... .. ... .. ... .. ... . ... . ... .. 204
443 Tweaking the Construction . . ... ... ... ............. 204
45 CodeCascading . . . .. ... .. ... ... . ... 211
451 Warm-up: Code Cascading Expander Walks . . . . ... ... .... 211
452 Code Cascading Ta-Shma’s Construction . . . . ... ... ... ... 214
4.6 Unique Decoding of Ta-Shma Codes . . . . ... ... ............. 215
4.6.1 Unique Decoding via Code Cascading . . . . . ... ... ....... 217
4.6.2 Fixed Polynomial Time . .. ... .. ... ... ............ 223
4.7 Satisfying the List Decoding Framework Requirements . . . . ... ... .. 228
4.7.1 Parity Sampling for the Code Cascade . . . . . . ... ... ... ... 231
4.7.2  Splittability of Ta-Shma’s Construction . . . .. ... ... ... ... 235
473 Integration with Sum-of-Squares . . . . ... ... ... .. ... .. 238
474 Splittability Implies Tensoriality . . . ... .. ... ... ....... 245
4.8 Choosing Parameters for Ta-Shma’s Construction . . . ... ... ... ... 251
481 RoundI: Initial Analysis . . . . . ... ... ... .. ... . ... ... 252
4.8.2 Round II: A More Careful Analysis. . . . ... ............. 258
483 Round III: Vanishing Base Vanishes . . . . ... ............ 260
484 Round IV: Arbitrary Gentle List Decoding . . . ... ... ... ... 262
4.9 Instantiating the List Decoding Framework . . . . ... ... ... ... ... 263
49.1 List Decoding Framework . . . . ... ... ... . ... ... ... 264
NEAR-LINEAR TIME DECODING OF TA-SHMA’'S CODES VIA SPLITTABLE
REGULARITY . . . . . e 268
51 Introduction . . ... ... .. ... . ... 268
52 ATechnical Overview . . . ... ... ... ... ... ... . ... ..... 277
53 Preliminaries. . . . . .. ... . 282

Vil



531 Codes . . . . . . s 282

532 DirectSumLifts. . . . . ... ... . 283

53.3 Splittable Tuples . . .. ... ... .. ... . ... ... .. 283

534 Factors . . . ... ... .. 285

53,5 Functionsand Measures . . . . . ... ... . ... ... ....... 286

5.4 Weak Regularity for Splittable Tuples . . . . ... ... ............ 288
5.4.1 Abstract Weak Regularity Lemma . . . ... ... ... ........ 289

5.4.2 Splittable Mixing Lemma . . . . ... ... ... .. ..o 0L 292

5.4.3 Existential Weak Regularity Decomposition. . . . .. ... ... ... 295

5.4.4 Efficient Weak Regularity Decomposition . . . . .. ... ... .. .. 297

5.4.5 Near-linear Time Matrix Correlation Oracles . . . ... ... ... .. 309

5.5 Regularity Based Decoding for Direct-Sum Codes . . . . ... .. ... ... 316

5.6 Near-linear Time Decoding of Ta-Shma’s Codes . . . . ... ... ... ... 323
56.1 ChoosingtheBaseCode . . . ... ... ... ... . ... ....... 327

A APPENDIXTOCHAPTER2 . . .. . .. ... ... . o 349
A1l From Local to Global Correlation . . . . .. ... ... ............. 349
A.2 Harmonic AnalysisonHDXs . .. ... ..................... 354

B APPENDIXTOCHAPTER3 . ... ... ... ... .. ... . .. 356
B.1 Auxiliary Basic Facts of Probability . . . . ... ................. 356
B.2 Further Properties of Liftings . . . ... ... ... ... ............ 356
B.3 Derandomization . . . ... ... ... ... ... L oo 358

C APPENDIXTOCHAPTER4 . . . . . ... . . . 361
C.1 Auxiliary Results to Obtain Tensoriality . . .. ... ... ... ........ 361
C11 ExpanderCase . ... ......... ... ... ... ...... 361

C.2 ExplicitStructures . . . . . .. .. ... ... 365
C.21 Explicit RamanujanGraphs . . . ... ... ... ... .. ...... 365

C.2.2 Explicit Biased Distribution . . . . .. ... ... . ... ........ 366

C3 Zig-ZagSpectralBound . ... ... ... ... ... .. . 00 L. 367
C4 Derandomization . . . ... ... ... ... ... . o 368
C.4.1 Abstract Derandomization: Simultaneous Expectation Maximization 370

C4.2 ImplementingtheOracle . . ... .......... ... ....... 372

D APPENDIXTOCHAPTERS . . . . . .. ... ... . 373



D.1 Properties of Ta-Shma’s Construction . . .. ... ... ... ......... 373

D.1.1
D.1.2
D.1.3
D.14
D.1.5

The s-wide Replacement Product . . . . .. ... ... ... ... .. 374
The Construction . . . . . . ... ... ... .. . 377
Tweaking the Construction . . . ... ... ... ............ 378
Splittability . . .. ... ... .. ... 381
Parameter Choices . . . .. ... .. ... . ... . ... ... ..., 384

iX



ACKNOWLEDGMENTS

I thank my wife for strongly supporting me in this decision of becoming a scientist and
seeing in science as much value and beauty as I do. I thank my parents for imparting to
me the importance of education and for also supporting me in this decision of becoming

a scientist.

I thank my truly amazing advisor, Madhur Tulsiani, for embarking on this journey
with me. Besides his broad knowledge and interest for everything, he is an amazing per-
son and has been extremely supportive. Madhur makes it feel that no topic is inaccessi-
ble. I can not imagine a better PhD advisor. I thank Arnaldo Vieira Moura for introducing
me to theoretical computer science and helping me at several stages. Without Arnaldo I
would not be in this fascinating field now. I thank Irit Dinur for her support at an im-
portant step in my path and for being an inspiration through her research with many
beautiful results involving expansion. I thank Thomas Vidick for an internship opportu-

nity and for believing that anyone can grow as researcher.

I thank Leonardo Nagami Coregliano for being a brave and resilient collaborator in
attacking all types of problems with me. I thank Vedat Levi Alev for the fun times we
fought with swap walks and CSPs and for sharing his love for spectral graph theory. I
thank Mrinalkanti Ghosh for the generous hospitality in receiving me in Madhur’s group
and for many discussions and lunches together. I thank Dylan Quintana and Shashank
Srivastava for their friendly and kind nature during many hours of collaboration. I thank
Chris Jones and Goutham Rajandran for all the discussions about Sum-of-Squares (and to
Chris also to discussions about codes). I thank Tushant Mittal for many discussions about
the structure of quantum codes and for his great enthusiasm for theory (at some point
giving me the extra energy to start a reading group). I thank Aaron Potechin for making
the Sum-of-Squares hierarchy seem a natural and intuitive object. I thank Akash Kumar

for being a frequent visitor bringing his love for the field and also some jokes.

X



I thank Janos Simon for giving me the opportunity to come here and for accommo-
dating my distaste for bureaucracies in a very generous way. Here, I had the pleasure of
encountering many more friendly and enthusiastic students (Hing Yin Tsang, Aritra Sen
and the list is too long to include all their names). I also encountered many professors
deeply passionate about their work who kindly shared their knowledge and sometimes
even their unique style of doing science. I will carry fond memories of courses by Las-
z16 Babai, Julia Chuzhoy, Andrew Drucker, Yury Makarychev, Ketan Mulmuley, Aaron

Potechin, Alexander Razborov and Madhur Tulsiani.

I thank the theoretical computer science community as a whole for creating a wel-
coming and vibrant environment. I greatly benefited from the Simons cluster on high-
dimensional expanders and codes organized by Irit Dinur and Prahladh Harsha. I also
thank Prasad Raghavendra for extending a hand during an application showing how

supportive this community is.

A special thank you to my committee members Aaron Potechin, Janos Simon and
Madhur Tulsiani for being generous with their time and being very flexible with their
schedules. I also thank the hard work of the UChicago and TTIC staff for their prompt

help in all sorts of tasks.

This disseration is based on the following papers containing original contributions
by the author in joint collaborations with Vedat Levi Alev, Dylan Quintana, Shashank

Srivastava and Madhur Tulsiani (and included here with their authorization).

- Chapter 2 is based on the paper “Approximating Constraint Satisfaction Problems
on High-Dimensional Expanders” [FOCS 2019] joint work with Vedat Levi Alev and
Madhur Tulsiani.

- Chapter 3 is based on the paper “List Decoding of Direct Sum Codes” [SODA 2020]
joint work with Vedat Levi Alev, Dylan Quintana, Shashank Srivastava and Madhur

X1



Tulsiani.

- Chapter 4 is based on the paper “Unique Decoding of Explicit e-balanced Codes
Near the Gilbert-Varshamov Bound” [FOCS 2020] joint work with Dylan Quintana,

Shashank Srivastava and Madhur Tulsiani.

- Chapter 5 is based on the paper “Near-Linear Time Decoding of Ta-Shma’s Codes
via Splittable Regularity” [STOC 2021] joint work with Shashank Srivastava and
Madhur Tulsiani.

The dissertation of Vedat Levi Alev [Ale20] covers a similar content of Chapter 2.
The dissertation of Dylan Quintana [Dyl21] covers a similar content of Chapter 3 and

Chapter 4.

xii



ABSTRACT

We investigate some problems involving optimization, expansion, coding theory and

pseudorandomness establishing some new connections among these fields.

Our first result is an approximation algorithm for constraint satisfaction problems
(CSPs), where constraints are placed on the edges of “expanding” hypergraphs. This
result (builds on and) generalizes known algorithms for graphs. Our algorithm is based
on the Sum-of-Squares semi-definite programming hierarchy and it is a natural higher-

order generalization of the graph case.

Next, we observe that the task of decoding some well-known families of distance am-
plified codes using expanding structures can be reduced to approximating suitable “ex-
panding” CSPs. By enhancing the Sum-of-Squares hierarchy with an “entropic” potential,
we can, roughly speaking, obtain list decoding guarantees out of unique decoding. In this

way, we obtain a new list decoding framework which is our second result.

In a breakthrough work, Ta-Shma [STOC 2017] found the first explicit family of e-
balanced binary codes near the so-called Gilbert-Varshamov bound (hence achieving
nearly optimal distance versus rate trade-off). Put it simply, Ta-Shma’s codes are distance
amplified codes using carefully desinged expanding structures. We obtain our third result
by overcoming the far from optimal trade-offs of our list decoding framework allowing

us to provide the first polynomial time decoder for Ta-Shma’s codes.

Finally, using pseudorandomness techniques based on our new weak regularity de-
composition of sparse tensors (supported on expanding structures) we can also approx-
imate the CSPs arising in the decoding tasks mentioned above. Thanks to the much
faster computational time of finding weak regularity decompositions compared to solv-
ing Sum-of-Squares programs, we obtain our fourth result: a near-linear time decoder for

Ta-Shma’s codes.

xiii



CHAPTER 1

INTRODUCTION

A central concept in our work is expansion. In theoretical computer science (TCS) and
mathematics, expansion comes in a few flavors with the most notable example, perhaps,
being expander graphs [HLW06]. Roughly speaking, expander graphs are graphs mim-
icking some of the properties of complete graphs such as being well-connected. Fortu-
nately, contrary to complete graphs which have as many edges as possible, exapnder
graphs can have much fewer edges and yet still be well-connected. By combining these
opposing properties of sparseness and well-connectedness, expanders found a myriad of

applications in TCS and this wide applicability continues to grow.

One way to extend the theory of expander graphs is to consider notions of expanding
hypergraphs. In this direction, a theory of high-dimensional expnaders (HDXs) has re-
cently emerged [Lub18]. Given the extra richness of hypergraphs compared to their one
dimensional counterparts (graphs), the very definition of hypergraph expansion seems
trickier and some (not necessarily equivalent) definitions were proposed [LM06, KKL14,
EK16a, DK17]. This represents a departure from the expansion of graphs, where different
definitions amount to morally the same notion of expansion! (be it isoperimetric, alge-

braic or in terms of mixing time of random walks).

Another point of departure between graphs and hypergraphs appears in the study of
constraint satisfaction problems (CSPs). CSPs whose constraints lie on the edges of sparse
random regular graphs admit non-trivial approximation algori’chms2 [BRS11, GS11, OGT15].
However, CSPs whose constraints lie on hyperedges of sparse random hypergraphs (even

of hyperedge size 3) are believed to be hard to approximate efficiently. In fact, the later

1. This in terms of notions related to edge expansion. Vertex expansion of graphs is indeed a different
notion.

2. Random d-regular graphs are expanding (even near-Ramanujan) with high probability [Fri91].
1



kind of CSP cannot be non-trivially approximated using powerful algorithmic techniques,

e.g., [Gri01, Sch08, KMOW17].

A natural question emerges: how well can we approximate CSPs whose constraints
lie on the hyperedges of (sparse) high-dimensional expanders? Given that CSPs on sparse
random hypergraphs are believed to be hard to approximate, it would be conceivable to
expect that CSPs on sparse HDXs are similarly hard. In our first result in this work [A]T19],
we show that this intuition is false when the constraints are placed on the hyperedges of
a sufficiently expanding HDX (and the variables correspond to vertices). Our approxima-
tion algorithm is a natural higher-order generalization of known algorithms for CSPs on
graphs by Barak, Raghavendra and Steurer [BRS11] and Guruswami and Sinop [GS11],
which are based on a convex optimization hierarchy called Sum-of-Squares semi-definite

programming hierarchy.

To analyze the quality of approximation of our algorithm, we are led to consider
(higher-order) versions of specific random walks in a hypergraph. As long as the opera-
tors corresponding to these walks are expanding (i.e., these walks mix fast), our algorithm
can provide good additive approximation to the optimum value of the CSP. This expan-
sion requirement can be seen as giving rise to another notion of high-dimensional expan-
sion which we dub splittability. Curiously, the walk operators considered in our work are
of the same as the operators independently considered for agreement tests [DD19], which
is an important primitive in the construction of probabilistic check proofs (PCPs). This
notion of expansion (splittability) rediscovered in our CSP work actually first appeared

in another context [Mos10].

Having the ability to efficiently approximate CSPs on (some) expanding hypergraphs
will turn out to be extremely useful to us, and it underlies most of our subsequent results
in this work. Of course, the alternative of having hard to approximate CSPs could have

been interesting and valuable in itself. We point out that, by placing the constraints and

2



variables differently on a HDX, explicit hardness results for the Sum-of-Squares hierarchy

were later obtained in [DFHT21].

We mentioned that expansion has found a myriad of applications in TCS and one
particularly fertile field of this phenomenon has been coding theory [Gur04]. Two ma-
jor uses of expansion in coding theory are: (i) in distance amplification of a base code
(e.g., [GIO5, TS17]), and (ii) in the design of parity check matrices (e.g., [Gal62, S596]).
In this work, we investigate the former case and show that the ability to approximate
CSPs on expanding (splittable) structures can be leveraged to provide efficient decoding

algorithms.

Our second result [AJQ"20] is a list decoding framework for distance amplified codes
using expanding structures: HDXs and walks over expander graphs. List decoding is a
relaxed decoding regime where one seeks to correct a large fraction of adversarial errors
at the expense of having not just one but possibly a small list of codewords. It was intro-
duced by Elias [Eli57] and it has more recently become a central primitive in coding the-
ory thanks to the seminal efficient list decoding work of Sudan [Sud97] and Guruswami
and Sudan [GS98]. Surprisingly, list decoding can be useful even in performing unique

decoding.

A key observation is that the problem of unique decoding distance amplified codes
using expanding structures (considered in this work) can be reduced to approximating
CSPs whose constraints lie on the hyperedges of suitable hypergraphs. To perform list
decoding, we can then use as starting point our Sum-of-Squares based CSP approxima-
tion algorithm for expanding hypergraphs. However, we will need to recover not only
one approximate solution as in unique decoding, but a few (far apart) solutions to be
able to perform list decoding. For this reason, we add to the Sum-of-Squares program an
“entropic” potential function in order to make the (near) optimum solution of this convex

program sufficiently rich to “encode” all the solutions we need to retrieve. This technique

3



of using an entropic potential in Sum-of-Squares was independently used in robust statis-
tics [KKK19, RY20]. Whereas their results are in a continuous setting over the reals (i.e.,

R), our results are over discrete (finite) alphabets.

In coding theory, special attention is given to the trade-off between the distance of
a code and its rate. Naturally, when using a code we want to pay as little as possible
in terms of added redundancy to be able to recover from a given fraction of adversarial
errors. Despite their fundamental nature, it is surprising that simple questions about
the achievable parameters and the very construction of (nearly) optimum codes remain
open specially over small alphabets. For binary codes, a precise trade-off between these

parameters remains a major elusive open problem.

The best existential distance versus rate trade-offs was shown by Gilbert [Gil52] for
arbitrary codes and it was later shown for random linear codes by Varshamov [Var57].
Unfortunately, these results are merely existential not yielding an explicit efficient way
to build these codes. The combinition of distance and rate achieved by their results is
widely known as the Gilbert-Varshamov (GV) bound. The importance of this bound is
that it is not too far from optimal as shown by the two linear programming (LP) bounds
of McEliece, Rodemich, Rumsey and Welch [MRRW?77]. For instance, in the large distance
regime for binary codes, namely, distance 1/2 — ¢, the GV bound establishes the existence
of codes of rate ()(e?) whereas one of the LP bounds states that O(¢? log(1/¢)) is an upper

bound on the rate of any such code.

In a breakthrough work, Ta-Shma [TS17] gave the first explicit construction of a binary
code near the GV bound. More precisely, Ta-Shma constructed linear binary codes of
distance 1/2 — £/2 and rate Q(e21°(1)). Ta-Shma'’s codes have the additional property of
being e-balanced, i.e., the hamming weight of every non-zero codeword is at least 1/2 —
e/2 and at most 1/2 + /2. This gives rise to e-biased distributions of nearly optimum

support size which is an important object in the theory of pseudorandomness. It was left

4



open whether Ta-Shma’s codes admit efficient decoding. Note that efficient decoding is

not guaranteed since there are families of codes that are hard to decode.

Our third result in this work [JQST20] is a positive answer that Ta-Shma’s codes do
admit an efficient (polynomial time) decoding algorithm. Before we discuss our decoding
algorithms, let’s first give a high-level overview of Ta-Shma’s construction so that it might
be clear how it fits in our story so far. Ta-Shma’s codes are distance amplified codes
using a carefully constructed expanding structure. To be more specific, the expanding
structure considered by Ta-Shma is the collection of walks of a fixed small length on the
wide replacement product of two expander graphs [BATS08], which is a generalization of
the the celebrated Zig-Zag product of Reingold, Vadhan and Wigderson [RVWO00]. This
special collection of walks can be seen as a derandomization of the collections of all walks
of the same length on a single expander graph, which was known to achieve distance

1/2 — e but rate Q(e*to()),

Our list decoding framework can be applied to Ta-Shma'’s codes after simple mod-
ifications and some observations. Unfortunately, at least naively, this application can
only be done after drastically reducing the rate to @(2~POY108(1/¢)) In our third result,
we have to bring extra techniques to operate on the nearly optimal regime of distance
1/2 — ¢/2 and rate Q(e27°(1)). One such technique is to use list decoding to perform
unique decoding since in our case the various parameter dependencies become much
more favorable. The second technique is to create a sequence of codes (code cascading),
where list decoding takes place between consecutive codes. Carefully combining these
techniques, we then obtain the first polynomial time decoding algorithm for Ta-Shma’s

codes.

One downside of our decoding algorithm for Ta-Shma’s codes is that albeit the run-
ning time being polynomial, it actually requires large degrees (in some regimes even de-

pending on 1/¢). In our fourth result in this work [JST21], we provide a near-linear time

5



(in the block length) decoder for Ta-Shma’s code. One reason the algorithms of our third
result our slow is that they are based on the Sum-of-Squares hierarchy. The hierarchy is
known to be very powerful, but to also require substantial running time. For this rea-
son, in our fourth result we adopt a completely different approach based on weak reg-
ularity decompositions as pioneered by Frieze and Kannan [FK98] but for sparse tensor
supported on expanding structures. We show that computing these regularity decompo-
sitions can be done in near-linear time. This later approach is arguably simpler and more

intuitive.

1.1 Chapter Outlines

As we alluded previously, we investigate problems involving optimization, expansion,
coding theory and pseudorandomness establishing some connections along way. The
work in this dissertation is based on joint results with Vedat Alev, Dylan Quintana, Shashank
Srivastava and Madhur Tulsiani (see acknowledgments for more details). Next, we pro-

vide brief outlines for each subsequent chapter.

- Approximating k-CSPs on expanding structures: In Chapter 2, we give polyno-
mial time approximation algorithms for k-CSPs (Constraint Satisfaction Problems)
on suitably 3 expanding hypergraphs, which is a class of structures containing high-
dimensional expanders (as in Dinur and Kaufman definition [DK17]) as an impor-
tant special case. Naturally, the quality of approximation crucially depends on qual-
ity of expansion of these hypergraphs. Our algorithmic results are based on the SOS
hierarchy and generalize the 2-CSPs results of [BRS11, GS11]. Via known connec-

tions, our algorithms translate into approximation algorithms for quantum k-CSPs,

3. More precisely, we generalize to hypergraphs the notion of threshold rank of a graph [BRS11] which
is a robust version of expansion tolerating a few,i.e., O(1), large eigenvalues (the rank) in the adjacency
matrix of a graph.

6



the so-called k-local Quantum Hamiltonians.

- List decoding framework for binary codes: In Chapter 3, we provide a list decod-
ing framework for distance amplified codes based on expanding structures: high-
dimensional expanders (as in Dinur and Kaufman definition [DK17]) and walks on
expander graphs. We view the problem of unique decoding as solving a suitable Max
k-CSP (Constraint Satisfaction Problem) instance, which can be solved using our
earlier work [A]JT19] based on the SOS hierarchy. To obtain the list decoding frame-
work, we maximize an entropic proxy while solving a k-CSP. This makes the SOS
solution rich enough so that we can “recover” a list of all the desired codewords
from it. Despite this parameter shortcoming, this framework served as our starting

point for unique decoding results of nearly optimal codes mentioned next.

- Unique decoding near optimal binary codes: In Chapter 4, we give polynomial
time unique decoding algorithms for nearly optimal, in terms of redundancy (rate)
versus robustness (distance) trade-off (i.e., near the so-called Gilbert—Varshamov
bound [Gil52, Var57]), explicit binary codes of large distance. These codes are (es-
sentially) those explicit binary codes of distance 1/2 — ¢ and rate Q(€2+0(1)) arising
from the breakthrough construction of Ta-Shma [TS17]. Our algorithms are based on
Sum-of-Squares hierarchy and use as a starting point a decoding framework from
our earlier work [AJQ"20] discussed in Chapter 3. Our main contribution consists
in overcoming the far from optimal rates from [AJQT20] to operate in this near op-
timal regime for unique decoding. This result can be seen as a step towards a better
understanding of the elusive case of binary codes in the general adversarial error
model of Hamming [Ham50]. These algorithms are just a proof of concept showing

that polynomial time algorithms exist in this previously unattained regime.

- Near-linear time decoding near optimal binary codes: In Chapter 5, this previous

7



result of decoding Ta-Shma’s codes opened avenues for a near-linear time unique
algorithms using a novel algorithmic weak regularity decomposition in the style
of Frieze and Kannan [FK96] but for sparse tensors supported on expending hy-
pergraphs. With this new weak regularity decomposition, we can approximate
the k-CSPs, decode some distance amplified codes and even perform list decod-
ing. We hope that these techniques can also open avenues to list decoding al-
gorithms with near optimal parameters, this being a major open problem in the

field [Gur09, Gurl0].



CHAPTER 2

APPROXIMATING CSPS ON HIGH-DIMENSIONAL EXPANDERS
2.1 Introduction

We consider the problem of approximately solving constraint satisfaction problems (CSPs)
on instances satisfying certain expansion properties. The role of expansion in understand-
ing the approximability of CSPs with two variables in each constraint (2-CSPs) has been
extensively studied and has led to several results, which can also be viewed as no-go
results for PCP constructions (since PCPs are hard instances of CSPs). It was shown by
Arora et al. [AKK08] (and strengthened by Makarychev and Makarychev [MM11]) that
the Unique Games problem is easily approximable on expanding instances, thus proving
that the Unique Games Conjecture of Khot [Kho(2] cannot be true for expanding instances.
Their results were extended to all 2-CSPs and several partitioning problems in works by
Barak, Raghavendra and Steurer [BRS11], Guruswami and Sinop [GS511], and Oveis Gha-

ran and Trevisan [OGT15] under much weaker notions of expansion.

We consider the following question:
When are expanding instances of k-CSPs easy for k > 2?

At first glance, the question does not make much sense, since random instances of k-
CSPs (which are also highly expanding) are known to be hard for various models of
computation (see [KMOW17] for an excellent survey). However, while the kind of ex-
pansion exhibited by random instances of CSPs is useful for constructing codes, it is not
sufficient for constructing primitives for PCPs, such as locally testable codes [BSHRO5].
On the other hand, objects such as high-dimensional expanders, which possess a form
of “structured multi-scale expansion” have been useful in constructing derandomized

direct-product and direct-sum tests (which can be viewed as locally testable distance
9



amplification codes) [DK17], lattices with large distance [KM18], list-decodable direct
product codes [DHK 18], and are thought to be intimately connected with PCPs [DK17].
Thus, from the PCP perspective, it is more relevant to ask if this form of expansion can be

used to efficiently approximate constraint satisfaction problems.

Connections to coding theory. Algorithmic results related to expanding CSPs are also
relevant for the problem of decoding locally testable codes. Consider a code C constructed
via k-local operations (such as k-fold direct-sum) on a base code Cy with smaller distance.
Then, a codeword in C is simply an instance of a CSP, where each bit places a constraint
on k bits (which is k-XOR in case of direct sum) of the relevant codeword in Cj. The task of
decoding a noisy codeword is then equivalent to finding an assignment in Cy, satisfying
the maximum number of constraints for the above instance. Thus, algorithms for solving
CSPs on expanding instances may lead to new decoding algorithms for codes obtained
by applying local operations to a base code. In fact, the list decoding algorithm for direct-
product codes by Dinur et al. [DHK " 18] also relied on algorithmic results for expanding
unique games. Since all constructions of locally testable codes need to have at least some
weak expansion [DK12], it is interesting to understand what notions of expansion are

amenable to algorithmic techniques.

High-dimensional expanders and our results. A d-dimensional expander is a downward-
closed hypergraph (simplicial complex), say X, with edges of size at most d + 1, such
that for every hyperedge a € X (with |a] < d — 1), a certain “neighborhood graph”
G(Xq) is a spectral expander!. Here, the graph G(X,) is defined to have the vertex set
{i | aU{i} € X} and edge-set {i,j | aU {i,j} € X}. If the (normalized) second singular

value of each of the neighborhood graphs is bounded by <, X is said to be a -high-

1. While there are several definitions of high-dimensional expanders, we consider the one by Dinur and
Kaufman [DK17], which is most closely related to spectral expansion, and was also the one shown to be
related to PCP applications. Our results also work for a weaker but more technical definition by Dikstein
et al. [DDFH18], which we defer till later.

10



dimensional expander (y-HDX).

Note that (the downward closure of) a random sparse (d + 1)-uniform hypergraph,
say with n vertices and ¢ - n edges, is very unlikely to be a d-dimensional expander. With
high probability, no two hyperedges share more than one vertex and thus for any i € [n],
the neighborhood graph G; is simply a disjoint union of cliques of size d, which is very
far from an expander. While random hypergraphs do not yield high-dimensional ex-
panders, such objects are indeed known to exists via (surprising) algebraic constructions
[LSVO05b, LSV05a, KO18a, CTZ18] and are known to have several interesting properties
and applications [KKL16, DHK 118, KM17, KO18b, DDFH18, DK17, PRT16].

Expander graphs can simply be thought of as the one-dimensional case of the above
definition. The results of Barak, Raghavendra and Steurer [BRS11] for 2-CSPs yield that
if the constraint graph of a 2-CSP instance (with size n and alphabet size g) is a suffi-
ciently good (one dimensional) spectral expander, then one can efficiently find solutions
satisfying OPT — ¢ fraction of constraints, where OPT denotes the maximum fraction of
constraints satisfiable by any assignment. Their algorithm is based on (q/ £)°(1) levels of
the Sum-of-Squares (50S) SDP hierarchy, and the expansion requirement on the constraint
graph is that the (normalized) second singular value should be at most (e/ q)o(l). We
show a similar result for k-CSPs when the corresponding simplicial complex X5, which is
obtained by including one hyperedge for each constraint and taking a downward closure,

is a sufficiently good (k — 1)-dimensional expander.

Theorem 2.1.1 (Informal). Let J be an instance of MAX k-CSP on n variables taking values
over an alphabet of size q, and let ¢ > 0. Let the simplicial complex X5 be a y-HDX with
v = W . (1/(kq))O%). Then, there is an algorithm based on (k/e)O(V) . gOK) levels of
the Sum-of-Squares hierarchy, which produces an assignment satisfying OPT — ¢ fraction of the
constraints.

Remark 2.1.2. While the level-t relaxation for MAX k-CSP can be solved in time (nq)o(t)
11



[RW17], the rounding algorithms used by [BRS11] and our work do not need the full power of
this relaxation. Instead, they are captured by the “local rounding” framework of Guruswami and
Sinop [GS12] who show how to implement a local rounding algorithm based on t levels of the SoS

Ok (1)

hierarchy, in time O(t) . (where q denotes the alphabet size).
v q q P

Our techniques. We start by using essentially the same argument for analyzing the SoS
hierarchy as was used by [BRS11] (specialized to the case of expanders). They viewed the
SoS solution as giving a joint distribution on each pair of variables forming a constraint,
and proved that for sufficiently expanding graphs, these distributions can be made close
to product distributions, by conditioning on a small number of variables (which governs
the number of levels required). Similarly, we consider the conditions under which joint
distributions on k-tuples corresponding to constraints can be made close to product dis-
tributions. Since the [BRS11] argument shows how to split a joint distribution into two
marginals, we can use it to recursively split a set of size k into two smaller ones (one can

think of all splitting operations as forming a binary tree with k leaves).

However, our arguments differ in the kind of expansion required to perform the
above splitting operations. In the case of the 2-CSP, one splits along the edges of the
constraint graph, and thus we only need the expansion of the contraint graph (which
is part of the assumption). However, in the case of k-CSPs, we may split a set of size
(1 + ¢) into disjoint sets of size ¢1 and ¢. This requires understanding the expansion
of the following family of (weighted) bipartite graphs arising from the complex X: The
vertices in the graph are sets of variables of size /1 and /5 that occur in some constraint,
and the weight of an edge {ay, ay} for ay Nay = @, is proportional to the probability that
a random constraint contains aj Ll ap. Note that this graph may be weighted even if the

k-CSP instance J is unweighted.

We view the above graphs as random walks, which we call “swap walks” on the

hyperedges (faces) in the complex X. While several random walks on high-dimensional
12



expanders have been shown to have rapid mixing [KM17, KO18b, DK17, LLP17], we need
a stronger condition. To apply the argument from [BRS11], we not only need that the
second singular value is bounded away from one, but require it to be an arbitrarily small
constant (as a function of ¢, k and q). We show that this is indeed ensured by the condition
that a Nap = @, and obtain a bound of KOk) . 7 on the second singular value. This bound,
which constitutes much of the technical work in the paper, is obtained by first expressing
these walks in terms of more canonical walks, and then using the beautiful machinery of
harmonic analysis on expanding posets by Dikstein et al. [DDFH18] to understand their

spectra.

The swap walks analyzed above represent natural random walks on simplicial com-
plexes, and their properties may be of independent interest for other applications. Just as
the high-dimensional expanders are viewed as “derandomized” versions of the complete
complex (containing all sets of size at most k), one can view the swap walks as deran-
domized versions of (bipartite) Kneser graphs, which have vertex sets ([gnl}) and ([ZZ]), and
edges (a,b) iff aNb = @. We provide a more detailed and technical overview in Sec-

tion 2.3 after discussing the relevant preliminaries in Section 2.2.

High-dimensional threshold rank. The correlation breaking method in [BRS11] can be
applied as long as the graph has low threshold rank i.e., the number of singular values
above a threshold T = (¢/ q)o(l) is bounded. Similarly, the analysis described above can
be applied, as long as all the swap walks which arise when splitting the k-tuples have
bounded threshold rank. This suggests a notion of high-dimensional threshold rank for
hypergraphs (discussed in Section 2.7), which can be defined in terms of the threshold
ranks of the relevant swap walks. We remark that it is easy to show that dense hyper-
graphs (with Q(n¥) hyperedges) have small-threshold rank according to this notion, and
thus it can be used to recover known algorithms for approximating k-CSPs on dense in-

stances [FK96] (as was true for threshold rank in graphs).
13



Other related work. While we extend the approach taken by [BRS11] for 2-CSPs, some-
what different approaches were considered by Guruswami and Sinop [GS11], and Oveis-
Gharan and Trevisan [OGT15]. The work by Guruswami and Sinop relied on the expan-
sion of the label extended graph, and used an analysis based on low-dimensional ap-
proximations of the SDP solution. Oveis-Gharan and Trevisan used low-threshold rank
assumptions to obtain a regularity lemma, which was then used to approximate the CSP.
For the case of k-CSPs, the Sherali-Adams hierarchy can be used to solve instances with
bounded treewidth [W]04] and approximately dense instances [YZ14, MR17]. Brandao
and Harrow [BH13] also extended the results by [BRS11] for 2-CSPs to the case of 2-local
Hamiltonians. We show that their ideas can also be used to prove a similar extension of

our results to k-local Hamiltonians on high-dimensional expanders.

In case of high-dimensional expanders, in addition to canonical walks described here,
a “non-lazy” version of these walks (moving from s to t only if s # t) was also consid-
ered by Kaufman and Oppenheim [KO18b], Anari et al. [ALGV18] and Dikstein et al.
[DDFH18]. The swap walks studied in this paper were also considered independently in

a very recent work of Dikstein and Dinur [DD19] (under the name "complement walks").

In a recent follow-up work [AJQ™20], the algorithms developed here were also used
to obtain new unique and list decoding algorithms for direct sum and direct product
codes, obtained by a “lifting" a base code C via k-local operations to amplify distance.
This work also showed that the hypergraphs obtained by considering collections of length-
k walks on an expanding graph also satisfy (a slight variant of) splittability, and admit

similar algorithms.

14



2.2 Preliminaries and Notation

2.2.1 Linear Algebra

Recall that for an operator A : V' — W between two finite-dimensional inner product

spaces V and W, the operator norm can be written as

(Af,8)

Algp = SUp ——=—— -
Allop = 540 T gl
Also, for such an A the adjoint AT : W — V is defined as the (unique) operator satisfying
(Af,g) = <f,A+g> forall f € V,g € W. For A : V — W, we take ||A||0p = 01(A) >
o(A) > -+ > oy(A) > 0 to be its singular values in descending order. Note that for

A:V — V,0,(A) denotes its second largest eigenvalue in absolute value.

2.2.2 High-Dimensional Expanders

A high-dimensional expander (HDX) is a particular kind of downward-closed hyper-
graph (simplicial complex) satisfying an expansion requirement. We elaborate on these

properties and define well known natural walks on HDXs below.

Simplicial Complexes

Definition 2.2.1. A simplicial complex X with ground set [n] is a downward-closed collection of
subsets of [n] i.e., for all sets s € X and t C s, we also have t € X. The sets in X are also referred

to as faces of X.

We use the notation X (i) to denote the collection of all faces s in X with |s| = i. When faces
are of cardinality at most d, we also use the notation X (< d) to denote all the faces of X. By

convention, we take X(0) := {@}.
15



A simplicial complex X(< d) is said to be a pure simplicial complex if every face of X is
contained in some face of size d. Note that in a pure simplicial complex X(< d), the top slice X(d)

completely determines the complex.

Note that it is more common to associate a geometric representation to simplicial
complexes, with faces of cardinality i being referred to as faces of dimension i — 1 (and the
collection being denoted by X(i — 1) instead of X(i)). However, since we will only be
treating these as hypergraphs, we prefer to index faces by their cardinality, to improve

readability of related expressions.
An important simplicial complex is the complete complex.

Definition 2.2.2 (Complete Complex A;(n)). We denote by A;z(n) the complete complex with

faces of size at most d i.e., Ag(n) = {s C [n] | |s| < d}.

Walks and Measures on Simplicial Complexes

Let Ck denote the space of real valued functions on X (k) i.e.,
ck = {f|f: X(k) - R} 2 RX(®),

We describe natural walks on simplicial complexes considered in [DK17, DDFH18, KO18b],

as stochastic operators, which map functions in C to C**1 and vice-versa.

To define the stochastic operators associated with the walks, we first need to describe
a set of probability measures which serve as the stationary measures for these random
walks. For a pure simplicial complex X (< d), we define a collection of probability mea-

sures (I, ...I1;), with IT; giving a distribution on faces in the slice X(i).

Definition 2.2.3 (Probability measures (I1y,...,I1y)). Let X(< d) be a pure simplicial com-

plex and let I1; be an arbitrary probability measure on X(d). We define a coupled array of random
16



variables (s(4), .. .,s(1)) as follows: sample s\?) ~ T1; and (recursively) for each i € [d), take

sV tobea uniformly random subset ofs(i), of sizei — 1.

The distributions I15_1, ..., 11  are then defined to be the marginal distributions of the ran-

d—1) B

dom variables s BIONE defined above.

The following is immediate from the definition above.

Proposition 2.2.4. Let a € X(¢) be an arbitrary face. For all j > 0, one has

Y, Ipyj(b) = (ﬁﬂ) TTy(a).

bEX(4]): J
bDa

For all k, we define the inner product of functions f,g € CK, according to associated

measure [T

(f.8)=_E [fls)g(s)] = ) f(s)g(s) k(s).

sty seX(k)

We now define the up and down operators U; : C! — Ci*1 and Djyq: Citl - Clas

Viglls) = 5/€X(]ZF§, oCo [8(s)] = D;Bg s\{x})
[Di18](s) = 5,Nnilli'ﬁ/Dﬁ 6] = 5 )gsg (s {x})- H—l(j(‘;'){x})

An important consequence of the above definition is that U; and D;; are adjoints with

respect to the inner products of C* and C'*1.

Fact2.2.5. U; = D;rH, ,(Uif,8) = (f,D;18) for every f € C'and g € C'T1.

Note that the operators can be thought of as defining random walks in a simplicial
complex X (< d). The operator U; moves down from a face s € X(i + 1) to a face s’ € X(i),
but lifts a function ¢ € C' up to a function Ug € C**1. Similarly, the operator D; 41 can

be thought of as defining a random walk which moves up from s € X (i) tos’ € X(i + 1).
17



It is easy to verify that these walks respectively map the measure I1; 4 to Il;, and I1; to

Iliq.

High-Dimensional Expansion

We recall the notion of high-dimensional expansion (defined via local spectral expansion)

considered by [DK17]. We first need a few pieces of notation.

For a complex X(< d) and s € X(i) for some i € [d], we denote by X the link complex
Xs = {t\s|s Cte X}.

When |s| < d — 2, we also associate a natural weighted graph G(Xs) to a link X,, with
vertex set X;(1) and edge-set Xs(2). The edge-weights are taken to be proportional to the
measure Iy on the complex X, which is in turn proportional to the measure ITj; ;5 on X.
The graph G(Xj) is referred to as the skeleton of Xs. Dinur and Kaufman [DK17] define

high-dimensional expansion in terms of spectral expansion of the skeletons of the links.

Definition 2.2.6 (y-HDX from [DK17]). A simplicial complex X(< d) is said to be y-High
Dimensional Expander (7-HDX) if for every 0 < i < d — 2 and for every s € X(i), the graph
G(Xs) satisfies 02(G(Xs)) < vy, where 0»(G(Xs)) denotes the second singular value of the

(normalized) adjacency matrix of G(Xs).

2.2.3 Constraint Satisfaction Problems (CSPs)

A k-CSP instance J = (H, C, w) with alphabet size g consists of a k-uniform hypergraph,
a set of constraints

C={CaC[g]":a€H},

18



and a non-negative weight function w € IRE on the constraints, satisfying Y g w(a) =

1.

A constraint Cq is said to be satisfied by an assignment ¢ if we have o|q € Cq i.e., the
restriction of ¢ on a is contained in Cq. We write, SAT5(c) for the (weighted fraction of

the constraints) satisfied by the assignment ¢ i.e.,

SAT5(0) = Y w(a) 1o]q € Ca) = . [1[o]q € Cq]] -
acH

We denote by OPT(J) the maximum of SAT5(¢) over all o e [g]V ().

Any k-uniform hypergraph H can be associated with a pure simplicial complex in
a canonical way by just setting X5 = {b:3a € Hand a O b} — notice that X5(k) = H.
We will refer to this complex as the constraint complex of the instance J. The probability

distribution IT; on X5 will be derived from the weights function w of the constraint, i.e

[T (a) =w(a) Vae X5(k) = H.

2.2.4  Sum-of-Squares Relaxations and t-local PSD Ensembles

The Sum-of-Squares (S0S) hierarchy gives a sequence of increasingly tight semidefinite
programming relaxations for several optimization problems, including CSPs. Since we
will use relatively few facts about the SoS hierarchy, already developed in the analysis of
Barak, Raghavendra and Steurer [BRS11], we will adapt their notation of t-local distribu-
tions to describe the relaxations. For a k-CSP instance J = (H,C,w) on n variables, we
consider the following semidefinite relaxation given by t-levels of the SoS hierarchy, with
vectors v(g ) forall S C [n] with |S| < t, and all & € [q]°. Here, for a; € [g]°1 and
ay € [q]%2, a1 0oy € [g]°1Y52 denotes the partial assignment obtained by concatenating
aq and as.

19



maximize E | ) ||U(M)|2] =: SDP(J)
~ weCqy
subject to <v(51,a1),v(52,a2)> =0 Y aqls,ns, # 22|50,

<U(Sl,zx1)/v(52,(x2)> = <U(S3,a3)rv(54,4x4)> V51 USy=853USy, agoar =azoay
Y llogipl? =1 Vi € [n]
j€la]
o)l =1

For any set S with |S| < ¢, the vectors O(sm) induce a probability distribution pug
over [q]° such that the assignment & € [q]° appears with probability ||v(5’“)||2. More-
over, these distributions are consistent on intersections i.e., for T C S C [n], we have
Hs|T = T, where y s|T denotes the restriction of the distribution yg to the set T. We use
these distributions to define a collection of random variables Yq, ..., Yy taking values in
[q], such that for any set S with |S| < t, the collection of variables {Y;},.5 have a joint
distribution 5. Note that the entire collection (Y71, ..., Yy) may not have a joint distribu-

tion: this property is only true for sub-collections of size t. We will refer to the collection

(Y1,...,Yn) as a t-local ensemble of random variables.

We also have that that for any T C [n] with |T| < t —2, and any 8 € [q]T, we can
define a (t — | T|)-local ensemble (Y}, ..., Y;) by “conditioning” the local distributions on
the event YT = B, where Yt is shorthand for the collection {Y;};.r. For any S with |S| <
t — |T|, we define the distribution of Y§ as u% := pgyr|{YT = B}. Finally, the semidefinite

program also ensures that for any such conditioning, the conditional covariance matrix

M(spa1)(Sam0) = COV (1[Y/51 = “1]11[Y/52 = 062])

is positive semidefinite, where |S1]|,|S2| < (t — |T|)/2. Here, for each pair S, S the co-

variance is computed using the joint distribution Vlslu Sy The PSD-ness be easily verified

20



by noticing that the above matrix can be written as the Gram matrix of the vectors

1 19(7Us oa) I” .

= —— 0 o) — v
lorg [l (TUSAox) o> TP

w(S,zx) .

In this paper, we will only consider t-local ensembles such that for every conditioning on
a set of size at most t — 2, the conditional covariance matrix is PSD. We will refer to these

as t-local PSD ensembles. We will also need a simple corollary of the above definitions.

Fact2.2.7. Let (Y1, ...,Yn) be a t-local PSD ensemble, and let X be any simplicial complex with
X(1) = [n]. Then, forall s < t/2, the collection {Ya},cx(<s) is @ (t/s)-local PSD ensemble,
where X(<'s) = Ui_1 X(i).

For random variables Yg in a t-local PSD ensemble, we use the notation {Yg} to

denote the distribution of Yg (which exists when |S| < ). We also define Var[Yg] as

sze[q]s Var[1[Yg = «]].

2.3 Proof Overview: Approximating MAX 4-XOR

We consider a simple example of a specific k-CSP, which captures most of the key ideas
in our proof. Let J be an unweighted instance of 4-XOR on n Boolean variables. Let H
be a 4-uniform hypergraph on vertex set [1], with a hyperedge corresponding to each

constraint i.e., each a = {iy,1y,i3,i4} € H corresponds to a constraint in J of the form
Xi, + Xi, + Xis + Xi, = ba (mod 2) ,

for some by € {0,1}. Let X denote the constraint complex for the instance J such that
X(1) = [n], X(4) = H and let Iy, ..., I14 be the associated distributions (with IT4 being

uniform on H).

21



Local vs global correlation: the BRS strategy. We first recall the strategy used by [BRS11],
which also suggests a natural first step for our proof. Given a 2-CSP instance with an
associated graph G, and a t-local PSD ensemble Y1, ...,Y; obtained from the SoS relax-
ation, they consider if the “local correlation" of the ensemble is small across the edges of

G (which correspond to constraints) i.e.,

{i,j]}]»ENG [H{Yin} - i} {Yf}H1] s e

If the local correlation is indeed small, we easily produce an assignment achieving a value
SDP — ¢ in expectation, simply by rounding each variable x; independently according to
the distribution {Y;}. On the other hand, if this is not satisfied, they show (as a special
case of their proof) that if G is an expander with second eigenvalue A < c - (¢2/4%), then
variables also have a high “global correlation", between a typical pair (i,j) € [1n]?. Here,
q is the alphabet size and c is a fixed constant. They use this to show that for (Y’l, oY)

obtained by conditioning on the value of a randomly chosen Y; , we have

E[Var[Y]] - E E[Var[Y]] > Q(/),
i zO,YZ-O i

where the expectations over i and iy are both according to the stationary distribution on

the vertices of G. Since the variance is bounded between 0 and 1, this essentially shows

that the local correlation must be at most ¢ after conditioning on a set of size O(g?/¢?)

(although the actual argument requires a bit more care and needs to condition on a some-

what larger set).

22



Extension to 4-XOR. As in [BRS11], we check if the t-local PSD ensemble (Y1, ..., Yy)

obtained from the SDP solution satisfies

{il,iz,ifu}eH [H {YilYiZYi3Yi4} - {Yil} {Yiz} {Yi3} {Yi4}H1] = e

As before, independently sampling each x; from {Y;} gives an expected value at least
SDP — ¢ in this case. If the above inequality is not satisfied, an application of triangle

inequality gives

[{¥i¥ixa ) = {¥i¥u } {¥avi}|, +

N R A A R MR B AN

Symmetrizing over all orderings of {i1, iy, i3,i4 }, we can write the above as

> €.

ep+2-e1 > ¢,

which gives max {e1,€5} > ¢/3. Here,

o= B I Ye) = (Y {Ya ], ] and

2 {il,iz,i3]54}NH4 H‘{YilYizYigYM} - {YilYiz} {YiSY"‘l}HJ

- E [H {Y{il,iz}Y{léﬂé}} B {Y{i1'i2}} {Y{i3'i4}}HJ '

{i1,io,i3,i4 } ~T1y

As before, £1 measures the local correlation across edges of a weighted graph G; with
vertex set X(1) = [n] and edge-weights given by I'T,. Also, ¢, measures the analogous
quantity for a graph G, with vertex set X(2) (pairs of variables occurring in constraints)
and edge-weights given by I1y.

Recall that the result from [BRS11] can be applied to any graph G over variables in a

23



2-local PSD ensemble, as long as the 0> (G) is small. Since {Yi}ie[n] and {Ys},c X(2) are
both (f/2)-local PSD ensembles (by Fact 4.7.14), we will apply the result to the graph G;

on the first ensemble and G, on the second ensemble. We consider the potential

D(Yq,...,Yn) = iwﬂ%ll [Var [Y;]] + 535112 [Var [Y]] -

Since local correlation is large along at least one of the graphs Gy and Gy, using the
above arguments (and the non-decreasing nature of variance under conditioning) it is
easy to show that in expectation over the choice of {ig, jo} ~ I, and B € [q]? chosen from

{Y {io,jo} }, the conditional ensemble (Y},...,Y;) satisfies

®(Yy,...,Yn) — iO% ; [@(Y),...,Y,)] = Q(?),

provided Gy and Gy satisfy 05(G1),02(Gy) < c - €2 for an appropriate constant c.

The bound on the eigenvalue of G; follows simply from the fact that it is the skeleton
of X, which is a y-HDX. Obtaining bounds on the eigenvalues of G, and similar higher-
order graphs, constitutes much of the technical part of this paper. Note that for a random
sparse instance of MAX 4-XOR, the graph G, will be a matching with high probability
(since {i1,ip} in a constraint will only be connected to {i3,i4} in the same constraint).
However, we show that in case of a y-HDX, this graph has second eigenvalue O(vy). We
analyze these graphs in terms of modified high-dimensional random walks, which we

call “swap walks”.

We remark that our potential and choice of a “seed set” of variables to condition on,
is slightly different from [BRS11]. To decrease the potential function above, we need that
for each level X(i) (i = 1,2 in the example above) the seed set must contain sufficiently
many independent samples from X (i) sampled according to IT;. This can be ensured by

drawing independent samples from the top level X (k) (though X(2) suffices in the above
24



example). In contrast, the seed set in [BRS11] consists of random samples from I1;.

Analyzing Swap Walks. The graph G, defined above can be thought of as a random
walk on X(2), which starts at a face s € X(2), moves up to a face (constraint) s’ € X(4)
containing it, and then descends to a face t € X(2) such thatt C s’ and sNt = @ i.e,,
the walk “swaps out” the elements in s for other elements in §’. Several walks considered
on simplicial complexes allow for the possibility of a non-trivial intersection, and hence
have second eigenvalue lower bounded by a constant. On the other hand, swap walks
completely avoid any laziness and thus turn out to have eigenvalues which can be made
arbitrarily small. To understand the eigenvalues for this walk, we will express it in terms

of other canonical walks defined on simplicial complexes.

Recall that the up and down operators can be used to define random walks on sim-
plicial complexes. The up operator U; : C' — Ci*1 defines a walk that moves down from
afaces € X(i+1) to a random face t € X(i),t C s (the operator thus “lifts” a function
in C' to a function in C'*1). Similarly, the down operator D; : C! — C'~1 moves up from
afaces € X(i—1) tot € X(i),t D s, with probability I'T;(t)/(i - IT;_1(s)). These can be
used to define a canonical random walk

NSY o= D3 Dyyalysr---Up,  NYY:C% 2,

%

which moves from up for u steps 5 € X(2) to s’ € X(u + 2), and then descends back
to t € X(2). Such walks were analyzed optimally by Dinur and Kaufman [DK17], who
proved that A, (Néuz) ) = 2/(u+2) £ Oy(y) when X is a y-HDX. Thus, while this walk
gives an expanding graph with vertex set X(2), the second eigenvalue cannot be made
arbitrarily small for a fixed u (recall that we are interested in showing that 05 (G,) < c- €2).
However, note that we are only interested in Nézz) conditioned on the event that the two

elements from s are “swapped out” with new elements in the final set ti.e., s Nt = @. We

25



define

13 _N(u) £ 1t .
G0 g o ) i) M2 I

0 otherwise

4

where the normalization is to ensure stochasticity of the matrix. In this notation, the graph

Gy corresponds to the random-walk matrix S§2é2>. We show that while 02(N§22) )~ 1/2,

we have that 02(S§22’2)) = O(y). We first write the canonical walks in terms of the swap
walks. Note that

2 _ 1 2 2y 1 22
Npg = 21+ 3527 + 257

since the “descent” step from s’ € X(4) containing s € X(2), produces a t € X(2) which

“swaps out” 0, 1 and 2 elements with probabilities 1/6,2/3 and 1/6 respectively. Similarly,

2 (1Y)
Finally, we use the fact (proved in Section 2.4) that while the canonical walks do depend
on the “height” u (i.e., Néuz) # Nguz)) the swap walks (for a fixed number of swaps j) are
independent of the height to which they ascend! In particular, we have

(2,1)

S2,2

_ (L1
=5,

(2,2)

Using these, we can derive an expression for the swap walk 5577 as

s22) _ |4 6,,\,;22)_6,,\,&1) — | + 6-(D3D4U3Uy — D3Us)

22 = 2

To understand the spectrum of operators such as the ones given by the above expression,
we use the beautiful machinery for harmonic analysis over HDXs (and more generally

over expanding posets) developed by Dikstein et al. [DDFH18]. They show how to de-

26



compose the spaces Ck into approximate eigenfunctions for operators of the form DU.
Using these decompositions and the properties of expanding posets, we can show that
distinct eigenvalues of the above operator are approximately the same (up to O(y) errors)
when analyzing the walks on the complete complex. Finally, we use the fact that swap
walks in a complete complex correspond to Kneser graphs (for which the eigenvectors

and eigenvalues are well-known) to show that /\2(5%2)) = O(7).

Splittable CSPs and high-dimensional threshold rank. We note that the ideas used
above can be generalized (at least) in two ways. In the analysis of distance from product
distribution for a 4-tuple of random variables forming a contraint, we split it in 2-tuples.
In general, we can choose to split tuples in a k-CSP instance along any binary tree 7 with
k leaves, with each parent node corresponding to a swap walk between tuples forming
its children. Finally, the analysis from [BRS11] also works if the each of the swap walks
in some 7 have a bounded number (say r) of eigenvalues above some threshold 7, which
provide a notion of high-dimensional threshold rank for hypergraphs. We refer to such

an instance as a (7, T, r)-splittable.

The arguments sketched above show that high-dimensional expanders are (7,0(7), 1)-
splittable for all 7. Since the knowledge of 7 is only required in our analysis and not
in the algorithm, we say that rank¢(J) < r (or that J is (7, r)-splittable) if T is (7, T, 7)-
splittable for any 7. We defer the precise statement of results for (7, r)-splittable instances

to Section 2.7.

2.4 Walks

It is important to note that both U; and D; ;1 can be thought of as row-stochastic matrices,

i.e. we can think of them as the probability matrices describing the movement of a walk

27



from X (i 4 1) to X(i); and from X(i) to X (i + 1) respectively. More concretely, we will
think
[D;les](t) =P [the walk moves up from s € X(i) to t € X(i + 1)]

and similarly

[UiTet] (s) = IP [the walk moves down from t € X(i 4+ 1) tos € X(7)].

By referring to the definition of the up and down operators in Section 2.2, it is easy to

verify that

1o +1(b)
1 TL(s)

and [U] e](s) = 1[s 4] - %

Diyes](9) =1[t 2 4] - - -

It is easy to see that our notion of random walk respects the probability distributions I1;,
i.e. we have

N
U/IL, 1 =1L and D/ IT; =114,

i.e,, randomly moving up from a sample of I1; gives a sample of II; 1 and similarly,

moving down from a sample of 1T 14 results in a sample of I,

Instead of going up and down by one dimension, one can try going up or down
by multiple dimensions since (Dj;1---D; ) and (U;,4---U;) are still row-stochastic
matrices. Further, the corresponding probability vectors still have intuitive explanations
in terms of the distributions I1;. For a face s € X(k), we introduce the notation

u)

Pé = (Dgg - Dk+u)T

(]

(0)

where we take ps = es. This notation will be used to denote the probability distribution

of the up-walk starting from s € X (k) and ending in a random face t € X(k + u) satisfying

28



tDOs.
Note that the following Lemma together with Proposition 2.2.4 implies that pﬁ”) is

indeed a probability distribution.

Proposition 2.4.1. For s € X(k) and a € X(k + u) one has,

1 ) iy (a)

() _
e o) e 29 e )

Proof. Notice that for u = 0, the statement holds trivially. We assume that there exists

some u > 0 that satisfies

r Iy (a)
A IRIC)

(@) =1[a D g]-

forall a € X(k+u).

For b € X(k+ (u+ 1)) one has,

1 Hk+u+1(b)

(u+1) _ .
k+u+2 xcb Iy, (0\{x}

P (6) = D, 41 pt)(6)

yé”wwﬂ»

Plugging in the induction assumption, this implies

(u+1) _ 1 ) I y11(b) ) sl . 1 ‘Hk+u(b\{x})
Ps (b) - (k+u+1) %Hkﬁ-u(b\{x}) (1[(5\{3&')})2 ] (k+u) Hk(ﬁ) >’

_ 1 1 My (b) u
- iy B 2o

First, note that the up-walk only hits the faces that contain s, otherwise 1[b\{x} D s] = 0.

Suppose therefore b € X(k + u + 1) satisfies b O s. Since there are precisely (u + 1)

29



indices whose deletion still preserves the containment of s, we can write

Cu+1l 1 Iy, (k)
k+u+1 (ktu) [T (s)

B 1 Ty 4+1(b)
= l[b 2 5] ’ (k_lti—{—l) . I—i_Ik—(;l) .

p(e) = 10624

Thus, proving the proposition. n

(1)

Similarly, we introduce the notation g4 ’, as

T
qgu)(ﬁ) = (Uk+u—1 T Uk) €s,

i.e. for the probability distribution of the down-walk starting from a € X(k + u) and

ending in a random face of X(k) contained in a. The following can be verified using

Proposition 2.4.1, and the fact that (U, 1 - - Uk)Jr = Djyy - - Diyq-

Corollary 2.4.2. Let X(< d) be a simplicial complex, and k,u > 0 be parameters satisfying
k+u<d. Forac X(k+u)ands € X(k), one has

In the remainder of this section, we will try to construct more intricate walks on X

from X (k) to X(I).

2.4.1 The Canonical and the Swap Walks on a Simplicial Complex

Definition 2.4.3 (Canonical and Swap u-Walks). Let d > 0, X(< d) be a simplicial complex,
and k,1,u > 0 be parameters satisfying | < k, u < l and d > k + u; where the constraints on

these parameters are to ensure well-definedness. We will define the following random walks,

30



- canonical u-walk from X (k) to X(I). Let N](:;) be the (row-stochastic) Markov operator

that represents the following random walk: Starting from a face s € X(k),

— (random ascent/up-walk) randomly move up a face s'' € X(k + u) that contains s,

where s is picked with probability

P (s") = [(Dks1 - - Dian) "eal (57).

— (random descent/down-walk) go to a face s' € X(I) picked uniformly among all

the I-dimensional faces that are contained in s"', i.e., the set §' is picked with probability

gor(s) = 1[s' C 6] - = (U1 - Up) Tegn](s)).

BN G

The operator N l(:;) . Ct — Ck satisfies the following equation,

u
N}(C,l) = Dk+1 SN Dk+uUk+u71 . Uk ce Ul

Notice that we have NI({Ok) = |, and Nl(col) = (Ug_1...Up) forl < k.

- swapping walk from X (k) to X(I). Let Sy be the Markov operator that represents the

following random walk: Starting from a face s € X (k),

— (random ascent/up-walk) randomly move up to a face s € X (k + 1) that contains

s, where as before s is picked with probability

Pgl) (5”) = [(Dk+1 T Dk+l+1)T€S](5N)-

— (deterministic descent) deterministically go to s’ = s'"\s € X(I).

For our applications, we will need to show that the walk Sy ; has good spectral expan-
31



sion whenever X is a d-dimensional y-expander, for <y sufficiently small. To show this, we
will relate the swapping walk operator Sk,l on X to the canonical random walk operators
NI(:;) (q.v. Lemma 2.4.4).

By the machinery of expanding posets (q.v. Section 2.5) it is possible to argue that the
spectral expansion of the random walk operator N l(ctll) on a high dimensional expander
will be close to that of the complete complex. This will allow us to conclude using the
relation between the swapping walks and the canonical walks (q.v. Lemma 2.4.4) that

the spectral expansion of the swapping walk on X, will be comparable with the spectral

expansion of the swap walk on the complete complex. More precisely, we will show

Lemma 2.4.4 (Lemma 2.5.34). Foranyd, k,1 > 0, and the complete simplicial simplicial complex
X(< d), one has the following: If k > 1 > 0and d > k + 1, we have

72(Sk,1) = Okl (1 ) :

n
Using these two, and the expanding poset machinery, we will conclude

Theorem 2.4.5 (Theorem 2.5.2 simplified). Let X be a d-dimensional 7y expander. Ifk > 1 > 0
satisfy d > | + k we have,

02(Sk1) = Ok, 1(7)

where Sy | is the swapping walk on X from X (k) to X(I).

To prove Theorem 2.4.5 we will need to define an intermediate random walk that we

will call the j-swapping u-walk from X (k) to X(I):

Definition 2.4.6 (j-swapping u-walk from X (k) to X(1)). Given d,u,j,k,1 > 0 satisfying
I <k j<uu<Ilandd > k+u. Let Sg’;’j ) be the Markov operator that represents the

following random walk from X (k) to X(I) on a d-dimensional simplicial complex X: Starting

froms € X(k)
32



- (random ascent/up-walk) randomly move up to a face s'" € X(k + u) that contains s,

where s is picked with probability

Péu) (s") = [(Dg1 -+ Dk+u)T€5] (s").

- (conditioned descent) go toa face s' € X(I) sampled uniformly among all the subsets of

s'" € X(k + u) that have intersection j with s'\s, i.e. |s' N (s"\s)| = j.

Notice that Sy | = S;{l;l) forany kand | = S](:;(’O)for any u.

Remark 2.4.7. We will prove that the parameter u does not effect the swapping walk S;{L;’j ) s0

long as u > j, ie. forall u,u’ > j we have S](CL;/’j) = SI(CL;’j). Thus, we will often write Sl(cjl) for
)
Ski

2.4.2  Swap Walks are Height Independent

(1)

Recall that the swap walk Sl(fé’j ) is the conditional walk defined in terms of N r1 where

s € X(k) is connected to t € X(I) only if |t\ s| = j. The parameter u is called the height

of the walk, namely the number of times it moves up. Since up and down operators have

(u)

second singular value bounded away from 1, the second singular value of N, ;" shrinks as

(1)
1

u increases. In other words, the operator Ny

walk SI(cL;’j ) which is defined in terms of N ](CL;)

depends on the height 1. Surprisingly, the
does not depend on the particular choice of

u as long as it is well defined. More precisely, we have the following result.

Lemma 2.4.8. If X is a d-dimensional simplicial complex, 0 < | < k, and u,u’ € [j,d — k|, then

() _ ("))
Skl =Sk

In order to obtain Lemma 2.4.8, we will need a simple proposition:
33



Proposition 2.4.9. Let s € X(k), s’ C sand |t'| = j. Suppose s' LIt' € X(1). Then, we have

' 1
S (o6 W) = e L pa),
(l—j) : (]) acX (k+u):
a2(sut)

Proof. The only way of picking s’ LIt at the descent step is picking some a € X(k + u)

that contains ¢’ LI t’ in the ascent step. The probability of this happening is precisely,

n= Y "W).

aeX (k+u):
aD(sUt/)

Suppose we areataseta = sLIt, such thatt O t andsNt = @. Now, the probability of the
descent step ending at s’ LI t’ is the probability of a randomly sampled (I — j)-elemented
subset of s being ¢’ and the probability of a randomly sampled j-elemented subset of t

being t'. It can be verified that this probability is

. 1
2 k .
(5 ()
By law of total probability we establish that
' 1
Se (a5 U =propm = L ).
’ (l—j) : (j) aeX (k+u):
all(sut/)

Lemma 2.4.10 (Height Independence). Let u € [j,d —k|. Forany s € X(k), s’ C s and
t' € X(j) satisfying ' LIt' € X(I) we have the following,

(u,]') / / 1 Hk+j (5 L f/)
S ,5 Ut) = — -
NPT

34



In particular, the choice of u € [j, d — k| does not affect the swap walk.
Proof. We have,

u 1 1
Y A s g L el

ac X (k+u):adsLit/ k(s) ac X (k+u):aDdslit

where the first equality is due to Proposition 2.4.1 and the second is due to Proposi-

tion 2.2.4 together with the observation that s Ut € X(k + j).

Thus, by Proposition 2.4.9 we get,

k+u /
() (g ¢y — 1 (u5j) Tiyj(s 0t
Spi (st) = ). (lfj) (k TT,(s)

We complete the proof by noting that,

G W

ARG

and thus

(1) 1 iy j(sUt)
S L) = — .
k1 (s,1) (lfj) . (k;—]) Hk(g)

which proves the formula. n

Since the choice of u does not affect the formula, we obtain Lemma 2.4.8.

35



2.4.3 Canonical Walks in Terms of the Swap Walks

We show that the canonical walks are given by an average of swap walks with respect to

the hypergeometric distribution.

Lemma 2.4.11. Let u,l, k,d > 0 be given satisfying | < kand u < I. Then, we have the following

formula for the canonical u-walk on any X (< d) satisfying d > k + u

Proof. Suppose the canonical u-walk starting from s € X(k) picks s’ € X(k + u) in the
second step. Write &; (s”) for the event that the random face s’ the canonical u-walk picks

in the descent step satisfies

s\ s| =j.
By elementary combinatorics,
k
()G
o | _ J
VB 561 =~

where the draw of the probability is over the subsets s’ € X(I) of s”. Further, let t} be

the random variable that stands for the face picked in the descent step of the j-swapping
u-walk from X (k) to X(I).

By the definition of the j-swapping walk from X (k) to X(I), conditioning that the

ascent step picks the same 5" € X (k 4 u) we have

Pl =t|s"| =P ¢ = t|s" and &(s"))|. 2.1)

36



Now, by the law of total probability we have

N](:;)(E,’() =P[S' =t = ) Y P[] -P&QH")|s"]-P[s'=t|s"and(s")],
j=0s"eX (k-+u)
w (5
- E ]k+u]
j=0 ( 1 )

o () (5

= L (k) S []P [t}:”slﬂ

j=0 I

. E [IP [5/ =1 | s and 5]'(5//)]] ,

5 Ds

where we used Equation (2.1) to get the last equality. Another application of the law of

total probability gives us

E [ll’[t}:Hs”H:lP[t;-:t].
s""Dsg

This allows us to write,

y U 7’.’) E
ngrl)(s,t) = ) (]kffu]) -]P[t;-:t},

The statement follows using height independence, i.e. Lemma 2.4.8 n

2.4.4  Inversion: Swap Walks in Terms of Canonical Walks

We show how the swap walks can be obtained as a signed sum of canonical walks. This

result follows from binomial inversion which we recall next.

Fact 2.4.12 (Binomial Inversion, [BS02]). Let (an), >, (bn),>( e arbitrary sequences. Sup-
pose for all n > 0 we have,

by = f (”) (1)) -aj.

=0
37



Then, we also have

ay = i (n) - (=1)/ - b;.

j=0 \J
Corollary 2.4.13. Let k,1,d > 0 be given parameters such that k +1 < d and k > 1. For any
simplicial complex X (< d), one has the following formula for the u-swapping walk from X (k) to

X (1) in terms of the canonical j-walks:

(LB (5)-0)

Proof. Fix faces s € X (k) and t € X(I) and set for all j € [0, u]

aj:= (l f]) ,(_1)]',51(({1)(5,{).

Notice that we have by Lemma 2.4.11
k+u N(u) - Lo u 1]' - U ou k S(])
) Nk (5,t)—2 ; - (—1) -a]-—x RV (st
j=0
i.e. if we set

k +
= (1) e

we can apply Fact 2.4.12 to obtain

(5,) cosiey = a

ORI

_ g() <k+1> (1) -NY) (s, ).

Dividing both sides of this equation by (—1)* yields the desired result. n

38



2.5 Spectral Analysis of Swap Walks

Swap walks arise naturally in our k-CSPs approximation scheme on HDXs where the
running time and the quality of approximation depend on the expansion of these walks.
For this reason, we analyze the spectra of swap walks. We show that swap walks Sy
of v-HDXs are indeed expanding for 7 sufficiently small. More precisely, the first main

result of this section is the following.

Theorem 2.5.1 (Swap Walk Spectral Bound). Let X(< d) be a yv-HDX with d > 2k. Then the

second largest singular value 0 (S i) of the swap operator Sy i is
Ske) < - (27 K23k Kk
72 (Skk) < v :

Theorem 2.5.1 is enough for the analysis of our k-CSP approximation scheme when k
is a power of two. However, to analyze general k-CSPs on HDXs we need to understand
the spectra of general swap walks Sy ; where k may differ from /. Therefore, we generalize
the spectral analysis of Sy ;. above to Sy ; obtaining Theorem 2.5.2, our second main result

of this section.

Theorem 2.5.2 (Rectangular Swap Walk Spectral Bound). Suppose X(< d) is a y-HDX with
d > k+1land k < I. Then the largest non-trivial singular value o> (Sy ;) of the swap operator Sy |

is

0a(Skp) < \/7. (28 K22 . 22k+41 . k)

2.5.1 Square Swap Walks Sy i

We prove Theorem 2.5.1 by connecting the spectral structure of Sy ;. of general y-HDXs to

the well behaved case of complete simplicial complexes. To distinguish these two cases

39



we denote by ka the swap Sy ;. of complete complexes 2, In fact, ka is the random walk

operator of the well known Kneser graph K(n, k) (see Definition 2.5.3).

Definition 2.5.3 (Kneser Graph K(n, k) [GM15]). The Kneser graph K(n, k) is the graph G =
(V,E) where V = ([Z]) and E = {{s,t} | sNt=D}.

Then at least for complete complexes we know that ka is expanding. This is a direct

consequence of Fact 2.5.4.

Fact 2.5.4 (Kneser Graph [GM15]). The singular values 3 of the Kneser graph K(n, k) are

n—k—i
k—i )/
fori=0,...,k

This means that UZ(S}ék) = Ok (1/n) as shown in Claim 2.5.5.

Claim 2.5.5. Let d > 2k and A (n) be the complete complex. The second largest singular value

UQ(S,%k) of the swap operator Slé,k on Ag(n) is

k
O—Z(S]%k) = n _kl

provided n > M where My € IN only depends on k.

Proof. First note that for the complete complex A;(n), the operator ka is the walk ma-
trix of the Kneser graph K(n,k). Since the degree of K(n, k) is (”;k), the result follows

from Fact 2.5.4. ]

2. The precise parameters of the complete complex A4 () where S2, lives will not be important. We only
require that ka is well defined in the sense that d > 2k and n > d.

3. The precise eigenvalues are also well known, but singular values are enough in our analysis.

40



Therefore, if we could claim that »(Sy k) of an arbitrary 7-HDX is close to Uz(SI%k)
(provided vy is sufficiently small), we would conclude that general Sy  walks are also
expanding. A priori there is no reason why this claim should hold since a general d-
sized y-HDX may have much fewer hyperedges (O, () versus (j;) in the complete A (1)).

Fortunately, it turns out that this claim is indeed true (up to Oy () errors).

To prove Theorem 2.5.1 we employ the beautiful expanding poset (EPoset) machinery
of Dikstein et al. [DDFH18]. Before we delve into the full technical analysis, it might be

instructive to see how Theorem 2.5.1 is obtained from understanding the quadratic form
(Skxf, f) where f € Ck.

First we informally recall the decomposition CK = Zﬁ'{:() Cf-‘ from the EPoset machin-
ery where Cf.‘ can be thought of as the space of approximate eigenfunctions of degree i of
Ck (the precise definitions are deferred to 2.5.2). In this decomposition, C’é is defined as

the space of constant functions of CK.

We prove the stronger result that the Sy ;. operators of any y-HDX has an an approx-
imate spectrum that only depends on k provided < is small enough. More precisely, we

prove Lemma 2.5.6.

Lemma 2.5.6 (Swap Quadratic Form). Let f = Zi'{:o f; with f; € Cf.c. Suppose X(< d) is a
-1
v-HDX with d > 2k. If y < ¢ (64k’<+423k+1) | then

(Skif, f) = Z Me(i) - (fi fi) T &

i=

where Ay (i) depends only on k and i, i.e., Ay (i) is an approximate eigenvalue of Sy j associated to

space Cff.

Remark 2.5.7. From Lemma 2.5.6, it might seem that we are done since there exist approximate
eigenvalues A (i) that only depend on k and i. However, giving an explicit expression for these

approximate eigenvalues is tricky. For this reason, we rely on the expansion of Kneser graphs as
41



will be clear later.

Towards showing Lemma 2.5.6, we introduce the notion of balanced operators which
in particular captures canonical and swap walks and we show that the quadratic form
expression of Lemma 2.5.6 is a particular case of a general result for (Bf, f) where B is a
general balanced operator. A balanced operator in CK is any operator that can be obtained
as linear combination of pure balanced operators, the later being operators that are a formal

product of an equal number of up and down operators.

Lemma 2.5.8 (General Quadratic Form). Let e € (0,1) and let Y C {Y | Y: CK — CK} be
a collection of formal operators that are product of an equal number of up and down walks (i.e.,

pure balanced operators) not exceeding £ walks. Let B = ) ycy &Y where ¥ € R and let

-1
F=YK  fiwith fi e CE.Ify < (16kk+2£2 Yvey |1xY|) then

k

Bf.f) = L ( X “YAZ(Z')> fifiy £ &
i=0 \YeY

where /\z(i) depends only on the operators appearing in the formal expression of Y, i and k, i.e.,

Az(i) is the approximate eigenvalue of Y associated to Cff .

Remark 2.5.9. Note that our result generalizes the analysis of [DDFH18] for expanding posets
of HDXs which considered the particular case B = Dy 1Uy. Moreover, their error term anal-
ysis treated all the parameters not depending on the number of vertices n as constants. In this
work we make the dependence on the parameters explicit since this dependence is important in
understanding the limits of our k-CSPs approximation scheme on HDXs. The beautiful EPoset

machinery [DDFH18] is instrumental in our analysis.

Now, we are ready to prove Theorem 2.5.1. For convenience we restate it below.

Theorem 2.5.10 (Swap Walk Spectral Bound (restatement of Theorem 2.5.1)). Let X(< d)

-1
be a v-HDX with d > 2k. For every o € (0,1), if vy < o - (64kk+423k+1> , then the second
42



largest singular value o (S i) of the swap operator Sy . is

Uz(sk,k) < ¢.

Proof. First we show that for i € [k] the i-th approximate eigenvalue A (i) of the swap
operator Sy i is actually zero. Note that for i € [k] the space Cf-‘ is a non-trivial eigenspace
(i.e., Cff is not the space of constant functions). Let ka be the swap operator of the com-

plete complex A;(n). On one hand Claim 2.5.5 gives

st = max ()] = o)

feck: fFL1|f|=1 n

On the other hand since A4 (1) is a v2*-HDX where 72 = Oy (1/n), if n is sufficiently large

we have 7 < 7 and thus Lemma 2.5.8 can be applied to give

02(Sk) = max ’<S]%kfirfi> = (M@ fi fi) £ Ok (%)

— fieCkielk) | fill=1

Since n is arbitrary and Ay (i) depends only on k and i, we obtain A (i) = 0 as claimed.

Now applying Lemma 2.5.8 to the swap operator S  of the 7-HDX X (< d) yields

Skk) = Sk if < M@ +0 =0,
o2 (Sk k) feck:?ff||f||:1 |(Skifrf)) ﬁ?k’]"k(”' c=0

concluding the proof. n

2.5.2  Expanding Posets and Balanced Operators

We state the definitions used in our technical proofs starting with y-EPoset from [DDFH18].

Definition 2.5.11 (y-EPoset adapted from [DDFH18]). A complex X(< d) with operators
43



Ug,...,Uz_1,Dq,...,D, is said to be a y-EPoset 4 provided

— Ui*lDi S Y, (22)

HM.+
op

1

foreveryi=1,...,d — 1, where

+ . i+1 . . 1
Ml — T <Dl+1Ul _Z—'——ll 7

ie., M;L is the non-lazy version of the random walk NS) =D;.11U;

Definition 2.5.11 can be directly used as an operational definition of high-dimension
expansion as done in [DDFH18]. To us it is important that y-HDXs are also y-EPosets as

established in Lemma 2.5.12. In fact, these two notions are known to be closely related.

Lemma 2.5.12 (From [DDFH18]). Let X be a d-sized simplicial complex.

- If X isa y-HDX, then X is a -y-EPoset.

- If X is a y-EPoset, then X is a 3dy-HDX.

Naturally the complete complex A;(n) is a y-EPoset since it is a y-HDX. Moreover, in

this particular case -y vanishes as n grows.

Lemma 2.5.13 (From [DDFH18]). The complete complex A (n) is a y-EPoset withy = O4 (1/n).

4. We tailor their general EPoset definition to HDXs. In fact, what they call -HDX we call y-EPoset.
Moreover, what they call 7-HD expander we call 7-HDX.

44



Harmonic Analysis on Simplicial Complexes

The space Ck defined in Section 2.2.2 can be decomposed into subspaces Cf-‘ of functions

of degree i for 0 < i < k where
Ck = {UFn; |y € By},
with H; := ker (D;), and
Cg = {f: X(k) - R| fisconstant}.

More precisely, we have the following.

Lemma 2.5.14 (From [DDFH18]).

k
ck =Y ck
i=0
Lemma 2.5.14 is proven in Appendix A.2 as Lemma A.2.3.

For convenience set § € R?~1 such that §; = 1/(i + 1) for i € [d — 1]. It will also be

convenient to work with the following equivalent version of Eq. (2.2)

IDi1U; — (1= 6;)U;—1D; = Gl o < (23)

i
i1’

Towards our goal of understanding quadratic forms of swap operators we study the
approximate spectrum of operators of the form Y = Y,...Y; where each Y; is either an
up or down operator, namely, Y is a generalized random walk of £ steps. We regard the

expression Y, ...Y1 defining Y as a formal product.

Definition 2.5.15 (Pure Balanced Operator). We call Y: CK — C* a pure balanced operator if

Y can be defined as product Y, ... Y1 ° where each Y, is either an up or down operator. When we

5. For the analysis it is convenient to order the indices appearing in Y, ...Y; in decreasing order from

45



say that the spectrum of Y depends on Y we mean that it depends on k and on the formal expression
Yy...Yq (ie., pattern of up and down operators).
(1)

Remark 2.5.16. By definition canonical walks Ny ¢ are pure balanced operators.

Taking linear combinations of pure balanced operators leads to the notion of balanced

operators.

Definition 2.5.17 (Balanced Operator). We call B: ck — Ck a balanced operator provided

there exists a set of pure balanced operators Y such that

B= Y a'-v,
Yey

where oY € R.

Remark 2.5.18. Corollary 2.4.13 establishes that Sl((uk) are balanced operators. In particular, Sy

is a balanced operator.

It turns out that at a more crude level the behavior of Y is governed by how the num-
ber of up operators compares to the number of down operators. For this reason, it is con-
venient to define U/ (Y) = {Y; | Y; is an up operator} and D(Y) = {VY; | Y; is a down operator}
where Y is a pure balanced operator. When Y is clear in the context we use U = U(Y)
and D = D(Y).

Henceforth we assume h; € H; = ker (D;), f; € Cf-‘ and ¢ € CK. This convention will

make the statements of the technical results of Section 2.5.3 cleaner.

2.5.3 Quadratic Forms over Balanced Operators

Now we establish all the technical results leading to and including the analysis of quadratic

forms over balanced operators. By considering this general class of operators our analysis

left to right.
46



generalizes the analysis given in [DDFH18]. At the same time we refine their error terms
analysis by making the dependence on the EPoset parameters explicit. Recall that an ex-
plicit dependence on these parameters is important in understanding the limits of our

k-CSP approximation scheme.

Lemma 2.5.19 (General Quadratic Form (restatement of Lemma 2.5.8)). Let ¢ € (0,1) and
let Y C {Y |Y: CK — C¥} bea collection of formal operators that are product of an equal number
of up and down walks (i.e., pure balanced operators) not exceeding £ walks. Let B = } ycy avY

-1
where &Y € R and let f = Zi'{:o f; with f; € Cf-‘. Ify<e (16kk+2€2 Yvey |0¢Y|> , then

(Bf, f) 2(2&W ) (fifi) e

Ye)y

where AY( ) depends only on the operators appearing in the formal expression of Y, i and k, i.e.,

Az(z) is the approximate eigenvalue of Y associated to Cf-‘ .

Since swap walks are balanced operators, we will deduced the following (as proven

later).

Lemma 2.5.20 (Swap Quadratic Form (restatement of Lemma 2.5.6)). Let f = Zi'(:o f; with
-1
fi € Cf-‘. Suppose X(< d) isa yv-HDX withd > 2k. If y < ¢ <64kk+423k+1> , then

(Skif f) Z M) (fi fi) T &

where Ay(i) depends on only on k an i, i.e., Ax(i) is an approximate eigenvalue of Sy j associated

to space Cf-‘ :

The next result, Lemma 2.5.21, (implicit in [DDFH18]) will be key in establishing that
the spectral structure of y-EPosets is fully determined by the parameters in 6 provided v is

small enough. Note that the Eposet Definition 2.5.11 provides a “calculus” for rearranging
47



a single pair of up and down DU. The next result treats the more general case of DU - - - U.

Lemma 2.5.21 (Structure Lemma). Suppose |D| = 1. Let Y. € D be the unique down operator
in Yg .. 'Yl' IfHAHop < 1, then

0 iff=1lorc=1
<AY£"'Y1hi/g> =

chi(g) . <AU€_2hi,g> + (c—1)-v|hll|lgl] otherwise,

where Q. ; is a polynomial in the variables & depending on c, i such that chi(g ) <1
Proof. We inducton (¢,c). If ¢ = 1orc = 1, we have Y1h; = D;h; = 0 so the result trivially

holds. Otherwise, we have YcY._1 = D;;1Uj where j = i+ ¢ — 2. Then

(AYp ... Yer1(YeYe1)Yeo2... Y10, 8),

becomes

(1=6;) - (AYy...Ye1UjaDjYen . Yihy, §) + 65 (AYy ... YeaYea . Yl g) & v [ ||| (Eq. (2.2))
= (1-6)- (AY1...Y1U; 1DYesa... Yohi g) + 5j-<AU‘**2hi,g> £ 7| gl
= (1-6) Qe 14(®) - (AU i g) & (1=0)) - (c=2) v lImll gl + &+ (AU 2hig) + [l gl]  (LFL)

= Qui(8)- (AU 2hi,g) £ (c=1)-IInll 3]

With Lemma 2.5.21 we are close to recover the approximate spectrum of Dy, Uy
from [DDFH18]. However, in our application we will need to analyze more general oper-

ators, namely, pure balanced and balanced operators.

48



Lemma 2.5.22 (Refinement of [DDFH18]). If ||A||Op <1, then

(ADg1Ukfi ) = Ai-(Afi, &) £+ (k—i+1)-v k| gl

=

where \; = Qg_i+2i(0)

Proof. Recall that f; = UX~/h; where h; € ker (D;). Set Y = Dy 1U;U"%. Lemma 2.5.21

yields

(ADi1Urfir8) = Ai- (Afig) + (k—i+1)-v|hllligl,

-

where A; = Q_;42:(9) u
Then powers of the operator Dy 1 Uy behave as expected.
Lemma 2.5.23 (Exponentiation Lemma).
(D) firfi) = A UAIP % s-(e—i+ 1)y Il A,
where A; is given in Lemma 2.5.22.
Proof. Follows immediately from the foregoing and the fact that || Dy 1 Ug|| op = 1. n

In case |D| > |U|, Y: C' — CJ is an operator whose kernel approximately contains

ker(D;) as the following lemma makes precise.

Lemma 2.5.24 (Refinement of [DDFH18]). If |D| > |U| and h; € ker (D;), then
(AYg...Yihi,g) = £kl llgll,

provided ||A||OP <1

49



Proof. Let ¢ € [{] be the smallest index for which Y, is a down operator. Observe that
c < £/2since |D| > |U|. We induct on m = |D|. If ¢ = 1, then (AD;h;,g) = 0. Hence

assume ¢, m > 1implying YcY._1 = D;, U;, 1. Applying Lemma 2.5.21 we obtain

(AY,...Y1h;, g) = <(AY€ o Yei) DUUC_ZhZ-,g>

? _ l
= Quil®) - (A Yeyn) U2y g) & - il llg]
-, g .
= Q8- (¢=22 7 |millllgl = 5-vIkllllgl  (nduction)

= + 02 |l gl

where in the last derivation we used chi(g ) <1 n

We turn to an important particular case of |D| = |U|, namely, the canonical walks.

We show that N\") is approximately a polynomial in the operator Dy 1Uy. As a warm up

kk
consider the case N;{zk) = Dy41Dx42Ug+1Ug. Using the Eq. (2.3), we get

2

2
= (1= 0k41) - (Dr1Yx)” + Ox41 - Dryq U

Inspecting this polynomial more carefully we see that that its coefficients form a proba-
bility distribution. This property holds in general as the following Lemma 2.5.25 shows.
This gives an alternative (approximate) random walk interpretation of N I(:lk) as the walk
that first selects the power s according to the distribution encoded in the polynomial and

then moves according to (Dy_1Uy)°.

Lemma 2.5.25 (Canonical Polynomials). For k,u > 0 there exists a degree u univariate poly-

nomial F i\] 5 depending only on u,k, & such that

g4

u N )
HNI(C,k) _Fulk,g(Dk—i-lUk)Hop < (u—1)"-1.

50



Moreover, the coefficients of this polynomial form a probability distribution, i.e., FLIt\]k5< x) =

o c;x! where Yioci=landc; >0fori=0,...,u

Proof. For u = 0, N](cok) = | and the lemma trivially follows. Similarly, if u = 1, N,&lk) =
(u)

Dg41Uk. Now suppose u > 2. SetY = N,/ ie.,

Y = Dy1-- (DrsuVppu—1) - Uge

For convenience let j = k+u — 1. Using the Eq. (2.3) we can replace D;;1U; in Y by

(1—96;)U;j_1D; + é;l incurring an error of 7 (in spectral norm) and yielding
~ ANV NI
Y~ (1-4)-Y + o Nep

where Y/ was obtained from Y by moving the rightmost occurence of a down operator (in
this case D; 1) one position to right. We continue this process of moving the rightmost

occurrence of a down operator until the resulting operator is up to (u — 1) - -y error
(u—1) (u—1)
NG (DrgaUe) + BN

where(x:Hl kpp(1—=0;)and B =35 k+15Hz gp1 (1 —96;). Since 6; = 6; > 0, o, B
are non negative and form a probability distribution. Now the result follows from the

induction hypothesis applied to N ](Cuk_l). n

Remark 2.5.26. Having a polynomial expression nglg( Dy1Ug) =~ Nl(cflk) and knowing that
Sk k can be written as linear combination of canonical walks, we could deduce that Sy \ is also
approximately a polynomial in Dy Uy. Using an error refined version of the Lemma 2.5.23
(showing that exponentiation of Dy, 1Uy behaves naturally), we could deduce the approximate
spectrum of Sy .. We avoid this approach since it analysis introduces unnecessary error terms and

we can understand quadratic forms of pure balanced operators directly.
51



Remark 2.5.27. The canonical polynomial FN L 3( Dy 1Uy) is used later in the error analysis that
u/ 7

relates the norms ||h;|| and || f;|| (Lemma 2.5.30).

Now we consider Y where |D| = |U| in full generality. We show how the quadratic

form of Y behaves in terms of the approximate eigenspace decomposition ck = Z

Lemma 2.5.28 (Pure Balanced Walks). Suppose Y =Y ...Yq is a product of an equal number
of up and down operators, i.e., |D| = |U|. Then for f; € Cf-‘

Yfifi) = M- (fufi) £ - (C+ek—i=1) [k Ifill,

where AZ’ ; is an approximate eigenvalue depending only on Y, k and i.

Proof. We induct on even ¢. For ¢ = 0, the result trivially follows so assume ¢ > 2.
Let ¢ € [¢] be the smallest index of a down operator. Set A = Y,...Y.,1 and let Y/ =
Yc...Y7 =DU...U. Observe that

(AY'fi, fi) = <ADUC_1+k_ihi,fi>-

Applying Lemma 2.5.21 to the RHS above gives

-,

(ADUT i, i) = Quaiii®) - (AUT2Fi fi) £ (et k—i=2) -y |l Ifil.

Applying the induction hypothesis to Y/ = AU°~2 in the above RHS yields

-,

Qc 1+k— 11( ) YN <fzrf1>
+ Qe 1k—i,i(®) -7 (€ =12+ (£ = 1) (k=i = 1)) 11| |l
£ (c+k—i=2)-yhl | fil

= M- (fifiy £ o (B elk—i=1) B |Ifill,
52



=

where /\zi = Qc14k—ii(0) - )LZ;/ and the last equality follows from Q,_4 +k—i,i(g) <1

and ¢ < /. n

To understand all errors in the analysis in Lemma 2.5.28 we need to derive the ap-
proximate orthogonality of f; and f] for i # j from [DDFH18] in more detail. We start
with the following bound in terms of h;, h;.

Lemma 2.5.29 (Refinement of [DDFH18]). Fori # j,

(fufi) = £ @=i=p2xlhil ).

Proof. Recall that f; = UK—ip;, fi = Uk_jhj where h; € ker (D;), h; € ker (D]->. Without

loss of generality suppose i > j. We have

<Uk_ihl-, Uk_fh]-> - <Dk_jUk_ihi,hj>.

Since k — j > k — i, the result follows from Lemma 2.5.24. n

To give a bound for Lemma 2.5.29 only in terms of the eigenfunction norms || f;|| and

not in terms of ||;||, we need to understand how the norms of #; and f; are related.

Lemma 2.5.30 (Refinement of [DDFH18]). Let ;. ; = (k —i)? + 1 and let

Bi = \/’sz\[_i,i,ﬁ((si) =7 ki

where Pli\f_ k5 is a canonical polynomial of degree k — i from Lemma 2.5.25. Then

(fufiy = B (hih).

Let 0 ; = (i + 1)k_i. Furthermore, if v < 1/(2 -1y ;- O ;), then B; >
53

1
26k,i :



Proof. Recall that f; = UX—7h; where h; € ker (D;). For i = k the result trivially follows so

assume k > i. First consider the case k = i + 1. We have
(Uihj, Uihi) = (DitaUihj, hi) = 6;- (hi hi) £ - (hi hi). (2.4)
For general k > i we have
<Uk_ihl—, Uk_ihi> = <Dk_iUk_ihi,hi>.
Applying Lemma 2.5.25 to DK~ UK~ yields
<Dk_iUk_ihl-, hi> - <F]§7_i,i5(Di+1Ui)hi,hi> + oy (k—i—1)2
Combining Eq. (2.4) and Lemma 2.5.23 gives

(BN sDiaUhy i) & v (k=i=1)% = (FN (6)hy i) & 7+ ((k=i)> +1).

Since FN _(x) = YX~I ¢;x! where the coefficients ¢; form a probability distribution, we
k—i,i,0 i=0

get

N o 1\ ki
. pa— —_
Fk—i,i,3(51) 20 = (i+1> '

Now, we can state the approximate orthogonality Lemma 2.5.31 in terms of the eigen-

function norms.

Lemma 2.5.31 (Approximate Orthogonality (refinement of [DDFH18])). Let 1y 5, 0 s, Bs for

54



s € {1, ]} be given as in Lemma 2.5.30. If i # j and B;, B; > 0, then

(2k —i—
Bibj

(fuf)) = £ 1 2 5]

Furthermore, if v < min (1/(2 Mg Oki) 1/ (215 - 9k,j))/ then B;, B > 0 and

(fufi) = =700 Ck—i=D2IAl ||
Proof. Follows directly from Lemma 2.5.30. n

We generalize the quadratic form of Lemma 2.5.28 to linear combinations of general

pure balanced operators Y, namely, to balanced operators.

Lemma 2.5.32 (General Quadratic Form (restatement of Lemma 2.5.8)). Let ¢ € (0,1) and
let Y C {Y|Y: CK — C¥} bea collection of formal operators that are product of an equal number
of up and down walks (i.e., pure balanced operators) not exceeding £ walks. Let B = } ycy aYY

-1
where &Y € R and let f = Zi'{:o f; with f; € Cf-‘. Ify<e (16kk+2€2 Yvey ‘[XYD , then

k
Bf.f) = 1 ( )y “YA{U)> {fifi) £ ¢

i=0 \Ye)

where AZ(i) depends only on the operators appearing in the formal expression of Y, i and k, i.e.,

Az(i) is the approximate eigenvalue of Y associated to Cf-‘ .

55



Proof. Using Lemma 2.5.28 and the assumption on 7y gives

(Bf, f) = Z Yo A G) - fi fi)

i=0Ye)y
+ 28 (NG (fufy) £ v-a¥ (@4 k—i=1) (hif;))
i#YeY
- Z Z “Y)‘Y (fir fi) Z Z IXY)\Y <fi,f]-> + %
i=0Ye)y i#YEY

Next we use Lemma 2.5.31 to bound the second double summation and conclude the

proof. ]

We instantiate Lemma 2.5.31 for swap walks with their specific parameters. First, we

introduce some notation. Using Corollary 2.4.13, we have

Ser = i(_nk—f. (k:f> . <’]<) .

j=0
—i (k+jy
where a; = (=1)*7- () - (5)-
Finally, we have all the pieces to prove Lemma 2.5.6 restated below.

Lemma 2.5.33 (Swap Quadratic Form (restatement of Lemma 2.5.6)). Let f = 22‘20 f; with
—1
fi € CK. Suppose X(< d) is a y-HDX with d > 2k. If y < ¢ (64kk+423k+1) , then

(Skif f) Z M) - (fis fi) T &

where A (i) depends on only on k an i, i.e., A (i) is an approximate eigenvalue of Sy . associated

to space CII.‘ :

Proof. First note that Lemma 2.5.28 establishes the existence of approximate eigenvalues

Ag,j(i) of N I(cj I)c corresponding to space C;‘ fori=0,...,k such that Aj ;(i) depends only on
56



k,iand j. To apply Lemma 2.5.8 we need to bound 2;.‘:0 |aj|. Since

]é)'“f' _ i (k:]') : (k) < ok, i (k:f> < o3+

j=0 J j=0

we are done. u

2.5.4  Rectangular Swap Walks Sy

We turn to the spectral analysis of rectangular swap walks, i.e., Sy ; where k # . Recall
that to bound 0, (S ;) in Section 2.5.1 we proved that the spectrum of Sy j for a y-HDX
is close to the spectrum of Slé,k using the analysis of quadratic forms over balanced oper-
ators from Section 2.5.3. Then we appealed to the fact that Slé,k is expanding since it is
the walk operator of the well known Kneser graph. In this rectangular case, we do not
have a classical result establishing that Slé,l is expanding, but we were able to establish

it Lemma 2.5.34.

Lemma 2.5.34. Let d > k+ 1 and Aj(n) be the complete complex. The second largest singular

value Uz(S?l) of the swap operator Slél on Ay(n) is

k /
A

< -
02(Sk;) < max <n — l) ,
provided n > My ; where My ; € IN only depends on k and 1.

Towards proving Lemma 2.5.34 we first introduce a generalization of Kneser graphs

which we denote bipartite Kneser graphs defined as follows.

Definition 2.5.35 (General Bipartite Kneser Graph). Let X(< d) whered > k + 1. We denote
by KX(n,k,1) the bipartite graph on (vertex) partition (X (k), X (1)) where s € X (k) is adjacent

to t € X(1) if and only if s N t is empty. We also refer to graphs of the form KX (n,k,1) as bipartite
57



Kneser graphs.

It will be convenient to distinguish bipartite Kneser graphs coming from general -

HDX and the complete complex A4(n).

Definition 2.5.36 (Complete Bipartite Kneser Graph). Let X(< d) whered > k+ 1. If X is
the complete complex, i.e., X = Ay(n), then we denote KX (n,k,1) as simply as K(n,k,1) and we

refer to it as complete bipartite Kneser.

We obtain the spectra of bipartite Kneser graphs generalizing © the classical result

of Fact 2.5.4. More precisely, we prove Lemma 2.5.37.

Lemma 2.5.37 (Bipartite Kneser Spectrum). The non-zero eigenvalues of the (normalized) walk

operator of K(n, k, 1) are £A; where

fori=0,...,min(k,I).

Now the proof follows a similar strategy to the S ;, namely, we analyze quadratic

forms over Sy ;. using the results from Section 2.5.3

Let X(< d) whered > k+ 1. Let A 1 be the (normalized) walk operator of KX (n,k,1),

ie.,
0 Sy
Arl = Nt
(Sk,l ) 0

1)
I

7

)"

To determine the spectrum of Ay ; it is enough to consider the spectrum of B = S]((

6. Note that the singular values of K(n, k) can be deduced from the bipartite case.

58



Using Corollary 2.4.13, we have

o= (Lo (7))

I (k47 ! it ! N (71—
N j () B ()N U/ HED)
(2<—1> () () ()] = 8w,
]

=0 i =0

for some coefficients ay ; ; » depending only onk, 1,7, j and j'. Since we have not yet used
any specific property of HDXSs, these coefficients are the same for the complete complex

and general HDXs.

Lemma 2.5.38. Let X(< d) bea yv-HDX withd > k+1. Let f = Zi'{:o f; with f; € Cf.‘. For
-1
e€(0,1),ify<ce (64kk+2€222k+4l+2) , then

i=0 \ j,j/=0

kK [ 1
(Bf,f) = ) ( ). ‘Xk,l,j,j’)‘k,l,j,j/(i)) fifi) + &

N
where Ay ; (i) is the approximate eigenvalues of N ](j l) N l(]k+k 2 corresponding to space Cff . Fur-

thermore, Ay ; (i) depends only onk, 1,1, j and 7.

N
Proof. First observe that each N ](<] l) N l(]k+k 2 maps CF to itself, so it is a product of the same

number of up and down operators. Now to apply Lemma 2.5.8 it only remains to bound

Zé,]'/:o |y 1 ;|- Since

l
Yo ey

Jrj'=0 j:j'=0

we are done. ]

Let B and B? stand for the B operator for general 7-HDX and the complete complex,
59



respectively.

Lemma 2.5.39. Suppose X(< d) is a v-HDX with d > k+1. Fore € (0,1), if we have

v < € (64kk+2€222k+4l+2) _1, then the second largest singular value o> (B) of B is
7 (B) < €.

Furthermore, the second largest non-trivial eigenvalue A(Ay ;) of the walk matrix of K(n, k,1) is
A(Ak,l) < e

Proof. The proof follows the same strategy of Theorem 2.5.1, namely, we first consider B®

and show that Z; =0 &1, M 17, (1) = 0. Using Lemma 2.5.34, we deduce that

I
| 1
2 %k (D] = Ok (p)

jrj'=0

fori € [k] where in this range each Cf-‘ is not the trivial approximate eigenspace (associated
with eigenvalue 1). Since ay ; ; » and /\k,l,j,j’(i) do not depend on n and 7 is arbitrary, the

LHS above is actually zero. Then our choice of y Lemma 2.5.8 gives

l

max Bf, < max i adeg ()| + € = €
FeCk: fF11,f]|=1 (B.5)] ic[k ].,].,Z:O kLif kL]

Now the proof of Theorem 2.5.2 follows. For convenience, we restate it.

Theorem 2.5.40 (Rectangular Swap Walk Spectral Bound (restatement of Theorem 2.5.2)).
Suppose X(< d) is a v-HDX with d > k+1and k < I. For ¢ € (0,1), ify < o?-

-1
(64kk+2€222k+4l+2) , then the largest non-trivial singular value o5 (S ;) of the swap oper-
60



ator Sy ; is

02(Sk;) < 0.

Proof. Follows directly from Lemma 2.5.39. n

2.5.5 Bipartite Kneser Graphs - Complete Complex

Now we determine the spectrum of the complete bipartite Kneser graph K(n,k,1). More

precisely, we prove the following.

Lemma 2.5.41 (Bipartite Kneser Spectrum (restatement of Lemma 2.5.37)). The non-zero

eigenvalues of the normalized walk operator of K(n, k, 1) are £A; where

fori=0,...,min(k,I).

Henceforth, set X = A;(n). To prove Lemma 2.5.37 we work with the natural rectan-

gular matrix associated with K(n,k, 1), namely, the matrix W € RX(K)xX(I) sych that

W(s, t) = 1[5(7{:@]

for every s € X(k) and t € X(I).

Observe that the entries of WW T and W "W only depend on the size of the intersec-
tion of the sets indexing the row and columns. Hence, these matrices belong to the John-
son scheme [GM15] J(n, k) and J(n,1), respectively. Moreover, the left and right singular

vectors of W are eigenvectors of these schemes.

We adopt the eigenvectors used in Filmus” work [Fill6], i.e., natural basis vectors

coming from some irreducible representation of Sy, (see [Sag13]). First we introduce some
61



notation. Let 4 = (n — i,7) be a partition of n and let 7, be a standard tableau of shape
p. Suppose the first row 7, contains a; < --- < a,_; whereas the second contains b; <

[n]
-+ < b;. To 7, we associate the function ¢z, € R(k) as follows

q)TH — (]lal _]lbl)...(]lai _]lbl)’

where 1, € R() is the containment indicator of element a,ie., 1,4(s) = 1if and only if

a € s. Filmus proved that
{quﬂ 10<i<kpuk(n—ii),t standard}

is an eigenbasis of J (1, k). We abuse the notation by considering ¢r, as both a function
n
!

in IR(Z) and R(1) as long as these functions are well defined.

Claim 2.5.42. If y = (n —i,i) and k,1 > i, then
o (n—k—1
Weg, = (-1)" ( I—i ) P

Proof. We follow a similar strategy of Filmus. For convenience suppose ¢r, = (11 —

15)...(1p;—1 — 1y;). For i = 0 the claim follows immediately so assume i > 1. Consider

(Wgofy> (s) where s € ([Z]). Note that

(Wor ) (6) = ¥ on ().
teY: sNt=0
If 2j —1,2j € s for some j € [i], then 2j —1,2j ¢ tso ¢r,(s) = 0 = (W(pTy> (s). If
2j—1,2j ¢ s for some j € [i], for each t adjacent to s there four cases: 2j — 1,2j € t,
2j—1,2j ¢t 2j—1 € tand 2j ¢ tor vice-versa. The first two cases yield ¢, (t) = 0

while the last two cases cancel each other in the summation and again ¢,(s) = 0 =

62



(W(pTH) (s). Now suppose that s contains exactly one element of each pair 2j — 1,2j. For

any adjacent t to yield ¢, (t) # 0, t must contain [2i] \ 5. Since there are (",";") such

possibilities for t we obtain
 (m—k—i
Woq, = (=1)"- ( [ ) " Py

where the sign (—1)’ follows from the product of the signs of each the i pairs and the fact

that s and t partition the elements in each pair. n

Since we are working with singular vectors, we need to be careful with their normal-
ization when deriving the singular values. We stress that the norm of ¢, depends on the

space where ¢, lies.

Claim 2.543. If u = (n —1i,i) and ¢, € R, then

‘ 2 zi(nk_—zii)

Proof. Since @z, assumes values in {—1,0,1} so its enough to count the number of sets

goTy

s € ([Z]) such that ¢,(s) # 0. To have ¢r,(s) # 0, s must contain exactly one element
in each pair and the remaining k — i elements of s can be chosen arbitrarily among the

elements avoiding the 2i elements appearing in the indicators defining ¢, . n

Now the singular values of W follow.

Corollary 2.5.44 (Singular Values). The singular values of W are

n—k—i ‘
Ui:( I —i )‘

k
P ||

7

l
5,

fori=0,...,min(k,I).
63



Note that for k = [ we recover the well know result of Fact 2.5.4.

Finally we compute the eigenvalues of the bipartite graph K(n,k,I). Let A, ;| be its

normalized adjacency matrix, i.e.,

An,k,l =

Lemma 2.5.45 (Bipartite Kneser Spectrum (restatement of Lemma 2.5.37)). The non-zero
eigenvalues of the normalized walk operator of K(n, k, 1) are A ; where
kil —i
iy

Aj = ,
"D

fori=0,...,min(k,I).

Proof. Since the spectrum of a bipartite graph is symmetric around zero, it is enough to
compute the eigenvalues of A%,k,l' Seta =1/ (”Z_k ) (”I;l). Moreover, we consider a - WW T
since & - W W has the same non-zero eigenvalues. The non-zero eigenvalues of & - WW "
are o I
n—K—i1y/m—i—1
ey
[ s
n—kym—I
)

fori =0,...,min(k,1I). ]

2.6 Approximating Max-k-CSP

In the following, we will show that k-CSP instances J whose constraint complex X5(<
k) is a suitable expander admit an efficient approximation algorithm. We will assume
throughout that X+(1) = [n], and drop the subscript J.

This was shown for 2-CSPs in [BRS11]. In extending this result to k-CSPs we will
64



rely on a central Lemma of their paper. Before, we explain our algorithm we give a basic

outline of our idea:

We will work with the SDP relaxation for the k-CSP problem given by L-levels of SoS
hierarchy, as defined in Section 2.2.4 (for L to be specified later). This will give us an
L-local PSD ensemble {Y1,...,Yy}, which attains some value SDP(J) > OPT(J). Since
{Y1,...,Yn}, is a local PSD ensemble, and not necessarily a probability distribution, we
cannot sample from it directly. Nevertheless, since {Y]-} will be actual probability distri-
butions for all j € [n], one can independently sample ¢} ~ {Yj} and use 0 = (0q,...,0n)

as the assignment for the k-CSP instance J.

Unfortunately, while we know that the local distributions {Yq},c x(k) induced by

{Y1,..., Yy} will satisfy the constraints of J with good probability, i.e.,

E E |1[Y, satisfies the constraint on a] | = SDP(J) > OPT(J),
av I { Yo} h g

<:>§:e Ca

this might not be the case for the assignment ¢ sampled as before. It might be that the

random variables Y, ..., Y, are highly correlated for a € X(k), i.e.,

aiEHk ||{Ya} - {Yﬂl} e {Yak}Hl

is large. One strategy employed by [BRS11] to ensure that the quantity above is small, is
making the local PSD ensemble {Yj, ..., Y; } be consistent with a randomly sampled par-
tial assignment for a small subset of variables (q.v. Section 2.2.4). We will show that this
strategy is succesful if X(< k) is a v-HDX (for v sufficiently small). Our final algorithm

will be the following,

65



Algorithm 2.6.1 (Propagation Rounding Algorithm).
Input An L-local PSD ensemble {Y1, ..., Yy} and some distribution ITon X (< £).

Output A random assignment o : [n] — [q].
1. Choose m € {1,...,L/ ¢} uniformly at random.
2. Independently sample m {-faces, s; ~ Il for j=1,...,m.
3. Write S = U;'n:1 sj, for the set of the seed vertices.
4. Sample assignment og : S — [q] according to the local distribution, {Yg}.

5. Set Y = {Yq,...Yn|Ys = 05}, i.e. the local ensemble Y conditioned on agreeing with

0g.

6. Forall j € [n], sample independently cj ~ {Y;}

7. Output o = (0y,...,0n).
In our setting, we will apply Algorithm 4.7.16 with the distribution II; and the L-local

PSD ensemble {Yq,...,Y,}. Notice that in expectation, the marginals of Y’ on faces a €
X (k) —which are actual distributions — will agree with the marginals of Y, i.e. [E Sys E Y, =
EY,. In particular, the approximation quality of Algorithm 4.7.16 will depend on the
average correlation of Y, ..., Y, on the constraints a € X(k), where Y’ is the local PSD

ensemble obtained at the end of the first phase of Algorithm 4.7.16.

In the case where k = 2, the following is known

Theorem 2.6.2 (Theorem 5.6 from [BRS11]). Suppose a undirected graph G = ([n], E,11,) and
an L-local PSD ensemble Y = {Y,..., Yy} are given. There exists absolute constants ¢ > 0 and
C > 0 satisfying the following: If L > c - 514’ Supp(Y;) < gforalli € V,and Ay(G) < C-€%/4?
then we have
/ / / /
YL — . . <
B [ = Y <

66



where Y' is as defined in Algorithm 4.7.16 on the input of {Y1, ..., Yn} and I13.

To approximate k-CSPs well, we will show the following generalization of Theo-
rem 2.6.2 for k-CSP instances J, whose constraint complex X(< k) is y-HDX, for v suffi-

ciently small.

Theorem 2.6.3. Suppose a simplicial complex X(< k) with X(1) = [n] and an L-local PSD
ensemble Y = {Y1,..., Yy} are given.

There exists some universal constants ¢’ > 0 and C' > 0 satisfying the following: If L > ¢’ -
(g5 -k /€%), Supp(Y;) < qforall j € [n], and X is a y-HDX for v < C’- gt/ (KBFk . 20k . g2k,

Then, we have
af\l]EHk H{Yg} B {Yle} "' {Y‘/Zk}Hl ¢ (2.5)

where Y' is as defined in Algorithm 4.7.16 on the input of {Y1,..., Y} and IT;.

Indeed, using Theorem 2.6.3, it will be straightforward to prove the following,

Corollary 2.6.4. Suppose J is a g-ary k-CSP instance whose constraint complex X(< k) is a
v-HDX.

There exists absolute constants C' > 0 and ¢’ > 0, satisfying the following: If v < C’-

. . L k.o— 12 gk
et/ (kBHk . 20k . 62K) there is an algorithm that runs in time nOF-0¢™%) pased on (< 124 1)-

levels of SoS-hierarchy and Algorithm 4.7.16 that outputs a random assignment ¢ : [n] — [q]

that in expectation ensures SAT5(c) = OPT(J) —«.

Proof of Corollary 2.6.4. The algorithm will just run Algorithm 4.7.16 on the local PSD-

5.2k
ensemble {Yq,..., Y} given by the SDP relaxation of J strengthened by L = ¢’ - K 82 -

levels of SoS-hierarchy and IT; — where ¢/ > 0 is the constant from Theorem 2.6.3. Y
satisfies,

SDP(3) = E

S E [1[Yq € C4l]

{Ya}
67

> OPT(3). (2.6)




Let S, 0g, and Y’ be defined as in Algorithm 4.7.16 on the input of Y and IT;. Since
the conditioning done on {Y’} is consistent with the local distribution, by law of total

expectation and Eq. (3.14) one has

E E E E [1]Y = SDP(J) > OPT(J). 2.7
Stfs~{Ys}a~Hk{yg}““€CC‘H SDP(3) = OPT(J) 2.7)

By Theorem 2.6.3 we know that

]EUSNH{EYS} ajEHk H{Ya} a {Y’,Zl} o {ng}Hl e (28)

Now, the fraction of constraints satisfied by the algorithm in expectation is

E[SAT =E E E E 1 € Cqll.
EISATS@) =B B B By 1l € Gl

By using Eq. (3.16), we can obtain

E 1[Y} satisfies the constraint on a] | — e.

E[SAT~ > E E
RS I

Using Eq. (3.15), we can conclude

](];:[SAT:;((T)] > SDP(J) —e = OPT(J) —«.

Our proof of Theorem 2.6.3 will hinge on the fact that we can upper-bound the ex-
pected correlation of a face of large cardinality ¢, in terms of expected correlation over

faces of smaller cardinality and expected correlations along the edges of a swap graph.

68



The swap graph Gy, ,, here is defined as a weighted graph

Gry by = (X(E1) UX(62), E(ty, 62), 70y, 1, ),

where

E(l1,0) = {{a,b} :a € X(¥1),b € X({p), andallb € X({1+{5)}.

We will assume ¢1 > /5, and if {1 = ¢, we are going to identify the two copies of every
vertex. We will endow E(¢1, {3) with the weight function,

Hg (a L b)
_ it
Wy 1, (0,0) = (€1+€z)

l

which can easily be verified to be a probability distribution on E(¢q, /) Notice that in the

case where (1 # {; the random walk matrix of G, 4, is given by

142
Aflffz - ’
Sgl y 0

and if {1 = ¢, we have Ay , = Sy, o. The stationary distribution of Ay, , is I, o,

defined by,

My 0, (0) = 10 € X(0)] -3 Ty (0) +1[0 € X(1)] - 5 Tl (6).  (29)

When we write an expectation of f(e, ®) over the edges in E({1, {3) with respect to wy, , ,

it is important to note,

1
E [fst)]= ) o flst) Tyn(sUt)= 4~ E
{s.h~wgy 1, et (101 o () o~

Y. f(s, t)] , (2.10)

where sum within the expectation in the RHS runs over the (61262) possible ways of

69



splitting a into s LI t such that s € X(¢1) and t € X(¢,). When we are speaking about the
spectral expansion of G, 4,, we will be speaking with regards to A5(Gy, ,) and not with

regards to 03(Gy, ¢, )-

Remark 2.6.5. By simple linear algebra, we have

A2(Gyye,) = A2(Agy0,) < 02(Spy0,))

where we employ the notation Ay(M) to denote the second largest eigenvalue (signed) of the matrix

M.

With this, we will show

Lemma 2.6.6 (Glorified Triangle Inequality). For a simplicial complex X (< k), {1 > ¢, > 0,
=101+, ¢ <k, and an (-local ensemble {Y1,...,Yn}, one has

E

acll, < LB Y Yo = {Ys 3 {Yi 4]

1 st~

3\
{Ys} - l:]l:{YSi}

(
{Ya} - Ijl{Yai}

+ E

2.11
E, 1)

%)
{Y} - E{Yti}

+ E
tNHéZ

1 1

One useful observation, is that by using Lemma 2.6.6 repeatedly, we can reduce the

problem of bounding E,¢[y, H {Ya} — Hle {Ya,} H  toa problem of bounding

E {Ys, Y} = {Ys}{Ye} ]y,
{sti~we 0,

for 1 4 £ < k. Though it is not a direct implication, it is heavily suggested by Fact 4.7.14
and Theorem 2.6.2, that if Gy, 4, is a good spectral expander, after an application of Algo-
rithm 4.7.16 with our chosen parameters, we should be able to bound these expressions.

Using a key lemma used from [BRS11], we will prove that this is indeed the case. The
70



only thing we need to make sure after this point, is that the second eigenvalue A (Gy, ¢,)
of the swap graphs Gy, o, we will be using are small enough for our purposes. Indeed,
our choice of 7y in Theorem 2.6.3 and Corollary 2.6.4 is to make sure that the bound we
geton Ay (Ggllgz) from Theorem 2.5.2 (together with Remark 2.6.5) is good enough for our

purposes.

2.6.1 Breaking Correlations for Expanding CSPs: Proof of Theorem 2.6.3

Throughout this section, we will use the somewhat non-standard definition of variance
introduced in [BRS11],

Var [Yq] = Z Var [1[Yq = 0]] .
€lql®

We will use the following central lemma from [BRS11] in our proof of Theorem 2.6.3:

Lemma 2.6.7 (Lemma 5.4 from [BRS11]). Let G = (V, E, I1,) be a weighted graph, {Y1, ..., Yn}
a local PSD ensemble, where we have Supp(Y;) < q foreveryi € V,and g > 0. Suppose ¢ > 0 is
a lower bound on the expected statistical difference between independent and correlated sampling

along the edges,i.e.,

e < |RROEIGADINE

{1]}NH2

N

There exists absolute constants ¢y > 0 and cq > 0 that satisfy the following: If Ay(G) < ¢q

oy

Then, conditioning on a random vertex decreases the variances,

2

3
E E E |VarlY:|Y;|| < E [Var|Y;]| —c1 - —=.
iwnljwnz{yj}[ [ i| JH _iwnl[ [Yi]] — 1

=

For our applications, we will be instantiating Lemma 2.6.7 with G, 4, as G; and with
the local PSD ensemble {Y,},cx that is obtained from {Y1,...,Y,} (q.v. Fact 4.7.14). For

convenience, we will write the concrete instance of the Lemma that we will use,

71



Corollary 2.6.8. Let {1 > {p > 0 satisfying {1 + o < k be given parameters, and let Gy, o, be
the swap graph defined for a y-HDX X(< k). Let {Yq}qex be a local PSD ensemble; satisfying
Supp(Ya) < g for every a € X(£1) U X(£y) for some q > 0. Suppose e > 0 satisfies,

€
= E Y —1Ys 1Y .
4k S{s,t}ewel,ezw{ sue — e Hl

There exists absolute constants co > 0 and ¢y > 0 that satisfy the following: If A»(G) < ¢q -

(¢/ (4k - g*))2. Then, conditioning on a random face a ~ Iy, o, decreases the variances, i.e.

E [Var[Ye| Yal]+ E [Var[Y.|Yo]]|,

s~Ily ~

2. E | E [Var[Yb]Ya]]} - E

a’bNH%ﬂz {Ya} ClGH(l,gZ

2

&
< _ .
B Nar(l) + B Nar(Y) e g

Here, it can be verified that the expansion criterion presupposed by Lemma 2.6.7 is

satisfied by Corollary 2.6.8 by Theorem 2.5.2. The constant c; satisfies cp = 2 - ¢7.

Proof of Theorem 2.6.3. We will follow the same proof strategy in [BRS11], and extend their

arguments for k-CSPs.

Write H? for the distribution of the random set that is obtained in steps (2)-(3) of

Algorithm 4.7.16 with IT = Iy, i.e. S ~ IT]" is sampled by

1. independently sampling m k-faces s; ~ Iy forj=1,...,m
2. outputting S = U;‘n:1 5.

First, for m € [L/k] we will define

em = E Yol|Y Yo | Y ,
m Swnm{Ys}aNHk {Ya | Ys} - H{a| 5}1

72



which will measure the average correlation along X (k) after conditioning on m k-faces.

Notice that our goal is ensuring,

where m is sampled uniformly at random.

To help us with this goal, we will define a potential function

CI>:IE E E [E Var|Yq|Y 2.12
" = s ot VY Y8 .

where i is sampled uniformly at random. Observe that ®;; always satisfies 0 < &, < 1.
Using this, we will try to bound the fraction of indices m € [L/k] such that &, is large,

i.e., say ey > €/2. To this end assume ¢, > €/2, i.e. we have

We will use Lemma 2.6.6 in the following way: Let 7 be any binary tree with k leaves.

E
SNH {Ys} aNHk

{Ya | Ys} - H{Yal \Ys} (2.13)

I\Jlm

We will label each of the vertices v € T with the number of leaves of the subtree rooted

at v. Notice that this ensures that

1. the root vertex of 7 has the label k,

2. for any vertex v € 7 with label /, the label /; of the left child of v and the label ¢, of
the right child of v add up to k, i.e. {1 4 ¥y =k,

3. every vertex v € T with the label 1 is a leaf.

We write J(7) for the set of labels /¢ of the internal nodes of T, note |J(T)| < k. We will
use the notation ¢ (resp. ¢») to refer to the label of the left (resp. right) of a vertex v € T
with the label /.

73



By applying Lemma 2.6.6, we obtain that for any local PSD ensemble Z one has

k
{Zq} — H{Zai} < Z E [H{Zh'—"tz} - {Zfl}{zfz}”ﬂ :
i=1

E
a~ITy te](T) {tto}ewy 0,

1

Now, by plugging this in Eq. (4.8), with Z, = {Yq | Y5}, we obtain

E E
S~IT" {Ys}

e
Y E {Yqut, | Y} —{Yy | YsH Yy, | Ys} | > 5 (214)
vej(r) tatat~we 0

In particular, in the sum over J(7) there should be some large term corresponding to

some ¢ € J(T). i.e. we have,

s

E E P —
—2-[1(T)]

S~IT" {Ys}

E [{Ye, 06 | Yo} —{Ye | YsH{ Yy, | Ys}4 >

{tta}ewy o,

£
2k’

Now, we have

& &
r E Y Yol —1Y Y Y Y > — | > —,
s {5,t}€w£1,g2 H{ f1Ut2’ S} { t ‘ S}{ tz’ S}Hl = 4k] = 4k
{Ys}

This together with Corollary 2.6.8 implies,

M
SHk

{Ys}

P E Eq ~r,, [Var[Yy | Ys] = Var[Yy, | Y5, Ya]
HEH51,42

+ Eyer, [Var[Yg| | Ys] — Var[Yy, | Y5, Ya]

82
>C .-
=2 16-k2-q2k

provided that Ay(Gy, 5,) < co(e/ (4k - g))2.

Now, observe that a sample a ~ I1;, ,, can be obtained from a sample s, ;1 ~ ITj in

the following way,

74



1. with probability % each, pickj =1orj= 2.
2. delete all but /; elements from sy, ;1.

It is important to note that for the sample a ~ I1,, , obtained this way, we haves,, 11 2 a.
An application of Jensen’s inequality shows that the variance is non-increasing under

conditioning, i.e. for random variables Z and W we have,

E[Var[W|Z]] = IE{JVEV[WZ|ZH—1§K1VEV[W|Z]2)],
< E[wz]—(]%[lﬁ[wu]])z,
— Var[W].

This means conditioning on s, 1, the drop in variance can only be more, i.e., Eq. (2.15)

implies
P ]Etl’VH£1 [Var[Yfl | YS] - Var[Yh | Ys, Y5m+1” > ¢, €2 > i
SNH]’(” Spm1 €11 + lEtzeH({z [Var[Yt2| | YS] — Var[Ytz | YS, Y5m+l“ - 16 . k2 . q2k - 4k

{¥s}

By relabeling /1 as ¢, if needed, we can obtain the following inequality from the above

2
€ £
P E IE |Var|Yy | Yg| — Var |Yy | Y, Y >0y > —.
ST |51 €11, lenel[ ar[ t1| S} ar[ t1| S 5m+1]]] =2 32-k2-q2k] = Ik
{Ys}
(2.16)
This implies

=

Dy — P > £ c e =c L
el =gk "2 a2 k2 g2k ) T 2 108 KA g2k

where the % term in the RHS corresponds to /1 € [k] being chosen in Eq. (4.7), the 4z term

in the RHS corresponds to the probability of the variances in X(¢1) drop by (cz : ﬁiqk) .

75



Since, the variance is non-increasing under conditioning
1>d1 > >Dy >0.
this means there can be at most 128k* - 42K/ (c, - €3) indices m € [L/k] such that e, > ¢/2.

In particular, since the total number of indices is (L/k) we have,

e k 128~k4-q2k
E  ep<oqo. 2220 T
m~[L/k 2 L Ccy - €3

This means that there exists an absolute constant ¢/ > 0 such that

To finish our proof, we note that to justify our applications of Corollary 2.6.8 it suffices to

ensure

S 2 52
12(Cee) = o <4k~qk) ~ 06 k2 g

for all /1, £ occurring in 7 as a label. It can be verified that our choice of y together with
Theorem 2.5.2 (and Remark 2.6.5) satisfies this, where the constant C’ > 0 will account

for ¢, ¢/, and the constants hidden within the O-notation in Theorem 2.5.2. [

2.6.2  The Glorified Triangle Inequality: Proof of Lemma 2.6.6

In this Section, we will prove Lemma 2.6.6.

Proposition 2.6.9. Let Y, Z, U, W be random variables where Y and Z; and U and W are on the

same support. Then,

YU} —{ZH{W}y < [{Y} ={Z} |y + [{U} = {Wh];-

76



Proof. Tensoring with the same probability distribution does not change the total varia-
g P y &

tion distance, i.e.
I{Y} = {Z}], = {YH{U} = {Z}{U}[|; and [{U} —{W}|; = [{Z}{U} —{Z}{W}]];.

Now, a simple application of the triangle inequality proves the Proposition. n

A straightforward implication of Proposition 2.6.9 is the following, which will allow
us to bound the correlation along a face a € X(k), using the correlation along sub-faces

5,tC a.

Corollary 2.6.10. Let a € X(¢) and s € X(¢1),t € X(¥p) be given such that a = s I t. Then
for any k-local PSD ensemble {Y1, ..., Yn} we have

[{¥a} = {Yar } -+ {Ya, } [l < [{¥a} = {¥s}{¥e}]s

) = (e} 0¥, 3|+ {00 = DY} 1Y

With this, we can go ahead and prove Lemma 2.6.6

Proof of Lemma 2.6.6. Let a € X(¢) be a fixed face. By Corollary 2.6.10 and averaging over

all the (‘g:%jgz) ways of splitting a into {s,t} such thats € X(¢1) and t € X(¢;) we have

{=l1+0,
|{Ya} T
i=1 1
£1 62
< ﬁ D (H{Ya} —{YsHYy + |[{¥s} - TT{xs}|| + {Yt}—H{Yti}H)
( 151 2) {s,t} i=1 1 i=1

Now, by taking an average over all the edges a € X(¢) (with respect to the measure I1)

77



we obtain,

4
{Ya} - H{Ya,}

<1 g
(f) em

1

Z (H{Ya} {Y Yl +

0y
+ (v - TT{Ye)

k1
{Y:} - H{Ysi}

)

where the indices {s,t} run over the all the ways of splitting a into s and t as before.

1

We can now see that the RHS can be thought as an average over the (weighted) edges in

E(41,4) (q.v. Eq. (2.10)), i.e.,

/
{Ya} - E{Yai}

1

< E
{stt~we 0,

a\
{Ya} = {Ys H{ Y}y + || {Ys} - E{Ysi}

%)
(Yo} —TT{v,}
i=1 1

1

Now, note that since I'1 0,0, (@-v-Eq. (2.9)) is the stationary distribution of the walk defined
on Gy, 4, i€,

210y, 4, (a) = ) wy, 0,(a,b),
b:{a,b}EE(fl,gz)

the lemma follows. This is because, we have

{Yo} - H{Ya

ex
¢ 1

€Yo} = {Ys}{Y} ] t ok

{s,th~wy, 0, s}~y r,

0
100} = b+ 0% - TT0%)

A 0
{Ys} - H{Ys,} + |{Y} - E{Yti}

1 1

Ly
{Y} - E{Yti}

+ E
tNH(Z

{st} Ef A7)

1 1

78



2.7 High-Dimensional Threshold Rank

In [BRS11], Theorem 2.6.2 was proven for a more general class of graphs than expander

graphs — namely, the class of low threshold rank graphs.

Definition 2.7.1 (Threshold Rank of Graphs (from [BRS11])). Let G = (V, E, w) be a weighted
graph on n vertices and A be its normalized random walk matrix. Suppose the eigenvalues of A
arel = Ay > -+ > Ay. Given a parameter T € (0,1), we denote the threshold rank of G by

rank>(A) (or rank>(G)) and define it as

rank>.(A) := [{i|]A; > T}].

There [BRS11], the authors asked for the correct notion of threshold rank for k-CSPs.
In this section, we give a candidate definition of low threshold rank motivated by our

techniques.

To break k-wise correlations it is sufficient to assume that the involved swap graphs
in the foregoing discussion are low threshold rank since this is enough to apply a version

of Lemma 2.6.7, already described in the work of [BRS11].

Moreover, we have some flexibility as to which swap graphs to consider as long as
they satisfy some splitting conditions. To define a swap graph it is enough to have a
distributions on the hyperedges of a (constraint) hypergraph. Hence, the notion of swap
graph is independent of high-dimensional expansion. HDXs are just an interesting family

of objects for which the swap graphs are good expanders.

To capture the many ways of splitting the statistical distance over hyperedges into the
statistical distance over the edges of swap graphs, we first define the following notion. We
say that a binary tree 7 is a k-splitting tree if it has exactly k leaves. Thus, labeling every

vertex with the number of leaves on the subtree rooted at that vertex ensures,

79



- the root of 7 is labeled with k and all other vertices are labeled with positive inte-

gers,
- the leaves are labeled with 1, and

- each non-leaf vertex satisfy the property that its label is the sum of the labels of its

two children.

Note that, we will think of each non-leaf node with left and right children labeled as
a and b as representing the swap graph from X(a) to X(b) for some simplicial complex
X(< k). Let Swap(T, X) be the set of all such swap graphs over X finding representation
in the splitting tree 7. Indeed the tree 7 used in the proof of Theorem 2.6.3 is just one

special instance of a k-splitting tree.

Given a threshold parameter T < 1 and a set of normalized adjacency matrices A =

{A1,...,As}, we define the threshold rank of A as

k>+(A) = k> (A),
rank>,(A) IAneaﬁ rank> ¢ (A)

where rank>,(A) is denotes usual threshold rank of A as in Definition 3.9.14.

Now, we are ready to define the notion of a k-CSP instance being (7, 7, r)-splittable

as follows.
Definition 2.7.2 ((7, T, r)-splittability). A k-CSP instance J with the constraint complex X (<
k) is said to be (T, T, r)-splittable if T is a k-splitting tree and

rank> ¢ (Swap(7, X)) <.

If there exists some k-splitting tree T such that J is (T, t,r)-splittable, the instance J will be

called a (T, r)-splittable instance.

80



Now, using this definition we can show that whenever rank:(J) is bounded for the
appropriate choice of T, after conditioning on a random partial assignment as in Algo-

rithm 4.7.16 we will have small correlation over the faces a € X(k), i.e.,

Theorem 2.7.3. Suppose a simplicial complex X(< k) with X(1) = [n] and an L-local PSD
ensembleY = {Y1,...,Yn} are given. There exists some universal constants ¢4 > 0 and Cc">0
satisfying the following: If L > C" - (g* - k7 - r/€), Supp(Y;) < qforallj € [n], and J is
(cq - (e/ (4k - g5))2, r)-splittable. Then, we have

ae])]?(k) [H{Yé‘} B {Yzl} o {Yék}‘u =& 2.17)
where Y' is as defined in Algorithm 4.7.16 on the input of {Y1, ..., Yn} and I1;.

It is important to note that the specific knowledge of the k-splitting tree 7 that makes
J (T, 7,r)-splittable is only needed for the proof of Theorem 3.9.19. The conclusion of
Theorem 3.9.19 can be used without the knowledge of the specific k-splitting tree 7. The
attentive reader might have noticed is that in the proof of Theorem 2.6.3, the choice of 7T is
not important, as all the splitting tree are guaranteed to have be expanders provided that
X is a y-HDX. The proof of Theorem 3.9.19, in this light can be thought of an extension of
the proof of Theorem 2.6.3 to the case where not necessarily every tree is good, and where

we can bound the threshold rank instead of the spectral expansion.

This, will readily imply an algorithm

Corollary 2.7.4. Suppose J is a g-ary k-CSP instance whose constraint complex is X (< k). There

exists an absolute constant C" > 0 and ¢y > 0 that satisfies the following: If 3 is (cq - (¢/ (4k -
4k 17
gk’ r

)2, r)-splittable, then there is an algorithm that runs in time n ( & > and that is based
C”-k5- qk,r
e

on ( -levels of SoS-hierarchy and Algorithm 4.7.16 that outputs a random assignment

o : [n] — [q] that in expectation ensures SAT5(c) = OPT(J) —e.

81



Since the proof of Corollary 3.9.21 given Theorem 3.9.19, will be almost identical to

the proof of Corollary 2.6.4, given Theorem 2.6.3, we will omit the proof of this.

2.7.1 Breaking Correlations for Splittable CSPs: Proof of Theorem 3.9.19

We will need the more general version of Lemma 2.6.7, already proven in [BRS11].

Lemma 2.7.5 (Lemma 5.4 from [BRS11]). 7 Let G = (V, E, I1,) be a weighted graph, {Y1, ..., Yn}
a local PSD ensemble, where we have Supp(Y;) < q foreveryi € V,andgq > 0. Ife > 0is

a lower bound on the expected statistical difference between independent and correlated sampling
along the edges,i.e.,

e <

< B o = o] )

There exists absolute constants c3 > 0 and cq > 0 that satisfy the following: Then, conditioning

on a random vertex decreases the variances,

&4

E [E E |Var|Y;|Y;|| < [E [Var|Y;|| —c3- .

i~ITy j~TI {Y}} [ [ il ]H o imﬂl[ Yil] = e q4-rankzc4gz/qz(G)
Since we will use this lemma, only with the swap graphs Gy, ¢, and (L/k)-local
PSD ensemble { Y, },cx obtained from the L-local PSD ensemble {Y, ..., Yy}, for conve-

nience we will write the corollary we will use more explicitly

Corollary 2.7.6. Let {1 > {p > 0 satisfying {1 + o < k be given parameters, and let Gy, o, be
the swap graph defined for a v-HDX X(< k). Let {Yq}qcx be a local PSD ensemble; and suppose

we have Supp(Yq) < gF for every a € X (¢1) U X (£y) for some q > 0. Suppose € > 0 satisfies,

€
ik = {st}EE(€1,€2 IH¥eutk = {¥sHYHh

7. We give a derivation of this lemma in Appendix A.1.

82



There exists absolute constants c3 > 0 and c5 > 0 that satisfy the following:
I]crankzc4.(e/(4k.qk))2 (Gyye,) < 1, then conditioning on a random face a ~ 11y, . decreases the
variances, i.e.

2. E [E [Var|Yy|Y = E
a'bNHsz {Ya}[ [ b| Cl”:| aenk‘l,éz

E [Var[Ys | Y4 +{NIIEI[ [Var [Y¢ | Ydl] |,

5~H51

4

€
< N
s~1}13141 [Var [Y]] + tﬂ%lz [Var [Y{]] — ¢s5 256 g%y

Here the constant cs5 satisfies c5 = 2 - c3.

Proof. As the proof will mostly follow Theorem 2.6.3, we will only highlight the relevant
differences and carry out the relevant computations.

Let T = ¢y - (¢/(4k - ¥))2, and let T be the k-splitting tree certifying that Jis (7, 7,7)
splittable, i.e., the tree T satisfies rank;(Swap(7, X)) < r. This means that all the swap
graphs Gy, ¢, finding representation in 7 satisfy rank¢ (G, 4,) <.

Similarly, as in the proof of we will try to argue that the fraction of indices m € [L/k]
such that e, that is large, say €5, > €/2, is small by arguing about the potential @,
with both quantities &;; and @y, as defined as in the Proof of Theorem 2.6.3. We assume

similarly, that e;;, > €/2 for some m € [L/k].

Analogously to Section 2.7.1 in the proof of Theorem 2.6.3, from Corollary 2.7.6 we

obtain
I3
E E | L E Yo | Yot — {Ye | YsHYy | Y €
SNH? {YS} ZG](T) {tlltZ}EE(fl,gz) [H{ tlt | S} { 51 | S}{ t ‘ S}Hl} > 2

Notice that the assumption that Section 2.7.1 makes on the threshold rank is satisfied by
the assumption rank¢(J) < r and where the set J(7") contains all labels ¢ of internal nodes
v € T, and we write /1 (resp. {) for the label of the left (resp. right) child of the vertex

with the label /. Similarly, to the proof of Theorem 2.6.3, there exists some ({1, ¢5) € J(T)
83



that satisfies

E E E Y €
I {Yeut, | Ysb — {Ye | YsH Yo, | Y} > =
S~ITM {Ys} {tl’tZ}Nwﬁ,éz H 1Lt 1 ) Hl o

Now, analogously to Eq. (2.15), using ¢1 < k using we have

P E Eqex(o[Var[Yy | Ys] = Var[Yy | Ys, Yo]] | s et S £
s&n;{ acllis, |+ Eyexe [Var[Yy| | Ys] = Var[Yy, | Ys, Y]] | = 7 256 k% g% .r| = 4k’
S
(2.18)

Using the same arguments in the proof of Theorem 2.6.3, we can get that

1 ¢ c5-.€4 &>

By — Dy >~ — 5 .
meEmAl = e g 512 k6 . g% . ¢ 5 2048 - k4 - g% .

Again, this would mean that there can be at most 2048 - k° - q4k .7/ (€2 - c5) indices m such

that ¢, /p > ¢/2. In particular,

2048 - k0 - g% . r
& s '

e k
E lem] <-4 —-
mE[L/k][ ml <3+

i.e. there exists a universal constant C"” > 0, such that

K . 4k r
reqr ensures E ¢4 <ec

L 2 C// .
€> m~|[L/K]

2.8 Quantum k-local Hamiltonian

Our k-CSP results extend to the quantum setting generalizing the approximation scheme
for 2-local Hamiltonians on bounded degree low threshold rank graphs from Brandao
and Harrow [BH13] (BH). Before we can make the previous statement more precise we

84



will need to introduce some notation. A well studied quantum analogue of classical k-

CSPs are the so-called quantum k-local Hamiltonians [AAV13].

Definition 2.8.1 (k-local Hamiltonian). We say that H = E, 1y, Hs is an instance of the k-local
Hamiltonian problem over q-qudits on ground set [n) if there is a distribution 1T on subsets of
size k of [n] such that for every s € Supp(I1;) there is an Hermitian operator Hs on C1" with

IHs < 1 and acting (possibly) non-trivially on the g-qudits of s and trivially on [n] \ s.

HOp

Given an instance H = [,y Hs of the k-local Hamiltonian problem on ground set
[n], the goal is to provide a good (additive) approximation to the ground state energy eg(H),

i.e., the smallest eigenvalue of H. Equivalently, the goal is to approximate

ep(H) = min Tr(Hp),
o(H) e (Hp)

where D (an> is the set of density operators, PSD operators of trace one, on C7". The

eigenspace of H associated to eg(H) is called the ground space of H.

Remark 2.8.2. The locality k of a k-local Hamiltonian has a similar role as the arity of k-CPSs
whereas the qudit dimension q has the role of alphabet size. Observe that for a k-CSP the goal
is to maximize the fraction of satisfied constrains while for a k-local Hamiltonian the goal is to

minimize the energy (constraint violations).

We will need an informationally complete measurement A modeled as a channel
A:D(C?) > D(CT),

and defined as

Alp) =) Tr(Myp) -eye;;,
yey

85



where {My},cy is a POVM 8 and {ey},ecy is an orthonormal basis (see Lemma 2.8.8
below for the properties of A). Recall that an informationally complete measurement is
an injective channel, i.e., the probability outcomes p(y) = Tr(Myp) fully determine p. By
definition given this probability distribution {p(y) },c) we can uniquely determine p. We

use the notation p = A1 <{p(y) }yE y) for the recovered state from probability outcomes

{r(v)}yey.

BH using the informationally complete measurement A reduced the quantum 2-local
Hamiltonian problem to a classical problem involving PSD ensembles of indicator ran-
dom variables of outcomes ) of A. In this reduction, they had to ensure that the local
distributions encoded by these indicators random variables are indeed consistent with
probability distributions of outcomes arising from actual local density matrices. Note
that the channel A is only injective, an arbitrary probability distribution on ) may not
correspond to a valid quantum state. For this reason, they introduced a new SDP hierar-
chy to find this special kind of PSD ensemble, which we refer to as quantum PSD ensemble,

minimizing the value of the given input k-local Hamiltonian instance.

Using our k-CSP approximation scheme for low threshold rank hypergraphs, we
show that product state approximations close to the ground space of k-local Hamilto-
nians on bounded degree low threshold rank hypergraphs can be computed efficiently in
polynomial time by Algorithm 2.8.3. Our result is a generalization of the k = 2 case of
Brand&do and Harrow [BH13] for 2-local Hamiltonians on bounded degree low threshold

rank graphs. Their algorithm is based on the 2-CSP result from [BRS11].

8. APOVM is a collection of operators {My } ¢y such that },cy My = land (Vy € J)(My = 0).

86



Algorithm 2.8.3 (Quantum Propagation Rounding Algorithm).
Input  L-local quantum PSD ensemble® {Yq,...,Yn} and distribution ITon X(< £).

Output A random state p = p1 ® ... ® py where each p; € D (CY).
1. Choosem € {1,...,L/{} at random.
2. Independently sample m {-faces, s; ~ Il forj=1,...,m
3. Write S = U;'n:1 sj, for the set of the seed vertices.
4. Sample assignment og : S — [q] according to the local distribution, {Yg}.

5. Set Y = {Yq,...Yn|Ys = 05}, i.e. the local ensemble Y conditioned on agreeing with

0g.

6. Forall j € [n], set pj = Ail({Y}})'

N

Output p = p1 @ ... pn.

a. We define the quantum ensemble as the PSD ensemble produced by the SDP hierarchy of [BH13]

The precise result is given in Theorem 2.8.4.

Theorem 2.8.4. Suppose 3 = (H = Eq 11, Hs) is a g-qudit k-local Hamiltonian instance whose
constraint complex © is X(< k) and has bounded normalized degree, i.e., TIy < 6. Let T =

cq-(e2/ (16k2q8k )2, for & > 0. There exists an absolute constant C' that satisfies the following:

5. ;8K 5
Set L = (C/'k 4 e'fankT(J) ). Then there is an algorithm based on L-levels of SoS-hierarchy

and Algorithm 2.8.3 that outputs a random product state p = p1 @ ... ® py that in expectation

ensures

Tr(Hp) < eo(H) + (189)*/? - e + L -k -5,

where eq(H) is the ground state energy of H.

9. We define the constraint complex of a k-local Hamiltonian in the same way we define it for k-CSPs,
namely, by taking the downward closure of the support of I.

87



Remark 2.8.5. Similarly to the classical case, Theorem 2.8.4 serves as a no-go barrier (in its pa-
rameter regime) to the quantum local-Hamiltonian version of the quantum PCP Conjecture [AAV13].
In particular, k-local Hamiltonians on bounded degree v-HDXs for «y sufficiently small can be ef-

ficiently approximated in polynomial time.

Now we sketch a proof of Theorem 2.8.4. We provide a sketch rather than a full proof
since Theorem 2.8.4 easily follows from the BH analysis once the main result used by
them, Theorem 5.6 from [BRS11], is appropriately generalized to “break” k-wise correla-
tions as accomplished by our Theorem 3.9.19 (restated below for convenience). Further-
more, a full proof would require introducing more objects and concepts only needed in
this simple derivation (the reader is referred to [BH13] for the quantum terminology and

the omitted details).

Theorem 2.8.6 (Adaptation of Theorem 3.9.19). Suppose a simplicial complex X (< k) with
X(1) = [n] and an L-local PSD ensemble Y = {Yq,...,Yn} are given. There exists some
universal constants ¢, > 0 and C"" > 0 satisfying the following: If L > C" - (g% - k7 - r/€9),

Supp(Y;) < qforallj € [n], and Jis (cy - (e/ (4k - g2, r)-splittable. Then, we have

ael)]g(k) [H{Yé‘} B {Yzﬁ} o {Yizk}Hl] S (2.19)
where Y' is as defined in Algorithm 2.8.3 on the input of {Y1, ..., Y} and T1;.

Once in possession of the quantum PSD ensemble the problem becomes essentially clas-
sical. The key result in the BH approach is Theorem 5.6 from [BRS11] that brings (in ex-
pectation under conditioning on a random small seed set of qudits) the local distributions,
over the edges of the constraint graph of a 2-local Hamiltonian, close to product distri-

butions 1. Now, using the fact that they have an informationally complete measurement

10. For this to hold we need the underlying constraint graph to be low threshold rank and the SoS degree
to be sufficiently large

88



A they can “lift” the conditioned marginal distribution on each qudit {Y;} to an actual
quantum state as p; = A1 ({Y;}) (see Algorithm 2.8.3). In this lifting process, they pay
an average distortion cost of 184 - € (for using the marginal over the qudits). For k-local
Hamiltonians, the distortion of k g-qudits is given by Lemma 2.8.7 (stated next without

proof).

Lemma 2.8.7. Let Z1,...,Z; be random variables in an L-local quantum PSD ensemble with

L > k. Suppose that

k
{Z4,....2;} - E{Zi}

:‘

1
Then

< (189)%/2 .e.

H () 4ze, 2~ (A%F) (f{{z&)

1

Note that Lemma 2.8.7 is a direct consequence of Lemma 2.8.8 from [BH13].

Lemma 2.8.8 (Informationally complete measurements (Lemma 16 [BH13])). For every
positive integer q there exists a measurement A with < g8 outcomes such that for every posi-

tive integer k and every traceless operator ¢, we have

lelly < (189)/% | A% @) -

BH also pay a full cost for each local term in the Hamiltonian that involves a seed
qudit since its state was not reconstructed using the full distribution of a qudit given
by the quantum ensemble but rather reconstructed from a single outcome y € ) of A.
Naively, this means that the final state of this qudit may be far from the intended state
given by SDP relaxation. In our case, we assume that the normalized degree satisfies

I1; <. Therefore, the total error from constraints involving seed qudits is at most

L-k-é.
89



Putting the above pieces together we conclude the proof (sketch) of Theorem 2.8.4.

90



CHAPTER 3

LIST DECODING OF DIRECT SUM CODES

3.1 Introduction

We consider the problem of list decoding binary codes obtained by starting with a binary
base code C and amplifying its distance by “lifting” C to a new code C’ using an expanding
or pseudorandom structure. Examples of such constructions include direct products where
one lifts (say) C C Fj to C' C (]F’é)”k with each position in y € C’ being a k-tuple of bits
from k positions in z € C. Another example is direct sum codes where C' C ngk and each
position in y is the parity of a k-tuple of bits in z € C. Of course, for many applications, it
is interesting to consider a small “pseudorandom” set of k-tuples, instead of considering

the complete set of size nk,

This kind of distance amplification is well known in coding theory [ABN 92, IW97,
GIO01, TS17] and it can draw on the vast repertoire of random and pseudorandom expand-
ing objects [HLWO06, Lub18]. Such constructions are also known to have several applica-
tions to the theory of Probabilitically Checkable Proofs (PCPs) [IKW09, DS14, DDG 115,
Chal6, Aro02]. However, despite having several useful properties, it might not always be
clear how to decode the codes resulting from such constructions, especially when con-
structed using sparse pseudorandom structures. An important example of this phe-
nomenon is Ta-Shma’s explicit construction of binary codes of arbitrarily large distance
near the (non-constructive) Gilbert-Varshamov bound [TS17]. Although the construction
is explicit, efficient decoding is not known. Going beyond unique-decoding algorithms,
it is also useful to have efficient list-decoding algorithms for complexity-theoretic appli-

cations [Sud00, Gur01, STVO01, Tre04].

The question of list decoding such pseudorandom constructions of direct-product

91



codes was considered by Dinur et al. [DHK'19], extending a unique-decoding result
of Alon et al. [ABN92]. While Alon et al. proved that the code is unique-decodable
when the lifting hypergraph (collection of k-tuples) is a good “sampler”, Dinur et al.
showed that when the hypergraph has additional structure (which they called being a
“double sampler”) then the code is also list decodable. They also posed the question
of understanding structural properties of the hypergraph that might yield even unique

decoding algorithms for the direct sum based liftings.

We develop a generic framework to understand properties of the hypergraphs under
which the lifted code C’ admits efficient list decoding algorithms, assuming only efficient
unique decoding algorithms for the base code C. Formally, let X be a downward-closed
hypergraph (simplicial complex) defined by taking the downward closure of a k-uniform
hypergraph, and let g : IFIE — Fp be any boolean function. X(i) denotes the collection of
sets of size i in X and X(< d) the collection of sets of size at most d. We consider the lift
C = dsum‘g{(k) (C), where C C IFf(l) and C' C IFf(k), and each bit of y € C' is obtained
by applying the function g to the corresponding k bits of z € C. We study properties of g

and X under which this lifting admits an efficient list decoding algorithm.

We consider two properties of this lifting, robustness and tensoriality, formally defined
later, which are sufficient to yield decoding algorithms. The first property (robustness)
essentially requires that for any two words in IFé( M) at a moderate distance, the lifting
amplifies the distance between them. While the second property is of a more technical
nature and is inspired by the Sum-of-Squares (SOS) SDP hierarchy used for our decoding
algorithms, it is implied by some simpler combinatorial properties. Roughly speaking,
this combinatorial property, which we refer to as splittability, requires that the graph on
(say) X(k/2) defined by connecting s,t € X(k/2)ifsNt=@and s Ut € X(k), is a suffi-
ciently good expander (and similarly for graphs on X(k/4), X(k/8), and so on). Splitta-

bility requires that the k-tuples can be (recursively) split into disjoint pieces such that at

92



each step the graph obtained between the pairs of pieces is a good expander.

Expanding Structures. We instantiate the above framework with two specific struc-
tures: the collection of k-sized hyperedges of a high-dimensional expander (HDX) and
the collection of length k walks ! on an expander graph. HDXs are downward-closed hy-
pergraphs satisfying certain expansion properties. We will quantify this expansion using

Dinur and Kaufman’s notion of a y-HDX [DK17].

HDXs were proved to be splittable by some of the authors [A]JT19]. For the expander
walk instantiation, we consider a variant of splittability where a walk of length k is split
into two halves, which are walks of length k/2 (thus we do not consider all k/2 size
subsets of the walk). The spectrum of the graphs obtained by this splitting can easily be
related to that of the underlying expander graph. In both cases, we take the function g
to be k-XOR which corresponds to the direct sum lifting. We also obtain results for direct

product codes via a simple (and standard) reduction to the direct sum case.

Our Results. Now we provide a quantitative version of our main result. For this, we
split the main result into two cases (due to their difference in parameters): HDXs and

length k walks on expander graphs. We start with the former expanding object.

Theorem 3.1.1 (Direct Sum Lifting on HDX (Informal)). Let eg < 1/2 be a constant and
e € (0,¢0). Suppose X(< d) is a yv-HDX on n vertices with ¢ < (1og(1/s))_o(1°g(1/8)) and
d = ((log(1/¢))2/2).

For every linear code C1 C ng with relative distance > 1/2 — ¢y, there exists a direct sum
lifting C;. C IFg(k) with k = O (log(1/¢)) and relative distance > 1/2 — (1) satisfying the

following:

- [Efficient List Decoding] If ij is (1/2 — €)-close to Cy, then we can compute the list of all

1. Actually, we will be working with length k — 1 walks which can be represented as k-tuples, though this
is an unimportant technicality. The reason is to be consistent in the number of vertices (allowing repetitions)
with k-sized hyperedges.

93



o)

the codewords of Cy, that are (1/2 — ¢)-close to § in time n® " - f(n), where f(n) is the

running time of a unique decoding algorithm for C.

- [Rate] The rate > ry of Cy is 1y = 11 - | X(1)| / | X (k)|, where ry is the rate of C;.

A consequence of this result is a method of decoding the direct product lifting on a

HDX via a reduction to the direct sum case.

Corollary 3.1.2 (Direct Product Lifting on HDX (Informal)). Let g < 1/2 be a constant
and ¢ > 0. Suppose X(< d) is a y-HDX on n vertices with y < (log(1/¢))~C108(1/8) gnd
d = Q((log(1/€))%/?).

For every linear code C1 C ]Fg with relative distance > 1/2 — g, there exists a direct product

encoding Cy C (lFé)X(g) with £ = O(log(1/¢)) that can be efficiently list decoded up to distance
(1—¢).

Remark 3.1.3. List decoding the direct product lifting was first established by Dinur et al. in
[DHK " 19] using their notion of double samplers. Since constructions of double samplers are
only known using HDXs, we can compare some parameters. In our setting, we obtain d =
O(log(1/¢)?/€?) and v = (log(l/e))’o(log(l/s)) whereas in [DHKT19] d = O(exp(1/¢))
and v = O(exp(—1/¢)).

Given a graph G, we denote by W (k) the collection of all length k — 1 walks of G,
which plays the role of the local views X (k). If G is sufficiently expanding, we have the

following result.

Theorem 3.1.4 (Direct Sum Lifting on Expander Walks (Informal)). Let ¢g < 1/2 be a

constant and € € (0,€q). Suppose G is a d-reqular ~y-two-sided spectral expander graph on n

vertices with ¢y < 0(1),

2.In the rate computation, X(k) is viewed as a multi-set where each s € X(k) is repeated a certain
number of times for technical reasons.

94



For every linear code C1 C IF5 with relative distance > 1/2 — ¢, there exists a direct sum
encoding Cy. C lF;/vG(k) with k = O (log(1/¢)) and relative distance > 1/2 — o) satisfying

the following:

- [Efficient List Decoding] If ij is (1/2 — €)-close to Cy, then we can compute the list of all
the codewords of C that are (1/2 — €)-close to ij in time ne O - f(n), where f(n) is the

running time of a unique decoding algorithm for C.

- [Rate] The rate ry, of Cy. is 1. = r1/dX~1, where rq is the rate of C;.

The results in Theorem 3.1.1, Corollary 3.1.2, and Theorem 3.1.4 can all be extended
(using a simple technical argument) to nonlinear base codes C1 with similar parameters.
We also note that applying Theorem 3.1.1 to explicit objects derived from Ramanujan
complexes [LSV05b, LSV05a] and applying Theorem 3.1.4 to Ramanujan graphs [LPS88]
yield explicit constructions of codes with constant relative distance and rate, starting from
a base code with constant relative distance and rate. With these constructions, the rate
of the lifted code satisfies r, > 71 - exp (—(log(l/ g))Olog(1/ SD) in the HDX case and
Te=>711" 010g(1/2)) for expander walks. The precise parameters of these applications are

given in Corollary 3.7.2 of Section 3.7 and in Corollary 3.9.5 of Section 3.9, respectively.

Our techniques. We connect the question of decoding lifted codes to finding good solu-
tions for instances of Constraint Satisfaction Problems (CSPs) which we then solve using
the Sum-of-Squares (SOS) hierarchy. Consider the case of direct sum lifting, where for the
lifting v of a codeword z, each bit of y is an XOR of k bits from z. If an adversary corrupts
some bits of y to give 7, then finding the closest codeword to j corresponds to finding
z' € C such that appropriate k-bit XORs of z’ agree with as many bits of 7 as possible. If
the corruption is small, the distance properties of the code ensure that the unique choice
for z’ is z. Moreover, the distance amplification (robustness) properties of the lifting can

be used to show that it suffices to find any z’ (not necessarily in C) satisfying sufficiently
95



many constraints. We then use results by a subset of the authors [AJT19] showing that
splittability (or the tensorial nature) of the hypergraphs used for lifting can be used to
yield algorithms for approximately solving the related CSPs. Of course, the above ar-
gument does not rely on the lifting being direct sum and works for any lifting function
g

For list decoding, we solve just a single SOS program whose solution is rich enough
to “cover” the list of codewords we intend to retrieve. In particular, the solutions to the
CSP are obtained by “conditioning” the SDP solution on a small number of variables, and
we try to ensure that in the list decoding case, conditioning the SOS solution on different
variables yields solutions close to different elements of the list. To achieve this covering
property we consider a convex proxy Y for negative entropy measuring how concen-
trated (on a few codewords) the SOS solution is. Then we minimize ¥ while solving the
SOS program. A similar technique was also independently used by Karmalkar, Klivans,
and Kothari [KKK19] and Raghavendra—Yau [RY20] in the context of learning regression.
Unfortunately, this SOS cover comes with only some weak guarantees which are, a pri-
ori, not sufficient for list decoding. However, again using the robustness property of the
lifting, we are able to convert weak covering guarantees for the lifted code C’ to strong
guarantees for the base code C, and then appeal to the unique decoding algorithm. We
regard the interplay between these two properties leading to the final list decoding ap-
plication as our main technical contribution. A more thorough overview is given in Sec-
tion 4.3 after introducing some objects and notation in Section 4.2. In Section 4.3, we also

give further details about the organization of the document.

Related work. The closest result to ours is the list decoding framework of Dinur et
al. [DHK"19] for the direct product encoding, where the lifted code is not binary but
rather over the alphabet ng Our framework instantiated for the direct sum encoding on

HDXs (c.f. Theorem 3.1.1) captures and strengthens some of their parameters in Corol-

96



lary 3.1.2. While Dinur et al. also obtain list decoding by solving an SDP for a specific
CSP (Unique Games), the reduction to CSPs in their case uses the combinatorial nature
of the double sampler instances and is also specific to the direct product encoding. They
recover the list by iteratively solving many CSP instances, where each newly found so-
lution is pruned from the instance by reducing the alphabet size by one each time. On
the other hand, the reduction to CSPs is somewhat generic in our framework and the re-
covery of the list is facilitated by including an entropic proxy in the convex relation. As
mentioned earlier, a similar entropic proxy was also (independently) used by Karmalkar
et al. [KKK19] and Raghavendra—Yau [RY20] in the context of list decoding for linear re-
gression and mean estimation. Direct products on expanders were also used as a building
block by Guruswami and Indyk [GI03] who used these to construct linear time list decod-
able codes over large alphabets. They gave an algorithm for recovering the list based on

spectral partitioning techniques.

3.2 Preliminaries

3.2.1 Simplicial Complexes

It will be convenient to work with hypergraphs satisfying a certain downward-closed

property (which is straightforward to obtain).

Definition 3.2.1. A simplicial complex X with ground set [n] is a downward-closed collection of
subsets of [n], i.e., for all sets s € X and t C s, we also have t € X. The sets in X are referred
to as faces of X. We use the notation X (i) for the set of all faces of a simplicial complex X with

cardinality i and X (< d) for the set of all faces of cardinality at most d. 3 By convention, we take

3. Note that it is more common to associate a geometric representation to simplicial complexes, with
faces of cardinality i being referred to as faces of dimension i — 1 (and the collection being denoted by X (i — 1)
instead of X(i)). However, we prefer to index faces by their cardinality to improve readability of related
expressions.

97



X(0) :={@}.
A simplicial complex X(< d) is said to be a pure simplicial complex if every face of X is

contained in some face of size d. Note that in a pure simplicial complex X(< d), the top slice X (d)

completely determines the complex.

Simplicial complexes are equipped with the following probability measures on their

sets of faces.

Definition 3.2.2 (Probability measures (I1y,...,I1;)). Let X(< d) be a pure simplicial com-
plex and let T1; be an arbitrary probability measure on X(d). We define a coupled array of random
variables (s\@),. .., s(1)) as follows: sample s\ ~ T1; and (recursively) for each i € [d), take
sV tobea uniformly random subset ofs(i) of size i — 1. The distributions I15_1,...,11; are
then defined to be the marginal distributions of the random variables s@=1) s We also
define the joint distribution of (5<d>, . ,5(1>) as I1. Note that the choice of 11; determines each

other distribution T1; on X (i).

In order to work with the HDX and expander walk instantiations in a unified manner,
we will use also use the notation X(k) to indicate the set of all length k — 1 walks on a
graph G. In this case, X (k) is a set of k-tuples rather than subsets of size k. This distinction
will be largely irrelevant, but we will use W (k) when referring specifically to walks
rather than subsets. The set of walks W (k) has a corresponding distribution IT; as well

(see Definition 3.9.1).

3.2.2  Codes and Lifts

Codes

We briefly recall some standard code terminology. Let X be a finite alphabet with g € IN

symbols. We will be mostly concerned with the case £ = F,. Given z,z’ € £", recall that
98



the relative Hamming distance between z and 2’ is A(z,2') := |{i | z; # z/}| /n. Any set
C C X" gives rise to a g-ary code. The distance of C is defined as A(C) := min, .,/ A(z, Z')
where z,z’ € C. We say that C is a linear code 4 if & = IF; and C is a linear subspace of IFj.

The rate of C is logq(|C|)/n.

Instead of discussing the distance of a binary code, it will often be more natural to

phrase results in terms of its bias.

Definition 3.2.3 (Bias). The bias of a word ° z € IF% is bias(z) := ‘Eie[n] (—=1)=

. The bias of a

code C is the maximum bias of any non-zero codeword in C.

Lifts

(1)

Starting from a code C; C Zi( ! , we amplify its distance by considering a lifting operation

defined as follows.

Definition 3.2.4 (Lifting Function). Let g : Z]{ — Xy and X(k) be a collection of k-uniform

hyperedges or walks of length k — 1 on the set X(1). For z € Zf(l), we define dsum‘gi(k) (z) =y

such that ys = g(z|s) for all s € X(k), where z|g is the restriction of z to the indices in s.

The lifting of a code C1 C Zi((l) is
dsumi(k) (Cq) = {dsumi(k) (z) |z € Cq},

which we will also denote C.. We will omit g and X (k) from the notation for lifts when they are

clear from context.

We will call liftings that amplify the distance of a code robust.

4. In this case, g is required to be a prime power.

5. Equivalently, the bias of z € {+1}" is bias(z) = ’]Eie[n]z,» .

99



Definition 3.2.5 (Robust Lifting). We say that dsum‘g{ ) is (60, 6)-robust if for every z,z’ €
Zf(l) we have

A(z,7Z') > 6y = A(dsum(z),dsum(z)) > 4.

For us the most important example of lifting is when the function g is k-XOR and
21 = X = [Fp, which has been extensively studied in connection with codes and other-
wise [TS17, STV01, GNW95, ABNT92]. In our language of liftings, k-XOR corresponds to

the direct sum lifting.

Definition 3.2.6 (Direct Sum Lifting). Let C; C IF}) be a base code on X (1) = [n]. The direct
sum lifting of a word z € IFy on a collection X (k) is dsumy i (z) = y such that ys = Ycs 2
forall s € X(k).

We will be interested in cases where the direct sum lifting reduces the bias of the base
code; in [TS17], structures with such a property are called parity samplers, as they emulate

the reduction in bias that occurs by taking the parity of random samples.

Definition 3.2.7 (Parity Sampler). Let g: ]F’é — IFp. We say that dsumi(k) is an (Bo, B)-

parity sampler if for all z € IFé((l) with bias(z) < B, we have bias(dsum(z)) < B.

3.2.3 Constraint Satisfaction Problems (CSPs)

A k-CSP instance J(H, P, w) with alphabet size g consists of a k-uniform hypergraph H,
a set of constraints
P={PaC[q)":a€H}
and a non-negative weight function w & IRE on the constraints satisfying ) g w(a) = 1.
We will think of the constraints as predicates that are satisfied by an assignment ¢ if

we have 0|q € Py, i.e., the restriction of ¢ on a is contained in Py. We write SAT5(co) for

100



the (weighted) fraction of the constraints satisfied by the assignment ¢, i.e.,

SAT;(0) = Z w(a) - 1o|q € Pq] = a,]gw [1[o|a € P4l -
a€EH

We denote by OPT(J) the maximum of SAT+(¢) over all o € [q]V(H).

A particularly important class of k-CSPs for our work will be k-XOR: here the input
consists of a k-uniform hypergraph H with weighting w, and a (right-hand side) vector

re ng . The constraint for each a € H requires

Y o(i) =rq (mod 2).
i€a
In this case we will use the notation J(H, r, w) to refer to the k-XOR instance. When the
weighting w is implicitly clear, we will omit it and just write J(H, r).
Any k-uniform hypergraph H can be associated with a pure simplicial complex in a
canonical way by setting X5 = {b: 3 a € H with a D b}; notice that X5(k) = H. We will
refer to this complex as the constraint complex of the instance J. The probability distribu-

tion IT; on X5(k) will be derived from the weight function w of the constraint:

[T (a) =w(a) Vae Xy(k) =H.

3.2.4  Sum-of-Squares Relaxations and t-local PSD Ensembles

The Sum-of-Squares (SOS) hierarchy gives a sequence of increasingly tight semidefinite
programming relaxations for several optimization problems, including CSPs. Since we
will use relatively few facts about the SOS hierarchy, already developed in the analysis
of Barak, Raghavendra, and Steurer [BRS11], we will adapt their notation of t-local dis-

tributions to describe the relaxations. For a k-CSP instance J = (H, P, w) on n variables,

101



we consider the following semidefinite relaxation given by t-levels of the SOS hierarchy,
with vectors v(g .y for all S C [n] with [S| < t,and all « € [q]%. Here, for aq € [g]°1 and
ay € [9]°2, aq 0y € [q]%1Y52 denotes the partial assignment obtained by concatenating

aq and ayp.

maximize ]E

Y o ||2] =: SDP(J)

aEPq

subject to <v (Suar) USaar) ) = O Vaals,ns, 7# 2lsins,

<U (Sa1)7 V(Sp.2) > = <U(S3,(X3)/U(S4,(x4)> VS1USy =53USy, mpoay =azony
2

ZHU ({it)) ” =1 ViE[?l]
j€lal

oo l? =1

For any set S with |S| < ¢, the vectors V(sm) induce a probability distribution yg over
[4]° such that the assignment & € [g]° appears with probability 195 0) |2. Moreover, these
distributions are consistent on intersections: for T C S C [n], we have u S|T = HT/ where
pg|T denotes the restriction of the distribution g to the set T. We use these distributions
to define a collection of random variables Z, .. ., Z;, taking values in [g], such that for any
set S with |S| < t, the collection of variables {Z;},. ¢ has a joint distribution pg. Note that
the entire collection (Zy, ..., Zy;) may not have a joint distribution: this property is only
true for sub-collections of size t. We will refer to the collection (Z,...,Zy) as a t-local

ensemble of random variables.

We also have that that for any T C [n] with |T| < t —2, and any & € [q]T, we can
define a (t — |T|)-local ensemble (Z}, ..., Z},) by “conditioning” the local distributions on
the event Z1 = ¢, where Z7 is shorthand for the collection {Z;},.r. For any S with |S| <

t — |T|, we define the distribution of Z{ as pg := pgr|{ZT = ¢}. Finally, the semidefinite

102



program also ensures that for any such conditioning, the conditional covariance matrix

Misya)0s) = Cov (1125, = 1) 11Z5, = wal)

is positive semidefinite, where [S1|,[S2| < (t — |T|)/2. Here, for each pair S1,S; the
covariance is computed using the joint distribution Vlslu s,- In this paper, we will only
consider t-local ensembles such that for every conditioning on a set of size at most t — 2,
the conditional covariance matrix is PSD. We will refer to these as t-local PSD ensembles.

We will also need a simple corollary of the above definitions.

Fact 3.2.8. Let (Zq,...,Zy) be a t-local PSD ensemble, and let X be any collection with X (1) =
[n]. Then, for all s < t/2, the collection {Za}an(gs) is a (t/s)-local PSD ensemble, where
X(<s) = Ui X(0).

For random variables Zg in a t-local PSD ensemble, we use the notation {Zg} to de-

note the distribution of Zg (which exists when |S| < t). We also define Var[Zg]| as

Var (Zg] := ) Var[1[Zg = a]].
LS UR

Pseudo-expectation Formulation

An equivalent way of expressing this local PSD ensemble is through the use of a pseudo-
expectation operator, which is also a language commonly used in the SOS literature (e.g.,
[BHK 16, BKS17]). The exposition of some of our results is cleaner in this equivalent
language. Each variable Z; with i € [n] is modeled by a collection of indicator local

random variables ¢ {Z; ;} ac[q] With the intent that Z; ; = 1iff Z; = a. To ensure they

6. Note that {Z; ; };c [ 4c|q are formal variables in the SOS formulation.

103



behave similarly to indicators we add the following restrictions to the SOS formulation:

Z2,=17;, Vi € [n],a € [g]

Y Zi,=1 Vi € [n]
aclq]

Let R = R[Z1,...,Zy,] be the ring of polynomials on {Zi,u}ie[n],ae[q]' We will write
R=% for the restriction of R to polynomials of degree at most d. A feasible solution
at the (2t)-th level of the SOS hierarchy is a linear operator E : R=? — R called the
pseudo-expectation operator. This operator satisfies the following problem-independent
constraints: (i) E[1] = 1 (normalization) and (ii) E[P?] > 0 for every P € R<! (non-

negative on Sum-of-Squares) 7. It also satisfies the problem-dependent constraints

E [zl%a-P] —E[z,-P] ad E|| Y z,.| Q| =EQ,
a<|q]
foreveryi € [n],a € [q], P € RS%72,and Q € R=%~1. Note that for any collection of

local random variables Z; , ..., Z; with j < 2t we have the joint distribution
i ij ] )

I[)(le :ﬂ1,---IZi' [ il,al-..zi]',ﬂj] .

]

Even though we may not have a global distribution we can implement a form of pseudo-
expectation conditioning on a random variable Z; taking a given value a € [q] as long as

P [Z; = a] = E[Z; ;] > 0. This can be done by considering the new operator

Ejz_: R%*72 =R

7. From condition (ii), we can recover the PSD properties from the local PSD ensemble definition.

104



defined as IEl 7,—al] = IE[Z% 217 IAE[ZZ2 ,), which is a valid pseudo-expectation operator at
the (2t — 2)-th level. This conditioning can be naturally generalized to a set of variables

S C [n] with |S| < t satisfying Zg = & for some a € [g]°.

Notation

We make some systematic choices for our parameters in order to syntactically stress their

qualitative behavior.

- 1/2 —¢p is a lower bound on the distance of the base code C;.

1/2 — eis a lower bound on the distance of the lifted code C.

K is a parameter that will control the list-decodability of the lifted code Cy.

1, 0,1 are parameters that can be made arbitrarily small by increasing the SOS de-

gree and/or the quality of expansion.

B, 6 are arbitrary error parameters.
- AL > Ay > -+ are the eigenvalues of a graph’s adjacency matrix (in [—1, 1]).

- 0y > 0y > - - - are the singular values of a graph’s adjacency matrix (in [0, 1]).

SOS is an analytic tool so we will identify  words over F, with words over {+1}.

We also make some choices for words and local variables to distinguish the ground space

X

IF, M or {:|:1}X(1) form the lifted space IFéc(k) or {il}X(k)'

- z,7/,7Z",... are words in the ground space lFi{(l) or {il}X(l).

v,y ,y",... are words in the lifted space lFf(k) or {+1}X(K)
-Z:={Zq,...,Z,} is alocal PSD ensemble on the ground set X(1).

- Y:={Ys = (dsum(Z)), | s € X(k)} is a local ensemble on X (k).

8. For this, we can use any bijection from IF, — {+1}.

105



3.3 Proof Strategy and Organization

As discussed earlier, we view the problem of finding the closest codeword(s) as that of
finding suitable solution(s) to an instance of a CSP (which is k-XOR in the case of direct
sum). We now discuss some of the technical ingredients required in the decoding proce-

dure.

Unique Decoding. GivenCj = dsumX(k) (Cq) with the lifting function as k-XOR, we can
(k)

view the problem of finding the closest codeword to a given 7 € IF? as that of finding
the unique z € C; satisfying the maximum number of equations of the form } ;. z; = 75
(mod 2), with one equation for each s € X(k). By this property, y = dsum(z) is the
unique codeword of Cj closest to . Using the results of [AJT19], it is indeed possible
to find z' € FF} such that A(dsum(z’),7) < A(dsum(z),7) + B for any p > 0. We then

argue that z’ or its complement z’ must be close to z € C1, which can then be recovered

by unique decoding.

If this is not the case, then z — z/ must have bias bounded away from 1, which would
imply by robustness (parity sampling property of the hypergraph) that dsum(z — z’) has
bias close to zero, i.e., A(dsum(z),dsum(z’)) ~ 1/2. However, if A(§,C;) < 1, then we

must have
A(dsum(z),dsum(z’)) < A(dsum(z),¥) + A(dsum(z’),7) < 25+ B,
which leads to a contradiction if 7 is significantly below 1/4 and S is sufficiently small.

List Decoding. We start by describing an abstract list decoding framework which only
assumes two general properties of a lifting dsumi )’ (i) it is distance amplifying (robust)

and (ii) it is amenable to SOS rounding (tensorial).

106



Suppose 7 € ]F§ *) is a word promised to be (1/2 — \/¢)-close to a lifted code C; =
dsum(Cq) where C; has distance at least 1/2 — ¢ and C; has distance at least 1/2 — ¢(. By

list decoding 7, we mean finding a list £ C Cj of all codewords (1/2 — /¢)-close to .

Our framework for list decoding i consists of three stages. In the first stage, we set
up and solve a natural SOS program which we treat abstractly in this discussion . One
issue with using a rounding algorithm for this relaxation to do list decoding is that this
natural SOS program may return a solution that is “concentrated”, e.g., a SOS solution
corresponding to single codeword in £. Such a solution will of course not have enough
information to recover the entire list. To address this issue we now ask not only for fea-
sibility in our SOS program but also to minimize a convex function ¥ measuring how
concentrated the SOS solution is. Specifically, if Z is the PSD ensemble corresponding
to the solution of the SOS program and if Y is the lifted ensemble, then we minimize
Y= E, cx) [(E [YﬁYtDz] .

The key property of the function ¥ is that if the SOS solution “misses” any element in
the list £ then it is possible to decrease it. Since our solution is a minimizer 10 of ¥, this is
impossible. Therefore, our solution does “cover” the list £. Even with this SOS cover of
L, the list decoding task is not complete. So far we have not talked about rounding, which
is necessary to extract codewords out of the (fractional) solution. For now, we will simply
assume that rounding is viable (this is handled by the second stage of the framework)

and resume the discussion.

Unfortunately, the covering guarantee is somewhat weak, namely, for y € £ we are

(k)

only able to obtain a word v’ € IF? with weak agreement |(y/,y)| > 2-¢. Convert-
ing a word y’ from the cover into an actual codeword y is the goal of the third and final

stage of the list decoding framework, dubbed Cover Purification. At this point we resort

9. The precise SOS program used is given in Section 3.6.2.

10. Actually an approximate minimizer is enough in our application.

107



to the robustness properties of the lifting and the fact that we actually have “coupled”

(1)

pairs (z,y = dsum(z)) and (z/,3¥’ = dsum(z’)) for some z,z’ € ]F;i . Due to this ro-
bustness (and up to some minor technicalities) even a weak agreement between y and
y' in the lifted space translates into a much stronger agreement between z and z’ in the
ground space. Provided the latter agreement is sufficiently strong, z’ will lie in the unique
decoding ball centered at z in Cy. In this case, we can uniquely recover z and thus also

y = dsum(z). Furthermore, if C; admits an efficient unique decoder, we can show that

this step in list decoding 77 can be done efficiently.

Now we go back to fill in the rounding step, which constitutes the second stage of
the framework, called Cover Retrieval. We view the SOS solution as composed of several
“slices” from which the weak pairs (z/,y’) are to be extracted. Note that the framework
handles, in particular, k-XOR liftings where it provides not just a single solution but a
list of them. Hence, some structural assumption about X (k) is necessary to ensure SOS
tractability. Recall that random k-XOR instances are hard for SOS [Gri01, KMOW17]. For
this reason, we impose a sufficient tractability condition on X(k) which we denote the
two-step tensorial property. This notion is a slight strengthening of a tensorial property
which was (implicitly) first investigated by Barak et al. [BRS11] when k = 2 and later
generalized for arbitrary k > 2 in [AJT19]. Roughly speaking, if X (k) is tensorial then
the SOS local random variables in a typical slice of the solution behave approximately as
product variables from the perspective of the local views s € X (k). A two-step tensorial
structure is a tensorial structure in which the local random variables between pairs of local
views s, t € X(k) are also close to product variables, which is an extra property required to
perform rounding in this framework. With the two-step tensorial assumption, we are able
to round the SOS solution to obtain a list of pairs (z/,y") weakly agreeing with elements

of the code list that will be refined during cover purification.

To recapitulate, the three stages of the abstract list decoding framework are summa-

108



rized in Fig. 3.1 along with the required assumptions on the lifting.

SOS solution code cove
——n e

Cover Retrieval

=——p| Code List

SOS minimizing ¥ Cover Purification

ensorial Assumption Robustness Assumptior]

Figure 3.1: List decoding framework with the assumptions required in each stage.

Finding suitable hypergraphs. Fortunately, objects satisfying the necessary tensorial
and robustness assumptions do exist. HDXs were shown to be tensorial in [A]T19], and
here we strengthen this result to two-step tensorial as well as prove that HDXs possess the
particular robustness property of parity sampling. Walks on expander graphs are already
known to be robust [TS17], and we use a modified version of the methods in [A]JT19] to
show they are also two-step tensorial. For both HDXs and expander walks, we describe
how to use known constructions of these objects to get explicit direct sum encodings that

can be decoded using our abstract framework.

Reduction from direct product to direct sum. Finally, we describe how to use list de-
coding results for direct sum codes to obtain results for direct product codes. Given a
direct product lifting C; on the hypergraph X(k), if A(7,y) < 1 —¢fory € C, then we

must have that

P s =T = E E s > €.
(P le=il = E [@m<ys+y>]] ‘

Since xt(ys) can be viewed as part of a direct sum lifting, we get by grouping subsets t by
size that there must exist a size i such that the direct sum lifting using X (i) has correlation
at least ¢ with the word y’ defined as y; = x;(¥s) for all t € X(i). We can then apply the

list decoding algorithm for direct sum codes on X(i). A standard concentration argument
109



can also be used to control the size i to be approximately k/2.

Organization of Results

In Section 3.4, we show how the direct sum lifting on HDXs can be used to reduce bias,
establishing that HDXs are parity samplers. This will give a very concrete running ex-
ample of a lifting that can be used in our framework. Before addressing list decoding,
we remark in Section 3.5 how this lifting can be used in the simpler regime of unique
decoding using a k-CSP algorithm on expanding instances [AJT19]. The abstract list de-
coding framework is given in Section 3.6. Next, we instantiate the framework with the
direct sum lifting on HDXs in Section 3.7. As an interlude between the first and second
instantiation, Section 3.8 describes how the first concrete instantiation of Section 3.7 cap-
tures the direct product lifting on HDXs via a reduction to the direct sum lifting. Finally,
in Section 3.9, we show how to instantiate the framework with the direct sum lifting on

the collection of length k — 1 walks of an expander graph.

3.4 Pseudorandom Hypergraphs and Robustness of Direct Sum

The main robustness property we will consider is parity sampling applied to the case of
the direct sum lifting. As this section focuses on this specific instance of a lifting, here
we will say that a collection X(k) is a parity sampler if its associated direct sum lifting
dsumyy is a parity sampler. Recall that for such a parity sampler, the direct sum lifting

brings the bias of a code close to zero, which means it boosts the distance almost to 1/2.

110



3.4.1 Expander Walks and Parity Sampling

A known example of a parity sampler is the set X (k) of all walks of length k in a suffi-

ciently expanding graph, as shown by Ta-Shma.

Theorem 3.4.1 (Walks on Expanders are Parity Samplers [TS17]). Suppose G is a graph with
second largest singular value at most A, and let X (k) be the set of all walks of length k on G. Then
X (k) is a (Bo, (Bo + 2A) /2D -parity sampler.

Our goal in this section is to prove a similar result for high-dimensional expanders,

where X(k) is the set of k-sized faces.

3.4.2 High-dimensional Expanders

A high-dimensional expander (HDX) is a particular kind of simplicial complex satisfying
an expansion requirement. We recall the notion of high-dimensional expansion consid-
ered in [DK17]. For a complex X(< d) and s € X (i) for some i € [d], we denote by X, the
link complex

Xs = {t\s |s Cte X}.

When |s| < d — 2, we also associate a natural weighted graph G(Xs) to a link X, with
vertex set X5(1) and edge set X5(2). The edge weights are taken to be proportional to the
measure I on the complex X5, which is in turn proportional to the measure IT);,, on

X. The graph G(Xs) is referred to as the skeleton of Xs.

Dinur and Kaufman [DK17] define high-dimensional expansion in terms of spectral

expansion of the skeletons of the links.

Definition 3.4.2 (v-HDX from [DK17]). A simplicial complex X(< d) is said to be vy-High
Dimensional Expander (y-HDX) if for every 0 < i < d — 2 and for every s € X(i), the graph

G(Xs) satisfies 07 (G(Xs)) < 7.
111



We will need the following theorem relating 7y to the spectral properties of the graph

between two layers of an HDX.

Theorem 3.4.3 (Adapted from [DK17]). Let X be a y-HDX and let M ; be the weighted bipar-

tite containment graph between X (1) and X (d), where each edge ({i}, s) has weight (1/d)I1;(s).
Then the second largest singular value o5 of My ; satisfies
03 < = +0(dy).

We will be defining codes using HDXs by associating each face in some X (i) with a

position in the code. The distance between two codewords does not take into account any

weights on their entries, which will be problematic when decoding since the distributions

I1; are not necessarily uniform. To deal with this issue, we will work with HDXs where

the distributions I; satisfy a property only slightly weaker than uniformity.

Definition 3.4.4 (Flatness (from [DHK19])). We say that a distribution I1 on a finite prob-
ability space () is D-flat if there exits N such that each singleton w € () has probability in
{1/N,...,D/N}.

Using the algebraically deep construction of Ramanujan complexes by Lubotzky, Samuels,
and Vishne [LSV05b, LSV05a], Dinur and Kaufman [DK17] showed that sparse y-HDXs
do exist, with flat distributions on their sets of faces. The following lemma from [DHK " 19]

is a refinement of [DK17].

Lemma 3.4.5 (Extracted from [DHK19]). For every v > 0 and every d € IN there exists
an explicit infinite family of bounded degree d-sized complexes which are y-HDXs. Furthermore,

there exists a D < (1/7)0({12/72) such that




the distribution 11y is uniform, and the other distributions Iy, ..., 11, are D-flat.

For a D-flat distribution IT;, we can duplicate each face in X (i) at most D times to
make I1; the same as a uniform distribution on this multiset. We will always perform

such a duplication implicitly when defining codes on X (7).

3.4.3 HDXs are Parity Samplers

To prove that sufficiently expanding HDXs are parity samplers, we establish some proper-
ties of the complete complex and then explore the fact that HDXs are locally complete 1.
We first show that the expectation over k-sized faces of a complete complex X on t vertices

approximately splits into a product of k expectations over X(1) provided t > k.

Claim 3.4.6 (Complete complex and near independence). Suppose X is the complete complex
of dimension at least k with 11 uniform over X (k) and 11y uniform over X(1) = [t|. For a
function f : X(1) — R, let

up = Esor, [Hf(i)] and = E;om [f(D)].
i€s
Then
k2
=] < S U1
Proof. Let & = {(i,...,i;) € X(1)* | i1,..., i are distinct}, § = P ity [ ik) &

€l andp =E; iyexapelf(in) - f(ig)] Then

Wi =By o (1) f(ig)]
=1 =0) B, ineelf() - )] +6-Ey iyexampelfi) - fi)]
=1-90) -u+9-my,

11. This a recurring theme in the study of HDXs [DK17].
113



where the last equality follows since 11 is uniform and the product in the expectation
is symmetric. As iq,...,i; are sampled independently from Il;, which is uniform over

X(1),
s=1-T1 (1) <o i="5"

j<k j<k

so we have

e — w| = 6l —nl < ﬁ—i (21715) -

We will derive parity sampling for HDXs from their behavior as samplers. A sampler
is a structure in which the average of any function on a typical local view is close to its

overall average. More precisely, we have the following definition.

Definition 3.4.7 (Sampler). Let G = (U, V, E) be a bipartite graph with a probability distribu-
tion Iy on U. Let 11y be the distribution on V obtained by choosing u € U according to Iy,
then a uniformly random neighbor v of u. We say that G is an (1, 8 )-sampler if for every function
f:V —[0,1] withp = Eyorry, f(0),

P Bl f@)] — 2 1) < 6

To relate parity sampling to spectral expansion, we use the following fact establish-
ing that samplers of arbitrarily good parameters (#,J) can be obtained from sufficiently
expanding bipartite graphs. This result is essentially a corollary of the expander mixing

lemma.

Fact 3.4.8 (From Dinur et al. [DHK " 19]). A weighted bipartite graph with second singular

value oy is an (17,05 /n?)-sampler.

Using Claim 3.4.6, we show that the graph between X(1) and X (k) obtained from a
114



HDX is a parity sampler, with parameters determined by its sampling properties.

Claim 3.4.9 (Sampler bias amplification). Let X (< d) be a HDX such that the weighted bi-
partite graph My 4 between X(1) = [n] and X(d) is an (n,6)-sampler. For any 1 < k < d, if

z € ]Fg has bias at most B, then

2

bias(dsumy ) (2)) < (Bo + 1)+ +5.

Proof. By downward closure, the subcomplex X|¢ obtained by restricting to edges con-
tained within some t € X(d) is a complete complex on the ground set t. Since M ; is an
(17, 0)-sampler, the bias of z|¢ must be within # of bias(z) on all but ¢ fraction of the edges

t. Hence

Zi1+"'+zik

bias(dsumy ;) (z)) = By iyerr (1)

Zj T+ 1tz
- IE{NHd]E{il,...,ik}EXh(k)(_1) 1 k

Zi1+m+zik]1

IN

Eeor, B, igex) (1) [bias(z[¢) <Bo-+] ‘
+ tNIl;Td [bias(z[¢) > Bo + 7]

Zi1+"'+Zl'k s

< Biorty Ubias(z]) < Bo+1] ‘E{il,-.-,ik}exlt(k)(_l)

By Claim 3.4.6, the magnitude of the expectation of (—1)% over the edges of size k in

the complete complex X|¢ is close to ‘]El-N x|¢(1)(—1)%|, which is just the bias of z|¢. Then

. : k2
bias(dsumy k) (2)) < Byox(a)pias(z]) <po +] Pias(zl0) + = +0
ko, K
< (,30 + 77) + E +9

115



Now we can compute the parameters necessary for a HDX to be an (S, §)-parity

sampler for arbitrarily small S.

Lemma 3.4.10 (HDXs are parity samplers). Let 0 < B < Bp < 1,0 < 6 < (1/Bg) — 1,
and k > 10g(14.),(B/3)- If X(< d) is a -HDX with d > max{3k*/p,6/(6>B5p)} and
vy=0 (1/d2>, then X (k) is a (Bo, B)-parity sampler.

Proof. Suppose the graph M; ; between X(1) and X(d) is an (7,6)-sampler. We will

choose d and < so that # = 0By and 6 = B/3. Using Fact 3.4.8 to obtain a sampler

with these parameters, we need the second singular value 0 of M; 4 to be bounded as

0y < 9/50\/5

By the upper bound on (722 from Theorem 3.4.3, it suffices to have

1 92;355
— <
3 + 0 (dy) < 3

which is satisfied by taking d > 6/ (92[3%[3) and y =0 <1 / d2>.

By Claim 3.4.9, X (k) is a (Bg, (Bg + 1)K + k2/d + 6)-parity sampler. The first term in
the bias is (Bg + 7)X = ((1 + 0)Bo)K, so we require (1 + 6)By < 1 to amplify the bias by
making k large. To make this term smaller than /3, k must be at least log(l +6)Bo (B/3).

We already chose § = /3, so ensuring d > 3k?/ B gives us a (B, B)-parity sampler.  m

3.4.4 Rate of the Direct Sum Lifting

By applying the direct sum lifting on a HDX to a base code C; with bias B, parity sam-
pling allows us to obtain a code C; = dsumX(k> (C1) with arbitrarily small bias B at the
cost of increasing the length of the codewords. The following lemma gives a lower bound

on the rate of the lifted code Cy.
116



Lemma 3.4.11 (Rate of direct sum lifting for a HDX). Let By € (0,1)and 6 € (0,(1/By) — 1)
be constants, and let C1 be an By-biased binary linear code with relative rate r1. For B € (0, By],
suppose k, d, and <y satisfy the hypotheses of Lemma 3.4.10, with k and d taking the smallest
values that satisfy the lemma. The relative rate ry. of the code C, = dsumy (Cq) with bias B

constructed on a HDX with these parameters satisfies

rp > rq - 7 O1os(1/B)*/ (B*7%)),

If v = C/d? for some constant C, then this becomes

g2 O((log(1/8))'?/°)

Proof. Performing the lifting from Cq to C; does not change the dimension of the code,
but it does increase the length of the codewords from n to |X(k)|, where |X(k)| is the
size of the multiset of edges of size k after each edge has been copied a number of times
proportional to its weight. Using the bound and flatness guarantee from Lemma 3.4.5,

we can compute
mMn
v, =
X))

"1
Z ﬁ/

where D < (1/ 'y)o(dz/ 7). Treating By and 0 as constants, the values of k and d necessary

to satisfy Lemma 3.4.10 are

k= 10g(1+9)[30(ﬁ/3) = O(lOg(l/ﬁ))

_ 3k 6 | _ . ((og(1/p))*
d—max{ ,5’02,8% }-O( B )

117

and



Putting this expression for d into the inequality for D yields

D < (1/+)C(os(1/B)*/ (B7%),

from which the bounds in the lemma statement follow. ]

From Lemma 3.4.11, we see that if C has constant rate, then C; has a rate which is
constant with respect to n. However, the dependence of the rate on the bias f is quite
poor. This is especially striking in comparison to the rate achievable using Ta-Shma’s

expander walk construction described in Section 3.4.1.

Lemma 3.4.12 (Rate of direct sum lifting for expander walks [TS17]). Let By € (0,1) be
a constant and Cq be an Bg-biased binary linear code with relative rate r1. Fix B € (0, Bgl.
Suppose G is a graph with second largest singular value A = Bo/2 and degree d < 4/A?. Let
k = 2logyg, (B) 4+ 1 and X (k) be the set of all walks of length k on G. Then the direct sum lifting

Cy = dsumy,y(Cy) has bias p and rate ri > 1 . O,

Proof. From Theorem 3.4.1 with this choice of A and k, the direct sum lifting C; has bias f.
For the rate, observe that the lifting increases the length of the codewords from 7 to the

number of walks of length k on G, which is nd¥. Thus the rate of Cy is

r_rln_rl
kKT ak T gk

As d < 16/ By, which is a constant, and k = O(log(1/B)), the rate satisfies r; > r1 - BO(1).

118



3.5 Unique Decoding

In this section, we will show how parity sampling and the ability to solve k-XOR instances
with X(k) as their constraint complex allow us to decode the direct sum lifting C;, =
dsumy ) (C1) of a linear base code C; € IF5. With a more technical argument, we can
also handle different kinds of liftings and non-linear codes, but for clarity of exposition

we restrict our attention to the preceding setting.

3.56.1 Unique Decoding on Parity Samplers

(k)

Our approach to unique decoding for C; is as follows. Suppose a received word i € ]Fg
is close to y* € Ci, which is the direct sum lifting of some z* € Cq on X(k). We first find

an approximate solution z € FF}} to the k-XOR instance J(X(k), ) with predicates

Zzi =17s (mod 2)

i€s
for every s € X(k). Note that z being an approximate solution to J(X(k), 7) is equivalent
to its lifting dsumX(k)(z) being close to 7. In Lemma 3.5.1, we show that if dsumyy,
is a sufficiently strong parity sampler, either z or its complement z will be close to z*.
Running the unique decoding algorithm for C; on z and z will recover z*, from which we

can obtain y* by applying the direct sum lifting.

Lemma 3.5.1. Let 0 < ¢ < 1/2and 0 < B < 1/4 —¢/2. Suppose Cq is a linear code that is
efficiently uniquely decodable within radius 1/4 — pg for some po > 0, and Cj = dsumy (C1)
(k)

where dsumy ) is a (1/2 4 2pq, 2¢)-parity sampler. Let § € IFé{ be a word that has distance
strictly less than (1/4 — ¢/2 — B) from Cy, and let y* = dsumy ;) (z*) € Cy be the word closest

toy.

119



Then, for any z € TF5 satisfying

1
A(dsumy ) (2),9) < 3 — 5,

we have either

1 1
A(z",z) < 1~ Ho or A(z%,Z) < 1~ Ho

In particular, either z or Z can be efficiently decoded in Cq to obtain z* € Cy.

Remark 3.5.2. Since dsumy;y) is a (1/2 4 2uq, 2¢)-parity sampler, the code Cy. has distance
A(Cy) > 1/2 — e. This implies that z* € Cq is unique, since its direct sum lifting y* is within
distance A(Cy) /2 of 7.

Proof. Lety = dsumy;(z). We have

i 1
A" y) < AW 9) + A7) <5 -«

By linearity of dsumyy), A(dsumy, (z* — z),0) < 1/2 — ¢, so bias(dsumy (z* — z)) > 2e.
From the (1/2 + 2y, 2¢)-parity sampling assumption, bias(z* — z) > 1/2 4 2pq. Trans-
lating back to distance, either A(z*,z) < 1/4 — g or A(z*,z) > 3/4 + pg, the latter being

equivalent to A(z*,z) < 1/4 — uy. ]

To complete the unique decoding algorithm, we need only describe how a good
enough approximate solution z € IF7 to a k-XOR instance J(X(k), 7) allows us to recover

z* € Cq provided 7 is sufficiently close to Cy.

Corollary 3.5.3. Suppose C1, X(k), z*, y* and i are as in the assumptions of Lemma 3.5.1. If

z € IFg is such that

SAT(x(k),7)(2) 2 OPT5(x(k),5) = Pr

120



then unique decoding either z or z gives z* € Cq. Furthermore, if such a z can be found efficiently,

so can z*.

Proof. By the assumption on z, we have

implying A(dsumyx(z),7) < A(y*,7) + p. Using the assumption that 7 has distance
strictly less than (1/4 — ¢/2 — ) from C, we get that A(dsumyy(z),7) < 1/4 —¢/2,in

which case we satisfy all of the conditions required for Lemma 3.5.1. n

3.5.2 Concrete Instantiations

High Dimensional Expanders

If X(k) is the collection of k-faces of a sufficiently expanding y-HDX, we can use the
following algorithm to approximately solve the k-XOR instance J(X(k),7) and obtain

n
zE]Fz.

Theorem 3.5.4 ([AJT19]). Let J be an instance of MAX k-CSP on n variables taking values
over an alphabet of size q, and let B > 0. Let the simplicial complex X5 be a yv-HDX with
7 = oW (1/ (k) O,

There is an algorithm based on (k/ ,B)O(l) . qo(k) levels of the Sum-of-Squares hierarchy which

produces an assignment satisfying at least an (OPTy — B) fraction of the constraints in time
n(k/ﬁ)o(l).qo(k)

121



If X is a HDX with the parameters necessary to both satisfy this theorem and be a
(1/2 + 2pug, 2¢) parity sampler, we can combine this with Corollary 3.5.3 to achieve effi-

cient unique decodability of Cy = dsumy ;) (C1).

Corollary 3.5.5. Let X(< d) be a d-dimensional y-HDX satisfying the premises of Lemma 3.4.10
that would guarantee that X (k) is a (1/2 + 2ug, 2¢)-parity sampler, and let C; C F7} be a lin-
ear code which is efficiently unique decodable within radius 1/4 — g for some ug > 0. Then
the code Ck = dsumyy)(C1) can be unique decoded within distance 1/4 —¢e/2 — p in time

n(k/ Bt k) 2 where we have

1

B = (v (2k)°OW)om,

Proof. By Lemma 3.4.10, we can achieve (1/2 + 2y, 2¢)-parity sampling by taking 0 <

3k? 3 _
(o) (e (26/3) 4 2 max{ 3 s o and 0 =

O(1/d?). Letj € I, X(5) be a received word with distance less than (1/4—¢/2 — B) from

9<1+4y -1, k > log

Ck. Applying Theorem 3.5.4 to J(X(k), i) with g = 2 and the given value of 8, we obtain

az € Iy with SAT;x () 5)(2) 2 OPT5(x(x),7) — B- This z can be used in Corollary 3.5.3

g
to find z* and uniquely decode 7 as y* = dsumy ;) (z"). n

Expander Walks

In Section 3.9, we will show that the algorithmic results of [AJT19] can be modified
to work when X(k) is a set of tuples of size k which is sufficiently splittable (Corol-
lary 3.9.21), which occurs when X (k) is a set of walks on on a suitably strong expander

(Corollary 3.9.18). In particular, we have the following.

Theorem 3.5.6. Let G = (V,E) be a graph with 0»(G) = A and k be a given parameter. Let J

12. Here we are assuming that uniquely decoding C; within radius 1/4 — y( takes time less than this.

122



be a k-CSP instance over an alphabet of size q whose constraint graph is the set of walks on G of

length k. Let B > 0 be such that A = O(B2/ (k2 - g%)).
q4kk7
‘35
produces an assignment satisfying at least an (OPTy — B) fraction of the constraints in time

nO(q4k-k7/ﬁ5)

There exists an algorithm based on O( ) levels of the Sum-of-Squares hierarchy which

Using this result, one can efficiently unique decode Cj = dsumy/y (C1) when X(k) is
the set of walks of length k on an expander strong enough to achieve the necessary parity

sampling property.

Corollary 3.5.7. Let X(k) be the set of walks on a graph G with 0»(G) = A such that dsumy
is a (1/2+ 2uq, 2¢) parity sampler, and let C; C IF5 be a linear code which is efficiently unique
decodable within radius 1/4 — pg for some g > 0. Then the code C = dsumy (Cq) can be

O(24k~k7/,35)

unique decoded within radius 1/4 —e/2 — B in time n , where we have

B=0(A-Kk>-25).

Proof. By Theorem 3.4.1, we can obtain a (1/2 + 2y, 2¢)-parity sampler by ensuring
1/2+po+2A <landk > 2logy 5, 101 (26) +1. Letg € lFf(k) be a received word with
distance less than (1/4 — /2 — B) from Ci. Applying Theorem 3.5.6 to J(X(k),7) with
q = 2 and the given value of §, we obtain a z € IF; with SATx (k) ) (z) > OPT5(x(k),7) —
B. This z can be used in Corollary 3.5.3 to find z* and uniquely decode 7 as y* =

dsumy ) (z"). n

Remark 3.5.8. In both Corollary 3.5.5 and Corollary 3.5.7, when uq and e are constants, k can be
constant, which means we can decode Cj. from a radius arbitrarily close to 1/4 — €/2 if we have
strong enough guarantees on the quality of the expansion of the high-dimensional expander or the

graph, respectively.

Notice, however, that the unique decodability radius of the code Cy is potentially larger than
123



1/4 —¢/2. Our choice of (1/2 + 2y, 2¢)-parity sampling is needed to ensure that the approx-
imate k-CSP solutions lie within the unique decoding radius of C1. Since the bias of the code Cq
will generally be smaller than the parity sampling requirement of 1/2 + 2y, the bias of the code
Cy will be smaller than 2e. In this case, the maximum distance at which our unique decoding

algorithm works will be smaller than A(Cy.) /2.

3.6 Abstract List Decoding Framework

In this section, we present the abstract list decoding framework with its requirements
and prove its guarantees. We introduce the entropic proxy ¥ in Section 3.6.1 and use it
to define the SOS program for list decoding in Section 3.6.2. In Section 3.6.3, we establish
key properties of ¥ capturing its importance as a list decoding tool. We recall the Propa-
gation Rounding algorithm in Section 3.6.4 and formalize the notion of a slice as a set of
assignments to variables in the algorithm. Then, considerations of SOS tractability of the
lifting related to tensorial properties are dealt with in Section 3.6.5. Now, assuming we
have a fractional SOS solution to our program, the analysis of its covering properties and
the precise definition and correctness of the two later stages of the framework are given
in Section 3.6.6. This abstract framework will be instantiated using the direct sum lifting:

on HDXs in Section 3.7 and on expander walks in Section 3.9.

3.6.1 Entropic Proxy

In our list decoding framework via SOS, we will solve a single optimization program
whose resulting pseudo-expectation will in a certain sense be rich enough to cover all
intended solutions at once. To enforce this covering property we rely on an analytical
artifice, namely, we minimize a convex function ¥ that provides a proxy to how con-
centrated the SOS solution is. More precisely, we use ¥ from Definition 3.6.1. A similar

124



list decoding technique was also (independently) used by Karmalkar et al. [KKK19] and

Raghavendra—Yau [RY20], but in the context of learning.

Definition 3.6.1 (Entropic Proxy). Let Y = {Ys},cx(x) be a t-local PSD ensemble with t = 2.

We define¥ =¥ <{Y5}56X(k)> as
¥ = Egeory, (E[YY))

We also denote ¥ equivalentlyas'¥ =¥ (]E) where E is the pseudo-expectation operator associ-

ated to the ensemble Y.

3.6.2  SOS Program for List Decoding

Let j € {:I:l}X(k) be a word promised to be (1/2 — /¢)-close to a lifted code C; =
dsum(Cq). The word 7 is to be regarded as a (possibly) corrupted codeword for which

we want to do list decoding. We consider the following SOS program.

minimize Y ({Y5 Foc X(k)) (List Decoding Program)
subject to
Eour, E [7s - Ys] > 2V/e (Agreement Constraint)

Z,,...,Z,being (L + 2k)-local PSD ensemble

Table 3.1: List decoding SOS formulation for 7.

3.6.3 Properties of the Entropic Proxy

We establish some key properties of our negative entropic function ¥. First, we show that

Y is a convex function. Since the feasible set defined by the SOS List Decoding Program
125



is convex and admits an efficient separation oracle '3, the convexity of ¥ implies that

the List Decoding Program can be efficiently solved within #-optimality in time nO) .
polylog(7~1) where t is the SOS degree.

Lemma 3.6.2 (Convexity). ¥ is convex, i.e., for every pair of pseudo-expectations Eq and E,

and a € [0,1],
T(a-l’ﬁl+(1—a)-]ﬁz> < a-T(l’El)+(1—a)-‘1f(]E2).

Proof. Suppose s Ut = {iy,...,i;}. By definition Y;Y¢ = dsum(Z)s - dsum(Z)y, i.e., YsY¢

is a function foninputZ; ,...,Z; € {£1}. Let
p 51 1t

f(Zi,...2,)="Y f(8)-T]z

SCsUt ieS

be the Fourier decomposition of f. Then

E(Y.Y]=E[f]= )} f(5)

SCsUt

e

~ ~ ~ 2
Since E [YsY] is a linear function of [E, we obtain (IE [YsYt]> is convex. Now, the con-

vexity of ¥ follows by noting that ¥ is a convex combination of convex functions. n

The (sole) problem-specific constraint appearing in the SOS List Decoding Program
allows us to deduce a lower bound on Y. This lower bound will be important later to
show that a feasible solution that does not cover all our intended solutions must have ¥
bounded away from 0 so that we still have room to decrease ¥. We note that an improve-
ment in the conclusion of the following lemma would directly translate to stronger list

decoding parameters in our framework.

13. In our setting the pseudo-expectation has trace bounded by n°() in which case semidefinite program-
ming can be solved efficiently [GM12, RW17].

126



Lemma 3.6.3 (Correlation = entropic bound). Let {Ys}, X (k) be t-local PSD ensemble with

t > 2. Ifthere is some y € {+1}X(K) such that

]Eswl‘lk lvs - Ys]| = B,

then

¥ ({Yedoex) = B

Proof. We calculate

~ 2 ~ 2
Eq oy, (E[YsYd)" = Eqeory, (E[(:Ys) (10Y0)])
> <1E5 t~TT, E [(ysYs) (yth)]>2 (Jensen’s Inequality)
IE[ s~ I Ys - Ys) ])2

( 4
> ( [ 5T, [Ys - YE]D (Cauchy-Schwarz Inequality)
(B

4
sNHk [Ys - Ys]) > :84-

We now show the role of ¥ in list decoding: if an intended solution is not represented
. = . =/ . .
in the pseudo-expectation [E, we can get a new pseudo-expectation E° which attains a

smaller value of Y.

Lemma 3.6.4 (Progress lemma). Suppose there exist z € {+1}X(1) and y = dsum(z) €
{£1}XK) satisfying

E {(Eswl—lkys : Ys)z} < 82,

127



If¥ > 62, then there exists a pseudo-expectation ' such that

2
wver)? < v (%)
e, (B ) < v U0
In particular, if ¥ > 262, then
_ 2 54
Eq 1, (1E’ [YsYt]> < Y-

Proof. Let [E/ be the pseudo-expectation

E = (1—zx)-IE+oc-IE5Z,

where [E;_ is the expectation of the delta distribution on z and a € (0, 1) is to be defined

later. We have

~, 2 ~ 2
Eg oy, (B [YoXd])" = Bgpury, ((1-a) - B[YsYd + - yaye)
= (1= @ ¥ 402 Eg oy, (yay0)? +20(1 — ) - Eg oy, [EIXs Yy

< (1—a)? ¥ +a®+2a(1—a)- 6%

The value of & minimizing the quadratic expression of the RHS above is

. Y — 52
N = .
1+Y¥ — 262

14. By summing the pseudo-expectation E and actual expectation [E; , we mean that we are summing E
to pseudo-expectation of the same dimensions obtained from operator [Es, .

128



Using this value yields

]Es,tNHk (IE/ [YsYt]>2 <Y ﬂ

A
6
|
—
g
|
>
N
~

where in the last inequality we used ¥ < 1. n

3.6.4 Propagation Rounding

A central algorithm in our list decoding framework is the Propagation Rounding Algo-
rithm 4.7.16. It was studied by Barak et al. [BRS11] in the context of approximating 2-CSPs
on low threshold rank graphs and it was later generalized to HDXs (and low threshold
rank hypergraphs) in the context of k-CSPs [A]JT19].

Given an (L + 2k)-local PSD ensemble {Z1,...,Z;}, the Propagation Rounding Al-
gorithm 4.7.16 chooses a subset of variables S C [n] at random. Then it samples a joint
assignment ¢ to the variables in S according to {Zg }. The value of the remaining variables
Z; are sampled according to the conditional marginal distributions {Z;|Zg = ¢}. An im-
portant byproduct of this algorithm is the 2k-local PSD ensemble Z' = {Z;,...,Z,|Zg =
c}.

The precise description of the Propagation Rounding Algorithm 4.7.16 follows.

129



Algorithm 3.6.5 (Propagation Rounding Algorithm).
Input An (L + 2k)-local PSD ensemble {Z1, ..., Zy} and some distribution IT; on X (k).

Output A random assignment (v, ...,04) € [q)" and 2k-local PSD ensemble Z',
1. Choose m € {1,...,L/k} uniformly at random.
2. Independently sample m k-faces, s; ~ Iy for j =1,...,m.
3. Write S = U;'n:1 sj, for the set of the seed vertices.
4. Sample assignment o : S — [q| according to the local distribution {Zg}.
5. SetZ' ={Z4,...,Zy|Zg = 0}, i.e. the local ensemble Z conditioned on agreeing with o.
6. Forall j € [n], sample independently o;j ~ {Z;}

7. Output (04, ...,04) and Z'.

To our list decoding task we will show that an ensemble minimizing ¥ covers the
space of possible solutions in the sense that for any intended solution there will be a
choice of S and ¢ such that the conditioned ensemble Z’ enables the sampling of a word

within the unique decoding radius in C; of this intended solution.

An execution of the Algorithm 4.7.16 is completely determined by the tuple (m, S, o)

which we will refer to as a slice of the PSD ensemble.

Definition 3.6.6 (Slice). We call a tuple (m, S, o) obtainable by Algorithm 4.7.16 a slice and let
Q) denote the set of all slices obtainable by Algorithm 4.7.16.

We can endow () with a natural probability distribution, where the measure of each
(m,S, o) is defined as the probability that this slice is picked during an execution of Algo-

rithm 4.7.16. We also define a pseudo-expectation operator for each slice.

Definition 3.6.7 (Pseudo-Expectation Slice). Given a slice (m,S, o), we define the pseudo-

130



expectation operator IE‘S , which is the pseudo-expectation operator of the conditioned local PSD

ensemble {Z4,...,2Z,|Zs = 0}.

3.6.5 ‘Tensorial Structures

In general, a local PSD ensemble Z' = {Z/,...,Z},} output by the Propagation Round-
ing Algorithm 4.7.16 may be far from corresponding to any underlying joint global dis-
tribution 1°. In our application, we will be interested in the case where the ensemble
approximately behaves as being composed of independent random variables over the
collection of “local views” given by the hyperedges in X (k). In such case, rounding the
SOS solution via independent rounding is straightforward. A collection of local views ad-
mitting this property with a given SOS degree parameter L is denoted tensorial (variables

behave as products over the local views).

Definition 3.6.8 (Tensorial Hypergraphs). Let X (k) be a collection of k-uniform hyperedges
endowed with a distribution Iy, p € [0,1], and L € IN. We say that X(k) is (, L)-tensorial if
the local PSD ensemble Z' returned by Propagation Rounding Algorithm 4.7.16 with SOS degree

parameter L satisfies

BB Nz =z )z ] < @D

To analyze the potential ¥ we will need that the variables between pairs of local

views, i.e., pairs of hyperedges, behave as product.

Definition 3.6.9 (Two-Step Tensorial Hypergraphs). Let X(k) be a collection of k-uniform
hyperedges endowed with a distribution 1Ty, u € [0,1], and L € IN. We say that X(k) is

(u, L)-two-step tensorial if it is (yu, L)-tensorial and the PSD ensemble Z' returned by Propa-

15. In fact, if this was the case, then we would be able to approximate any k-CSP with SOS degree (L + 2k).
However, even for L as large as linear in # this is impossible for SOS [Gri01, KMOW17].

131



gation Rounding Algorithm 4.7.16 with SOS degree parameter L satisfies

E E |{Z:zi} —{Z:}{Z} ||, < n

Qs,twl"[k”{ 5 t} { 5}{ t}“l SH
In Section 3.7.1, we establish the relationship between the parameters y and L and the
expansion that will ensure HDXs are (y, L)-two-step tensorial. Similarly, in Section 3.9.1

we provide this relationship when X (k) is the collection of walks of an expander graph.

Tensorial over Most Slices

By choosing y sufficiently small it is easy to show that most slices (m, S, o) satisfy the ten-
sorial (or two-step tensorial) statistical distance condition(s) with a slightly worse param-
eter fi such that i — 0 as p — 0. If we could construct tensorial (or two-step tensorial)
objects for arbitrarily small parameter y with L = Ok,q,pt(l)' then we would be able to
obtain fi arbitrarily small. Lemma 3.7.4 establishes that HDXs of appropriate expansion

satisfy this assumption, and Lemma 3.9.20 does the same for walks on expanders.

We introduce two events. The first event captures when a slice (m, S,0) leads to the
conditioned local variables Z}, . .., Z}, being close to k-wise independent over the k-sized

hyperedges.

Definition 3.6.10 (Ground Set Close to k-wise Independent). Let u € (0,1]. We define the

event KV as

Ky = {(m,S,U) €Q| ajFHkH{ZdZs =0} —{Zy|Zs =0} {Zy|Zs =0}, < Hz/z}-

The second event captures when the variables between pairs of hyperedges are close

to independent.

132



Definition 3.6.11 (Lifted Variables Close to Pairwise Independent). Let u € (0,1]. We

define the event Py, as

Po={(m S0 € Q|| B (Ze2izs = o} - (Zol2s = o} &il2s = o}y < )P/2].

AT

These events satisfy a simple concentration property.

Claim 3.6.12 (Concentration). Suppose a simplicial complex X(< k) with X(1) = [n] and an
(L + 2k)-local PSD ensemble Z = {Z, ..., Zy} are given as input to Propagation Rounding Al-
gorithm 4.7.16. Let u € (0,1]. If X (k) is (u* /4, L)-two-step tensorial, then

2
C < :u_
(m’S/]E)NQ [Ky] <, (3.2)
and
] #
P P < —. 3.3
(m,s,a)NQ[ ”] -2 (3:3)

Proof. We only prove Eq. (3.2) since the proof of Eq. (3.3) is similar. Define the random
variable R := Eq 7, H{Zé‘} — {Z,’ll} - {Z{Zk} Hl on the sample space Q = {(m,S,0)}.

From our (1*/4, L)-two-step tensorial assumption we have

4
H
En [R] < &
alRl =7
Now, we can conclude
2 2
Pofk]= P RxE|<
(m,S,0)~Q) (m,S,0)~Q) 2 2
using Markov’s inequality. n

133



3.6.6  Further Building Blocks and Analysis

Before we delve into further phases of the list decoding framework, we introduce some

notation for the list of codewords we want to retrieve.

Definition 3.6.13 (Code list). Given € {£1}X®) and a code C on X (k) with relative distance
at least 1/2 — €, we define the list L(7j,C) as

£,0) = {vec|swi <, - ve}.

Under these assumptions the Johnson bound establishes that the list size is constant

whenever ¢ > 0 is constant.

Remark 3.6.14. The Johnson bound [GRS19] guarantees that
£,0)| < 5
SN0

provided the relative distance of C is at least 1/2 — e.

In the case of lifted codes, it is more appropriate to consider a list of pairs £(i, C1,Cy)

defined as follows.

Definition 3.6.15 (Coupled code list). Given § € {£1}X&) and a lifted code C;, on X (k) with

relative distance at least 1/2 — ¢, we define the coupled code list L(ij,Cq,Cy) as

1
L(7,C1,C) = {(z, dsum(z)) |z € C; and A(dsum(z),7) < 5~ \/E}
Recovering this list £(f,C1,Cy) is the main goal of this section. This task will be accom-
plished by Algorithm 3.6.16 stated below whose building blocks and analysis we develop

in this section.

134



Algorithm 3.6.16 (List Decoding Algorithm).
Input A word § € {£1}XW0) which is (1/2 — \/e)-close to C, = dsum(Cy).
Output Coupled code list L(ij,Cq,Cy).

1. Solve the List Decoding Program with y-accuracy, obtaining Z, where n = €8 /222

2. Let M be the output of the Cover Retrieval Algorithm 3.6.29 on Z
3. Let L' be the output of the Cover Purification Algorithm 3.6.36 on M

4. Let L ={(z,y) € L | A(7,y) <1/2— e}

5. Output L"
As shown in Fig. 3.1 of Section 4.3, the first step is to solve the List Decoding Program

which results in a pseudo-expectation “covering” the list £(i,C) as we will make pre-
cise. A precursor property to covering and some considerations about SOS rounding are
treated in Section 3.6.6. Next, the formal definition of cover is presented in Section 3.6.6
and we have all the elements to present the Cover Retrieval Algorithm 3.6.29 with its cor-
rectness in Section 3.6.6. Then, we use the robustness properties of the lifting to purify the
cover in Section 3.6.6. Finally, in Section 3.6.6, we assemble the building blocks and prove
the main technical result, Theorem 3.6.17, whose proof follows easily once the properties

of the building blocks are in place.

Note that Theorem 3.6.17 embodies an abstract list decoding framework which relies
only on the robustness and tensorial properties of the lifting. We provide a concrete instan-
tiation of the framework to the direct sum lifting on HDXs in Section 3.7 and to the direct

sum lifting on expander walks in Section 3.9.2.

Theorem 3.6.17 (List Decoding Theorem). Suppose that dsumisa (1/2 —¢g, 1/2 — €)-robust

(e8 /222, L)-two-step tensorial lifting from Cy to Cy which is either

135



- linear and a (1/2 + €q, 2 - €)-parity sampler; or

- (1/4 — ¢y, 1/2 — ¢/2)-robust and odd.

Let j € {£1}XW) pe (1/2 — \/e)-close to Cy. Then w.v.h.p. the List Decoding Algorithm 3.6.16

returns the coupled code list L(1, C1,Cy). Furthermore, the running time is

nOUH) (polylog(e 1) + f(n)),

where n = |X(1)| and f(n) is the running time of a unique decoding algorithm of Cy.

Remark 3.6.18. Regarding Theorem 3.6.17, we stress that although the lifting is (1/2 — ey, 1/2 —
¢)-robust and we can perform list decoding at least up to distance 1/2 — /¢, our framework
does not recover the Johnson bound. The issue is that our framework requires one of the addi-
tional amplification guarantees of Theorem 3.6.17, which both make the distance of Cy become
1/2— %M > 1/2 ¢ Efficiently recovering the Johnson bound remains an interesting open

problem.

We observe that the algorithms themselves used in this framework are quite sim-
ple (although their analyses might not be). Moreover, the tasks of cover retrieval and
purification are reasonably straightforward. However, Section 3.6.6 combines tensorial
properties of the lifting with properties of ¥, requiring a substantial analysis. The list
decoding framework is divided into stages to make it modular so that key properties are
isolated and their associated functionality can be presented in a simple manner. Most of
the power of this framework comes from the combination of these blocks and the concrete

expanding objects capable of instantiating it.

136



SOS Rounding and Recoverability

We show that if a slice (1, S, o) “captures” an intended solution y € {+1}% (k) (this notion
is made precise in the assumptions of Lemma 3.6.20), then we can retrieve a z € {+1}% 1)
such that dsum(z) has some agreement with y. This agreement is somewhat weak, but
combined with the robustness of the lifting, it will be enough for our purposes. In this
subsection, we first explore how to recover such words within a slice, which can be seen
as local rounding in the slice. Next, we establish sufficient conditions for an intended
solution to be recoverable, now not restricted to a given slice but rather with respect to
the full pseudo-expectation. Finally, we use all the tools developed so far to show that
by minimizing ¥ in a two-step tensorial structure we end up with a pseudo-expectation
in which all intended solutions are recoverable. The interplay between weak agreement

and robustness of the lifting is addressed in Section 3.6.6.

We will be working with two-step tensorial structures where the following product

distribution associated to a slice naturally appears.

Definition 3.6.19 (Product Distribution on a Slice). We define {Z®| (5,0)} to be the product

distribution on the marginals {Z;|Zs = 0'};cx(q), L.e., {Z®’(S,a)} = iex(){ZilZs = o}

Under appropriate conditions, Lemma 3.6.20 shows how to round the pseudo-expectation

in a slice.

Lemma 3.6.20 (From fractional to integral in a slice). Let (m, S, o) € Q be a slice. Suppose

B {ZalZs = o} = {Za)[25 = 0} {Za 125 = o} |y < (3.4)
and
E L I{Z:2iZs = 0} = {Ze|Z5 = oHZu|Zs = o} < p. 35)
s~

137



For B € (0,1),ifu < B-x2/6and y € {+1}XK) is such that

E 2
E, rEjso YsytYsYe] = 5,

then

> \/ﬂ.x} > /3'4"2. (3.6)

P
z2~{Z%| (5.0}

s 11, Ys - dsum(z)s

Proof. Let ygy = ||[{ZsZ¢|Zs = 0} —Tlics{Zi|Zs = o} T1jct{Z;i|Zs = o}||;. Using triangle

inequality and simplifying, we get

Mst <INZsZi|Zs = 0} = {Zs|Zs = oH{Z4|Zs = 7}

+|{Zs|Zs = o} — [ [{ZilZs = o}

i€s

_'_

{ZZs = o} - [ [{ZilZs = o}

ict

1 1

From our assumptions Eq. (3.4) and Eq. (3.5), it follows that [E_ (oI 12 Pt < 3-pu. Using

the fact that |ysy¢| = 1 and Holder’s inequality, we get

lEs,tNH%E{Z@)I(S,g)} [YsytYs Yy > lEs,tNHﬁlEWﬂ [YsytYsYe| — lEsltNH%Hs,t

- P ,
> ]Es,twl'li]E|S,(7 [YsytYsY) —3-p > (1 -5 2.

Alternatively,

2
]Esf"NHiIE{Z@l(s,a)} [ysytYsYe| = ]EZN{Z®‘(5,U)} (Eswnkyﬁ . dsum(z)5> > ( - g) K2

2
Define the random variable R = <E5~Hk [Ys - dsum(z)s]) . Using Fact B.1.1 with ap-

proximation parameter 3/2, we get

JE[R]z( —g)-KZ:HP[RZ(l—‘B)-KZ} zﬁ';z,

138



from which Eq. (3.6) readily follows. n

To formalize the notion of a word being recoverable with respect to the full pseudo-
expectation rather than in a given slice we will need two additional events. The first event

captures correlation as follows.

Definition 3.6.21 (y-Correlated Event). Let x € (0,1] and y € {£1}XK). We define the event
Ck(y) as
Cr(y) = {(m, S,0) €Q| Eﬁ/twnilﬁwla sy Ys Y] > KZ}.

The second event is a restriction of the first where we also require the slice to satisfy

the two-step tensorial condition from Definition 4.7.18.

Definition 3.6.22 (y-Recoverable Event). Let «, u € (0,1] and y € {£1}X(K). We define the

event Ry, (y) as

RK,ﬂ(y) = K‘u ﬂ PH ﬂ CK(y)'

Lemma 3.6.20 motivates the following “recoverability” condition.

Definition 3.6.23 (Recoverable Word). Let , i € (0,1] and y € {£1}X(K). We say that y is

(x, pt)-recoverable provided

P Ry 0.
(m,S,U)NQ[ ,y(]/)] ~

One of the central results in our framework is the following “recoverability” lemma.

It embodies the power SOS brings to our framework.

Lemma 3.6.24 (Recoverability lemma). Let Cy be a lifted code on X(< k) with X(1) = [n]
and distance at least 1/2 —e. Let j € {il}X(k) be a word promised to be (1/2 — \/¢€)-close to
Cy and let L = L(i,Cy) be its code list.

Let 0 € (0,1] be arbitrary and set y = «x-60/2 and xk = (4—0)-¢e Suppose Z =

{Z,...,Z,} isan (L + 2k)-local PSD ensemble which is a solution to the List Decoding Program
139



with objective value ¥ within y additive value from the optimum where 0 < 1 < 62 - &*.

If X(k) is (u*/4, L)-two-step tensorial, then every y € L is (x, u)-recoverable. In partic-
ular, for every 6 € (0,1) and under the preceding assumptions, we have that every y € L is

((4—0) - ¢, 0)-recoverable.

Proof. First observe that since 7is (1/2 — y/¢)-close to Cj the List Decoding Program is fea-
sible and so the solution Z is well defined. Towards a contradiction with the 77-optimality
of the SOS solution Z, suppose there exists a word y € L that is not (x, y)-recoverable.

Letz € {:I:I}X(l) be such that y = dsum(z). Then

1 = r R < P K¢ + P pe 4 P C o
Using Claim 3.6.12, we get

P [C() =12 3.7

(m,S,(T)NQ[ W) = # (3.7)

Since E is a valid solution to the List Decoding Program, Lemma 3.6.3 implies the

lower bound

¥ ((Yehoex() = 16+ (38)
By definition, for (m, S, o) € Cx(y)° we have

E 2
E, rEjso sytYsYe] < x5,

implying

E | (Bourye - Yo)| € BusoBise [(Bounye - Yo) 1, |+ P [Culy)] <2422
x(y) (m,S,0)~Q)

140



Let EE be the pseudo-expectation of the ground set ensemble Z and let [E’ be the ex-
pectation on the delta distribution .. Note that the pseudo-expectation obtained from [’
is a valid solution to the List Decoding Program. Since

2, .2 6>\ 2 6> 2.2 2
ke +p < 1+Z kS = 1+Z (4—-0)"- e <(16—2-0)-¢,

and 0 > 0, Lemma C.1.1 gives that there is a convex combination of E and E’ such that

the new ¥, denoted ¥/, can be bounded as

¥ < ¥ _ (T_<K22+P‘2))2 c¥ .02

contradicting the #7-optimality of the SOS solution Z since 77 < 62 - e*. n

Coupled Pairs, Coupled Lists, and Covers

The List Decoding Program minimizing ¥ was instrumental to ensure that every y' €
L(77,Cy) is recoverable in the sense of the conclusion of Lemma 3.6.24. Unfortunately, this
guarantee is somewhat weak, namely, associated to every iy’ € L(7,Cy) there is a slice

(m, S, o) from which we can sample y (our approximation of y’) satisfying
[Esr1,¥s - ¥s| > C-¢, (3.9)

where C is a constant strictly smaller than 4. A priori this seems insufficient for our list
decoding task. However, there are two properties which will help us with list decoding.
The first is that SOS finds not only y but also z € {£1}X(1) such that y = dsum(z). The

second property is that the lifting is robust: even the weak agreement given by Eq. (3.9)

141



translates into a much stronger agreement in the ground set between z and z’ € C; where
y' = dsum(z’). This stronger agreement on the ground set can be used to ensure that z

(or —z) lies inside the unique decoding ball of z’ in the base code C;.

To study this coupling phenomenon between words in the lifted space {41} (k) and
on the ground space {+1}% (1) we introduce some terminology. The most fundamental

one is a coupled pair.

Definition 3.6.25 (Coupled Pair). Let z € {+£1}X(1) and y € {+£11XK). We say that (z,vy) is

a coupled pair with respect to a lift function dsum provided y = dsum(z).

Remark 3.6.26. If the function dsum is clear in the context, we may assume that the coupled pair

is with respect to this function.

Coupled pairs can be combined in a list.

Definition 3.6.27 (Coupled List). We say that a list M = {(z(1),y(V), ..., (z(1),y(MW)1 s

coupled with respect to lift function dsum provided (z(i), y(i)) is a coupled pair for every i in [h].

A coupled list can “cover” a list of words in the lifted space {£1}* (k) as defined next.

Definition 3.6.28 (Coupled Bias Cover). Let M = {(z(l),y(l)), e, (z(h),y(h))} be a cou-
pled list and £ < {£1}XK). We say that M is a 6-bias cover of £ provided

(W € £) Az y) € M) (Egury vt ysl > 6).

A J-bias cover for “small” § might seem a rather weak property, but as alluded to,
when combined with enough robustness of the lifting, it becomes a substantial guarantee

enabling list decoding.

142



Cover Retrieval

When the code list £(7j, C;) becomes recoverable in the SOS sense as per Lemma 3.6.24,
we still need to conduct local rounding on the slices to collect a bias cover. Recall that this
local rounding is probabilistic (c.f. Lemma 3.6.20), so we need to repeat this process a few

times to boost our success probability'®. This is accomplished by Algorithm 3.6.29.
Algorithm 3.6.29 (Cover Retrieval Algorithm).

Input  An (L + 2k)-local PSD ensemble Z which is a (6%e*)-optimal solution.
Output A 2e-bias cover M for L(i,Cy.).

1. Let M =@
2. Let T =4-In(|Q]) - n/(B - €?)

3. For (m,S,0) € Qdo

4, If (m,S,0) € Ky, N Py then

5. Run Propagation Rounding T times conditioned on (m, S, o)

6. Let M|y 50 = {(zM,yD),. .., T, 4T} be the coupled list
7. Set M = MUM]|,, 5

8. Output M.

The correctness of Algorithm 3.6.29 follows easily given the properties established so

far.

Lemma 3.6.30 (Cover lemma). Let B € (0,1). Suppose that dsum isa (1/2 — €y, 1/2 — ¢)-
robust (B* - €8/218, L)-two-step tensorial lifting from Cy to Cy. Let § € {£1}XK) pe (1/2 —

16.In fact, this process can be derandomized using standard techniques in our instantiations.
See Lemma B.3.1 for detais.

143



Ve)-close to Cy. If 0 < B-¢/2%, then w.v.h.p."” the Cover Retrieval algorithm 3.6.29 returns a
0-bias cover M of the code list L(y, C;) where 6 = (4 — ) - €. Furthermore, the running time is

at most nOL+k) /(B . €2) where n = | X(1)].

Proof. Let Z = {Z,...,Z,} be an n-optimum solution to the List Decoding Program
where 7y < 6% -¢*and 0 = - ¢/2%. By our ( pt.8/218 L)-two-step tensorial assumption
and our choice of SOS degree for the List Decoding Program, we can apply Lemma 3.6.24
to conclude thateveryy € £ = L(7,C;) is ((4—0) -¢,(4 —0) - € - 0/2)-recoverable. Then

fory € L, there exists (m,S,0) € Q) such that Lemma 3.6.20 yields

pr(4-02-2 _ p-e
32 - 4

P Egor1,Ys - dsum(z)| > (4 —B) - €| >
Ao [ ok ]
where {Z®)| (S,0) } (c.f. Definition 3.6.19) is the product distribution of the marginal distri-
butions after conditioning the ensemble on slice (1, S, 7). By sampling {Z®| (5,0)} inde-

pendently T times we obtain z(l), el z(T) and thus also the coupled list

Mlmse = {1y, ., Dy},

where y(1) = dsum(z(). Then

2
' : . (i) Ca] < BT
Z“)/-~~/Z<T>~]I{)Z®\(sm}m [Vl €[T]: |Esnryys - dsum (Z )) <(4-B) 5} = exP( 4
< &xp(-n)
]

where the last inequality follows from our choice of T. Then by union bound

IP [M is not a 2e-bias cover of £] < |L] - % <exp(—n),

17. The abbreviation w.vh.p. stand for with very high probability and means with probability 1 —
exp(=0(n)).

144



concluding the proof. n

Cover Purification and Robustness

Now we consider the third and final stage of the list decoding framework. We show
how despite the weak guarantee of the bias cover returned by the Cover Retrieval Al-
gorithm 3.6.29 we can do a further processing to finally obtain the coupled code list
L(7,Cq,Cy) provided the lifting admits some robustness properties. We first develop these

properties and later present this process, denoted Cover Purification.

Further Lifting Properties

Given two coupled pairs (z,y = dsum(z)) and (z/,y' = dsum(z’)) (where z € C7), we
show how weak agreement between y and y’ on the lifted space is enough to provide non-

trivial guarantees between z and z’ as long as the lifting admits appropriate robustness.

Claim 3.6.31 (Coupled unique decoding from distance). Suppose that dsum is a (1/4 —
€0/2,1/2 — ¢)-robust lifting from Cy to Cy. Let (z,y) and (Z',y") be coupled pairs. If y € Cy
(equivalently z € C1) and A(y,y') < 1/2 —¢, then A(z,2') < 1/4 —¢¢/2, i.e., 2 is within the

unique decoding radius of z.

Proof. Towards a contradiction suppose that A(z,z) > 1/4 —ey/2. Since the lifting is
(1/4 —€9/2,1/2 — ¢)-robust, this implies that A(y,y’) > 1/2 — ¢ contradicting our as-

sumption. m

From bias amplification (i.e., parity sampling), we deduce Claim 3.6.32.

Claim 3.6.32 (Coupled unique decoding from bias I). Suppose dsumisa (1/2 — ¢y, 1/2 —
g)-robust linear lifting from Cq to Cj, which is also a (1/2 + gg,2 - €)-parity sampler. Let (z,y)

145



and (2',y") be coupled pairs. If y € Cy (equivalently z € C1) and |Eq 11, [ys - Ys]| > 2 - €, then
[Ejr1, [zi - 2] | > 1/2 + ¢,

i.e., either z' or —z' is within the unique decoding radius of z.

Proof. The verification follows easily from our assumptions. Towards a contradiction sup-
pose that [IE; g, [z; - Zj]| < 1/2+ ¢, i.e., the word 2" = z - 2’ has bias at most 1/2 + .
Using the assumption that the lift is linear, we have dsum(z”) = dsum(z) - dsum(z’).

Since the lifting takes bias 1/2 +¢g to 2 - ¢, we have
bias(dsum(z) - dsum(z’)) = bias(dsum(z”)) < 2-¢,

or equivalently |Eq. 1, [Vs - ¥5]| < 2 - € contradicting our assumption. n

If the lifting function is odd, then we obtain Claim 3.6.33.

Claim 3.6.33 (Coupled unique decoding from bias II). Suppose dsumisa (1/4—¢y/2,1/2—
¢)-robust lifting from Cq to Cy which is odd, i.e., dsum(—z) = — dsum(z). Let (z,y) and (', vy’)
be coupled pairs. If y € Cy (equivalently z € Cy) and |Eg 11, [ys - ys]| > 2 - ¢, then either 2’ or

—z is within the unique decoding radius of z.

Proof. Since |Eq 11, [ys - ¥s]| > 2 - € and the lifting is odd, either
Eqr1, [Ys - dsum(z')s] > 2,

or
IEHNHk [yﬁ : dsum(—z')g] = IngI—[k [_ys . dsum(zl)s] > 2. €.
Then either A(y,dsum(z’)) < 1/2 — e or A(y,dsum(—=z)) < 1/2 — ¢. Using Claim 3.6.31

146



we conclude the proof. n

Cover Purification

A é-bias cover M of L for small § may require further processing in order to actu-
ally retrieve £. Provided the lifting is sufficiently robust, trying to unique decode z for
(z,y) € ME, where MT is the sign completion as defined next, and then lifting the de-
coded word yields a new coupled list that contains £. This process is referred to as cover

purification and its formalization is the object of this section.

Definition 3.6.34 (Sign Completion). Let M be coupled list. We say that M™ defined as
M* = {(z,dsum(z)), (—z,dsum(—z2)) | (z,y) € M},

is the sign completion of M.

The correctness of the cover purification process is established next.

Lemma 3.6.35 (Purification lemma). Suppose dsum is a (1/2 — €y, 1/2 — ¢€)-robust lifting

from Cq to Cj which is either

- linear and a (1/2 + €q, 2 - €)-parity sampler; or

- (1/4 —¢y/2)-robust and odd.
Let 7 € {£1}XK) pe (1/2 — \/e)-close to C and L = L(,Cy) be its code list. If M =
{(zD,y )i € [h]} is a 2e-bias cover of L, then

L C {dsum(z) | z € Decg, (Pl (Mi>>} =L,

where Py is the projection on the first coordinate and Dece, is a unique decoder for Cy. Further-

more, L' can be computed in time O (| M| - f(n)) where f(n) is the running time of a unique
147



decoding algorithm of Cy.

Proof. Let y € L. By the 2e-cover property, there exists a coupled pair (Z/,y') € M
satisfying |Egry, [Ys - Ys]| > 2 - e. Combining this bound with the appropriate robustness
assumptions, Claim 3.6.32 or Claim 3.6.33 yields that either z’ or —z’ can be uniquely

decoded in Cq. Then

S {dsum(z) | z € Decg, <P1 (Mi» } .

Finally, observe that computing £’ with the claimed running time is straightforward.

Algorithmically, cover purification works by running the unique decoding algorithm
of C; on every element of the sign completion M ™, described below in Algorithm 3.6.36.
Algorithm 3.6.36 (Cover Purification Algorithm).
Input A 2e-bias cover M for L(ij, Cy).

Output Coupled List L' s.t. Po(L") 2 L(7,Cy).

1. Let L' =©

2. For (Z,y') € M™ do

3. If 7' is uniquely decodable in Cq then
4. Let z = UniqueDecode, (z')
5. Let y = dsum(z)

6. Set L' = L' U{(z,y)}

7. Output L'

148



Correctness of the List Decoding Algorithm

The building blocks developed so far are assembled to form the final list decoding algo-

rithm (Algorithm 3.6.16), which is restated below for convenience.

Algorithm 3.6.37 (List Decoding Algorithm).
Input A word j € {£1}X0) (1/2 — \/&)-close to C = dsum(C;)

Output Coupled code list L(ij,Cq,Cy).

1. Solve the List Decoding Program with n-accuracy obtaining Z where nj = €5 /2%2
2. Let M be the output of the Cover Retrieval Algorithm 3.6.29 on Z

3. Let L' be the output of the Cover Purification Algorithm 3.6.36 on M

4. Let L = {(z,y) € L' | A(F,y) <1/2— /e}

5. Output L.

We are ready to prove the main theorem of the abstract list decoding framework

which follows easily from the properties developed so far.

Theorem 3.6.38 (List Decoding Theorem (Restatement of Theorem 3.6.17)). Suppose that
dsumisa (1/2 — eg,1/2 — ¢)-robust (8 /222, L)-two-step tensorial lifting from Cy to Cj which

is either

- linear and a (1/2 + €q, 2 - €)-parity sampler; or

- (1/4 —¢9,1/2 — &/2)-robust and odd.

Let 7 € {£1}X(K) pe (1/2 — \/&)-close to Cy. Then w.v.h.p. the List Decoding Algorithm 3.6.16

returns the coupled code list L(y, Cq,Cy). Furthermore, the running time is

nOLH) (polylog(e™1) + (),

149



where n = |X(1)| and f(n) is the running time of a unique decoding algorithm of Cy.

Proof. Under the assumptions of the theorem, Lemma 3.6.30 establishes that the Cover
Retrieval Algorithm 3.6.29 returns w.v.h.p. a 2e-bias cover. Then, Lemma 3.6.35 states
that providing this 2e-bias cover as input to the Cover Purification Algorithm 3.6.36 yields
a coupled list containing the code list £(1, C1, Cy). Finally, the last step in Algorithm 3.6.16

ensures the output is precisely £(y,Cq,Cy). ]

3.7 Instantiation I: Direct Sum on HDXs

We instantiate the list decoding framework to the direct sum lifting on HDXs obtain-
ing Theorem 3.7.1, which is the main result in this section. For this instantiation we need

to establish that HDXs are two-step tensorial which will be done in Section 3.7.1.

Theorem 3.7.1 (Direct Sum Lifting on HDX). Let ¢y < 1/2 be a constant and ¢ € (0, gp).
There exist universal constants ¢, C > 0 such that for any v-HDX X (< d) on ground set X(1) =
[n] and T1; uniform, if

7 < (log(1/6))-C180/9) gug 4> . 1081/€)*
€

then the following holds:

For every binary code C1 with A(C1) > 1/2 —eg on X(1) = [n], there exists a binary lifted
code C = dsumy ) (¢(C1)) with A(Cy) = 1/2 — 0D o X(k) where k = O (log(1/¢)),

@ is an explicit linear projection, and

- [Efficient List Decodingl If § is (1/2 — \/€)-close to Cy, then we can compute the list
L(i7,Cq,Cy) (c.f. Definition 3.6.15) in time



where f(n) is the running time of a unique decoding algorithm for Cy.
- [Rate] The rate 1. of Cy, satisfies r. = rq - |X(1)| / | X (k)| where rq is the relative rate of C.
- [Linearity] If Cy is linear, then ¢ is the identity and Cy = dsumy (Cq) is linear.

In particular, invoking Theorem 3.7.1 on HDXs extracted from Ramanujan complexes

(as in Lemma 3.4.5), we obtain Corollary 3.7.2.

Corollary 3.7.2. Let ¢y < 1/2 be a constant and € € (0,¢q). There is an infinite sequence of
HDXs X1, Xp, ... on ground sets of size nq,ny, ... such that the following holds:
(i)

For every sequence of binary codes C,"’ on [n;] with rate and distance uniformly bounded by r1
and (1/2 — ) respectively, there exists a sequence of binary lifted codes Clgi) = dsumyy) (@(C{i) )

on a collection X; (k) with A(Clgi)) > 1/2 — %00 where @ is an explicit linear projection and

- [Efficient List Decoding] If § is (1/2 — \/e)-close to Cy, then we can compute the list
L(,Cq,Cy) (c.f. Definition 3.6.15) in time ne O - f(n), where f(n) is the running time

of a unique decoding algorithm of Cy.

- [Explicit Construction] The collection X;(k) is part of an explicit v-HDX X;(< d) where
k=0 (log(1/¢)),d =0 ((log(l/g))2/8>, and y = (log(l/g))—()(log(l/s)).

- [Rate] The rate r](ci) ofC]£i> satisfies rl({i) > 11 - exp (—(log(l/s))o(log(l/f))>,

- [Linearity] If C{i) is linear, then ¢ is the identity and Clgi) = dsumy ) (CY)) is linear.

Proof. Efficient list decoding and linearity follow directly from Theorem 3.7.1, and the
parameters of the explicit construction match the requirements of the theorem. The only
thing left to do is to calculate the rate. Since the lifting dsule,(k) needs to be a (2¢(, 2¢)-
parity sampler to achieve the promised distance, by Lemma 3.4.11 the rate rl((i) of Clgi)

satisfies
) > gy 40Iog(1/)*/ ()
151



Since ¢y = (1og(1/8))_o(1°g(1/€)), this reduces to

1) > 11+ (log(1/€)) 0081/ (1) = 1y - exp(1/700) = 1 - exp (—(log(1/)) 0181/ ).

3.7.1 HDXs are Two-Step Tensorial

Theorem 3.7.3 proven in [A]T19] establishes that HDXs of appropriate expansion param-

eter are tensorial objects for constant L = Oy, ,,(1).

Theorem 3.7.3 (HDXs are Tensorial). There exist some universal constants ¢’ > 0and C' > 0
satisfying the following: If L > ¢ - (¢* - K%/ u#), Supp(Z;) < q forall j € [n], and X is a
v-HDX for v < C'- u#/ (k8K . 26k . 42K and size > k, then X (k) endowed with a distribution

[Ty is (p, L)-tensorial.

The next result shows that HDXs are also two-step tensorial objects with the same

parameters as above.

Lemma 3.7.4 (HDXs are two-step tensorial). There exist some universal constants ¢’ > 0 and
C’ > 0 satisfying the following: If L > ¢’ - (¢* - k2 / u*), Supp(Z j) < qforallj € [n], and X is
ay-HDX for v < C' - u*/ (k8K . 26k . g2k and size > k, then X (k) is (u, L)-two-step tensorial,

Proof. Under our assumptions the (y, L)-tensorial property follows from Theorem 3.7.3

(this is the only place where the assumption on 7 is used), so we only need to show

o, 252 —{ZH{Zid | <

which can be proven by adapting a potential argument technique from [BRS11]. First, set

152



the potential

®y= E E E Var[Zs|Zg=0], 3.10
M ST o {Zg ) 5T, Zs | 25 = 0] (3:10)

and consider the error term

= [E E D(S,o0), 3.11

Um S~ o {Zs} ( ) ( )

where D(S,0) = Eqoory [I{ZsZi | Zs = 0} — {Zs|Zs = 0 HZZs = o}lly]. 1 i >
u/2, then

P D(S,0) > um/2] >
swn;n,aw{zs}[ (5,0) > pm/2]

=

Let G = (V = X(k),E) be the weighted graph where E = {{s,t} | 5,t € X(k)}
and each edge {s,t} receives weight IT;(s) - IT;(t). Local correlation (expectation over

the edges) on this graph G is the same as to global correlation (expectation over two

independent copies of vertices). Then, we obtain 1
‘u2
Dy — @ > P D(S,0) > ym/2] - —.
m m+1 = S~ o~ {Zs) [D( ) = Hm/2] 2q2k

Sincel > ®1 > --- > ®p /i > 0, there can be at most 8% / u3 indices m € [L/k| such that

um > p/2. In particular, since the total number of indices is L/k, we have

u k 8q2k
E S
melt' ™ =2 L 3

Our choice of L is more than enough to ensure E,, [L/K] [pm] < . n

18. See [AJT19] or [BRS11] for the details.

153



3.7.2 Instantiation to Linear Base Codes

First, we instantiate the list decoding framework to the seemingly simpler case of binary
linear base codes in Lemma 3.7.5. As we show later, with a simple observation we can

essentially use the proof of Lemma 3.7.5 to obtain Theorem 3.7.1 for general codes.

Lemma 3.7.5 (Direct sum lifting of linear biased codes). Let ¢y < 1/2 be a constant and
e € (0,e9). There exist universal constants ¢,C > 0 such that for any y-HDX X(< d) on
ground set X(1) = [n] and T1; uniform, if

(1/5)_C'(log<1/€)) and d > c- M

<
7 < log -
then the following holds:
For every binary 2¢eq-biased linear code C1 on X(1) = [n], there exists a 2e-biased binary

lifted linear code Cy = dsumy ) (Cy) on X(k) where k = O (log(1/¢)) and

- [Efficient List Decoding] If  is (1/2 — \/€)-close to Cy, then we can compute the list
L(i7,Cq,Cy) (c.f. Definition 3.6.15) in time

where f(n) is the running time of a unique decoding algorithm for Cy.

- [Rate] The rate ¥ 1y of Cy satisfies 1. = r1 - |X(1)| / | X(k)| where rq is the relative rate of
Cy.

- [Linear] The lifted code Cy, is linear.

Proof. We show that under our assumption on the y-HDX X (< d) we obtain sufficient

19. For the rate computation, we assume that X (k) can be expressed as a multi-set such that the uniform
distribution on it coincides with I, which is true in the case that I'T; is D-flat.

154



robustness and tensorial parameters to apply Theorem 3.6.17. In this application, we will
rely on parity sampling for robustness. If dsumy ;) is a (2¢, 2¢)-parity sampler, using
the linearity of C; we obtain a lifted code C; = dsumx(k)(Cl) which is linear and has
bias 2¢; thus the lifting is indeed (1/2 — €y, 1/2 — ¢)-robust. If we want to fully rely on
parity sampling in Theorem 3.6.17, the lifting must be a (Bg = 1/2 + ¢g, B = 2¢)-parity
sampler, which is more stringent than the first parity sampling requirement. 20 To in-
voke Lemma 3.4.10 and obtain this (B, B)-parity sampler, we need to choose a parameter

6 (where 0 < 0 < (1 — Bg)/Po) and

k > log(,6)g,(B/3),

12
d > max (ﬁ,%> , and
B 0288

-o(k)

To get a (u, L)-tensorial HDX, Theorem 3.7.3 requires

C/_zk_kS CI'V4
be—a— 7S 5y

where we used that our alphabet is binary (i.e., § = 2) and ¢/,C’ > 0 are constants.
Finally, Theorem 3.6.17 requires i < &8/222. The conceptual part of the proof is essentially
complete and we are left to compute parameters. Set (o = 3/4 + ¢g — e%. We choose
6 = 1/2 — ¢y which makes (1 + 0)B( equal to { (provided ¢y < 1/2 we have {y < 1).

This choice results in

B log, (2¢/3) 1
k = [log; (2¢/3)] and d=0 (max ( ; wasaye) )

20. Recall that this strengthening is used in our list decoding framework.

155



Combining the parity sampling and tensorial requirements and after some simplification,

the expansion 7 is constrained as

<" - min e & <1/4—82>4-€2
= k8+k . o8k 4’ 0 ¢

where C" > 0is a constant. We deduce that taking 7y as

4
(1/4 — s%) .32
k8+k . 28k /

’)’SCH'

is sufficient. Further simplifying the above bound gives

(1/4 — 8%)4 .32
>8+logg~0 (2¢/3)

1=0

(logg0 (2¢/3) - (2¢/3)8/ log(Co)

Now, we turn to the SOS-related parameter L which is constrained to be

where ¢’ > 0. Note that in this case the exponent O(L + k) appearing in the running time

of Theorem 3.6.17 becomes O(L). Similarly, further simplification leads to

(log&) (28/3))5 . (3/28)—1/10g(€0)
£32

L=0

Taking ¢ to be a constant and simplifying yields the claimed parameters. n

156



3.7.3 Instantiation to General Base Codes

We can extend Lemma 3.7.5 to an arbitrary (not necessarily linear) binary base code C;
with the natural caveat of no longer obtaining linear lifted code C; = dsumX(k)(Cl).
However, even if C; has small bias, it might not be the case that the difference of any
two codewords will have small bias, which is required for list decoding. To this end
we modify the code C; by employing a projection ¢ which converts a condition on the

distance of the code to a condition on the bias of the difference of any two codewords.

Claim 3.7.6. If Cq is binary code on [n] with relative distance 6 and rate r, then there exists an
explicit linear projection ¢: F45 — L such that the code C{ = ¢(Cy) has relative distance at

least 6/2 and rate r. Furthermore, for every z,z' € C} we have

bias(z —z') <1 - g

Proof. Take ¢ to be the projector onto IF)~° @ {0}° where s = [n/2]. Then

Cl =) ={(z1,---,Zn-5,0,...,0) | (z1,...,2n) € C1},

-

and the claim readily follows. n

With this modification in mind, we can now restate and prove Theorem 3.7.1.

Theorem 3.7.7 (Direct Sum Lifting on HDX (Restatement of Theorem 3.7.1)). Let ey < 1/2
be a constant and € € (0, ¢(). There exist universal constants ¢, C > 0 such that for any v-HDX
X(< d) on ground set X(1) = [n] and T1; uniform, if

(log(1/¢))?

7 < (log(1/¢)) 18D and 4> . TET

then the following holds:
157



For every binary code C1 with A(Cy) > 1/2 —eg on X(1) = [n], there exists a binary lifted
code Cj = dsumX(k)((p(Cl)) with A(Cy) > 1/2 — 201 op X(k) where k = O (log(1/¢)),

@ is an explicit linear projection, and

- [Efficient List Decodingl If i is (1/2 — \/€)-close to Cy, then we can compute the list
L(7,Cq,Cy) (c.f. Definition 3.6.15) in time

where f(n) is the running time of a unique decoding algorithm for Cy.
- [Rate] The rate 1 of Cy, satisfies r. = rq - | X(1)| / | X (k)| where rq is the relative rate of C.
- [Linearity] If Cq is linear, then ¢ is the identity and C = dsumX<k) (Cq) is linear.

Proof. By virtue of Lemma 3.7.5, it is enough to consider when C; is not linear. Note
that in the proof of Lemma 3.7.5 the only assumption about linearity of C; we used to
obtain (1/2 — ¢p,1/2 — ¢)-robustness was that the sum of two codewords is in the code
and hence it has small bias. For a general code C; of constant distance 1/2 — ¢, apply-
ing Claim 3.7.6 we obtain a new code C{ with this guarantee at the expense of a distance
1/2 times the original one. Naturally, in the current proof we no longer obtain a linear
lifted code Cy = dsumy ) (C1)- Excluding the two previous remarks the proof of Theo-

rem 3.7.1 is now the same as the proof of Lemma 3.7.5. |

3.8 List Decoding Direct Product Codes

3.8.1 Direct Product Codes

Having developed a decoding algorithm for direct sum, a promising strategy for list de-

coding other lifted codes on expanding objects is reducing them to instances of direct
158



sum list decoding. One such reduction involves the direct product lifting, which was first
studied in the context of samplers by Alon et al. in [ABN92]. The direct product lifting

collects the entries of a code on each subset of size ?.

Definition 3.8.1 (Direct Product Lifting). Let C; C IF5 be a base code on X(1) = [n]. The
direct product lifting of a word z € IF} on a collection X({) is dprody ) (z) = (xt)¢ex (r), where
x¢ = (z;)icq. The direct product lifting of the entire code is dprody ) (1) = {dprodX(E) (z) |
z € Cq1}, which is a code of length | X (¢)| over the alphabet ]Fg

If X is a HDX, its sampling properties ensure that the direct product lifting has very
high distance. It follows from the definition that if the bipartite graph between X(1) and
X(k)isan (7, 0)-sampler and the code C; has minimum distance 7, then the direct product
lifting dprody ;) (C1) has minimum distance at least (1 — 6). Recalling from Fact 3.4.8 that
the bipartite graph between two levels of a HDX can be a sampler with arbitrarily small
parameters if the expansion is good enough, we can reasonably hope to list decode the
direct product lifting on a HDX up to a distance close to 1. In fact, Dinur et al. [DHK*19]
provided a list decoding algorithm accomplishing exactly that. We offer a very different

approach to the same list decoding problem.

3.8.2 Direct Product List Decoding

We will reduce direct product decoding on X (/) to direct sum decoding on X(k), where
k ~ £/2. This requires converting a received word % € (IFS)XM) toa word 7 € ]F;qk)
that we will decode using the direct sum algorithm. If we knew that ¥ = dprodyy) (2)

(1)

for some zZ € IF? , we would do so by simply taking s = ) ;. Z; to be the direct sum
lifting on each edge s; that is, 7 = dsumy ;) (2).
Unfortunately, performing list decoding also involves dealing with words & that might

not have arisen from the direct product lifting. To construct a corrupted instance of direct
159



sum i from ¥, we need to assign values to each face s € X (k) based only on the informa-
tion we have on the faces X(/), as there is no word on the ground set to refer to. Since
different faces t,t' € X(¢) containing s might not agree on s, there could be ambiguity as

to what value to assign for the sum on s.

This is where the D-flatness of the distribution I, (which holds for the y-HDX con-
struction described in Lemma 3.4.5) comes in. Recall that to obtain codewords in the
direct product code dprodX( 0 (Cq) without weights on their entries, we duplicate each
face t € X(¢) at most D times to make the distribution IT; uniform. To perform the same
kind of duplication on X (k) that makes IT; uniform, note that each face s € X(k) has
[T, (s) proportional to [{t € X({) | t D s}| (where X(¢) is thought of as a multiset), so we
will create one copy of s for each t containing it. Thus we can assign a unique t D s to each
copy. By downward closure, the distribution on X(¢) obtained by choosing s uniformly
from the multiset X(k) and then selecting its associated face t will be uniform, just like
IT,. With this careful duplication process, we are ready to define the function py that takes

a corrupted direct product word ¥ to a corrupted direct sum word 7.

Definition 3.8.2 (Reduction Function). Let k < ¢ and X be a HDX where the distribution
I1, is D-flat. Duplicate faces in X (k) so that 11j is uniform, and assign a face t; € X({) to
each s € X(k) (after duplication) such that ts is distributed according to I1, when s is selected
uniformly from X (k). The function pj (]F%)X(E) — ]Ff ®) s defined as

(px(%))s = ) (%4,)i-
ics
The reduction function py resolves the ambiguity of which face t O s to sample the
sum from by assigning a different face to each copy of s in a manner compatible with

(1)

the distribution IIy. Observe that if ¥ = dprody ) (2) for some Z € IF§ , then py (%) =

dsumx(k)(i).

160



The following lemma shows that performing this reduction from direct product to
direct sum maintains agreement between words. It essentially says that if a received word
% exhibits some agreement with x € dprody ) (Cy), then there is a k for which p (%) and

pi(x) have agreement larger than 1/2.

Lemma 3.8.3 (Product-to-sum agreement). Fix ¢ > 0 and C' > 2. Let z € Cy, x =

dprody ) (z),and X € (IF%)X(E). If A(x, %) < 1— ¢, then there exists a k satisfying
1
k—10/2| < 5 C'llog(1/¢)

such that

A(y,5) <1/2—e/2+¢572,

where y = pi(x) and §j = p.(X) are words in ]F;i(k).

Proof. For t € X(¢) and s C t, define the function xs : F5 — {—1,1} by

Xs,t(w) = H(_l)wi-
ics
For each face t € X(/), consider the expectation Eqc¢[xs,¢(x¢ — X¢)], where s is a subset of
t of any size chosen uniformly. If x; = X{, which happens for at least ¢ fraction of faces
t, the expression in the expectation is always 1. Otherwise, this expectation is zero, so

taking the expectation over the faces yields

Egort, Esce[Xst(xe — %) = twl%g [xe = %] > e

We would like to restrict to a fixed size of faces s for which this inequality holds; as this
will be the size of the direct sum faces, we need to make sure it’s large enough to give

us the expansion required for decoding later. Using a Chernoff bound (Fact B.1.2 with

161



a = +/C'l1log(1/¢)), we see that the size of the faces is highly concentrated around ¢/2:

C’Zlog(l/s)] < 7p—C'log(1/¢)/2 < 0C'/2.

Let I be the interval

£ 1 7 £ 1 7

The expectation inequality becomes

e < Epory [Esct[Lgjer - Xst(xt — %)] + Esci[Lg ¢ - Xst(xe — %t)]]

- /
< B, Boc ofer st (xe — %)) +26 /2.

Thus there exists a k € I such that

/ ~
e—2:C/2 < E¢r1, Eocy |s|—k Xt (x¢ — %))

Choosing a face t and then a uniformly random s C t of size k results in choosing s
according to II. Moreover, the edge t; containing s from Definition 3.8.2 is distributed

according to I'l,. Bearing in mind the definitions of ys and /5, we have

! ~
e—2eC/2 < B¢, EBsc s =k[Xst (xe — )]

= Eqorm X ts (x4, — T¢,)]

— ESNHk[(_1)(pk(x))s—(pk(f))s]
= bias(y — 7)
which translates to a Hamming distance of A(y,7) <1/2 —¢/2+ eC'/2, n

162



With Lemma 3.8.3 in hand to reduce a direct product list decoding instance to a direct
sum list decoding instance, we can decode by using a direct sum list decoding algorithm

as a black box.
Algorithm 3.8.4 (Direct Product List Decoding Algorithm).

Input A word % € (lFé)X(f) with distance at most (1 — ¢) from dprody ;) (C1)

Output Thelist L' = {z € F} | A(dprody 4 (z), %) < 1—¢}

1. Let I be the interval (6/2 — /CTTlog(1/€)/2,£/2 + /CT'llog(1/¢) /2).

2. For each integer k € 1, run the direct sum list decoding algorithm on the input §j =

pr(X) € IFf(k) to obtain a coupled list Ly of all pairs (z,y) with A(y,§) < 1/2 —¢/2+
c'/2
e- /e,

3. Let L = UkGI{Z ey ’ (Z,]/) € ‘Ck}

4. Let L' ={z€ L] A(dprody ) (z), %) <1 —e}.

5. Output L'

Theorem 3.8.5 (Product-to-sum Reduction). Let ¢ > 0 and C' > 2. Let dprody ) (Cq) be
the direct product lifting of a base code Cq on a simplicial complex X. If the direct sum lifting
dsumy ) (Cy) is list decodable up to distance <1 /2—¢/2+ scl/2> in time f(n) for all k sat-
isfying |k — £/2] < \/C'llog(1/€)/2, then Algorithm 3.8.4 list decodes dprody ;) (C1) up to

distance (1 — ¢€) in running time
C'llog(1/¢e)f(n) + |X(€)]|L].

Proof. Let ¥ € (IF%)X(Z) be a received word and let z € C; satisfy A(dprodyy (z),%) <
1 —¢. By Lemma 3.8.3, there exists a k € I such that A(y,7) < 1/2—¢/2+ ¢C'/2 Thanks
to this distance guarantee, the pair (z,y) will appear on the list £; when the direct sum

list decoding algorithm is run for this k. Then z will be on the combined list £ and the
163



trimmed list £/, with the trimming ensuring that no elements of C; appear on this list
beyond those with the promised distance. The set {dprodx( n(z)|ze L'} thus contains

all words in dprody /) (C1) with distance at most (1 — ¢) from .

To obtain the promised the running time, note that Algorithm 3.8.4 runs the direct
sum list decoding algorithm /C’¢log(1/¢) times and then computes the direct product

lifting of each element of £ in the trimming step. n

Combining the parameters in the reduction with those required for our direct sum list
decoding algorithm, we obtain the following. Note that for very small values of ¢, we can
choose the constant C’ to be close to 2, and we will be list decoding the direct sum code

up to distance 1/2 — /B~ 1/2 —¢/4.

Corollary 3.8.6 (Direct Product List Decoding). Let eg < 1/2 be a constant, and let ¢ > 0,
C'>2+4/log(1/¢),and B = (e/2 — SC//Z)Z. There exist universal constants ¢, C > 0 such

that for any v-HDX X(< d) on ground set [n] and 1y uniform, if

4

2
v < log(l/ﬁ)_CIOg(l/ﬁ) and d>c- log(llg/ﬁ)

then the following holds:

For every binary code C1 with A(C1) > 1/2 —¢g on X(1) = [n], there exists a lifted code

Cy = dprody (¢(Cq)) on Cp where ¢ = O(log(1/B)), ¢ is an explicit linear projection, and

- [Efficient List Decoding] If % is (1 — €)-close to Cy, then we can compute the list of all

0(1)

codewords of Cy that are (1 — ¢)-close to % in timen® ' - f(n), where f(n) is the running

time of the unique decoding algorithm for Cq.

- [Rate] The rate ry of Cy satisfies rp = r1 - | X(1)| /(¢ |X(€)|), where rq is the relative rate of
Cy.

- [Linearity] If Cq is linear, then ¢ is the identity and Cy is linear.
164



Proof. Letk = £/2 — /C'l1og(1/€)/2. The choice of parameters ensures that the direct
sum code dsumy (Cq) is list decodable up to distance 1/2 — /B =1/2—¢/2+ ¢€'/2in
running time g(n) = B f(n) by Theorem 3.7.1 (noting that the bound on C” implies
B> 2/ 16). Since increasing k increases the list decoding radius of the direct sum lifting,
this holds for any value of k with [k — ¢/2| < /C'¢1log(1/¢)/2. By Theorem 3.8.5, the

direct product lifting dprody,)(Cy) is list decodable up to distance (1 —¢) in running

V< tog(1/enP Y f(n) + 1x(0)] |£].

The HDX has |X(¢)| < (}) = nOUog(1/h))  and the list size |£| is bounded by the

time

sum of the sizes of the lists £ obtained from each direct sum decoding. Each of these
lists has | £| < 1/(2B) by the Johnson bound (see Remark 3.6.14) and the number of lists
is constant with respect to 7, so the overall running time is dominated by the first term,
nB = f(n) = ne "V f(n).

The rate and linearity guarantees follow in the same manner as they do in Theo-
rem 3.7.1, where the rate calculation requires a slight modification for dealing with the

increased alphabet size and ¢ is the projection from Claim 3.7.6. n

Using Corollary 3.8.6 with HDXs obtained from Ramanujan complexes as in Corol-
lary 3.7.2, we can perform list decoding with an explicit construction up to distance (1 —¢)
with HDX parameters d = O(log(1/¢)2/¢2) and v = (log(1/¢))~©U08(1/€) The direct
product list decoding algorithm of Dinur et al. [DHK19] is based on a more general
expanding object known as a double sampler. As the only known double sampler con-
struction is based on a HDX, we can compare our parameters to their HDX requirements

of d = O(exp(1/¢)) and v = O(exp(—1/¢)).

165



3.9 Instantiation II: Direct Sum on Expander Walks

We instantiate the list decoding framework to the direct sum lifting where the sum is
taken over the collection X(k) of length k walks of a sufficiently expanding graph G. To
stress the different nature of this collection and its dependence on G we equivalently

denote X (k) by W (k) and endow it with a natural measure in Definition 3.9.1.

Definition 3.9.1 (Walk Collection). Let G = (V, E, w) be a weighted graph with weight distri-
bution w: E — [0,1]. For k € N, we denote by W (k) the collection of all walks of length k in
G, i.e.,

Wg (k) == {w = (wy, ..., wg) | wis a walk of length k in G}.

We endow W (k) with the distribution 1} arising from taking a random vertex wy according to
the stationary distribution on V and then taking k — 1 steps according to the normalized random

walk operator of G.

One simple difference with respect to the HDX case is that now we are working
with a collection of (ordered) tuples instead of subsets. The Propagation Rounding Algo-
rithm 4.7.16 remains the same, but we need to establish the tensorial properties of W (k)

which is done in Section 3.9.1.

The main result of this section follows.

Theorem 3.9.2 (Direct Sum Lifting on Expander Walks). Let ey < 1/2 be a constant and
e € (0,€0). There exists a universal constant C > 0 such that for any d-regular ~y-two-sided

expander graph G on ground set W (1) = [n], if v < €C, then the following holds:

For every binary code C1 with A(C1) > 1/2 —¢egon Wi (1) = [n], there exists a binary lifted
code Cy = dsumy ) (¢(Cy)) with A(Cy) = 1/2 - 20D opy Wg (k) where k = O (log(1/¢)),
@ is an explicit linear projection, and

- [Efficient List Decoding] If i is (1/2 — \/e)-close to Cy, then we can compute the list
166



L(i7,Cq,Cy) (c.f. Definition 3.6.15) in time
ne*O(l) ~f(n),

where f(n) is the running time of a unique decoding algorithm for Cy.
- [Rate] The rate ry, of Cy, satisfies ry = r1/d*~1 where rq is the relative rate of C;.
- [Linearity] If Cy is linear, then ¢ is the identity and Cj = dsumy ) (Cq) is linear.

In particular, we apply Theorem 3.9.2 to the explicit family of Ramanujan expanders

of Lubotzky et al. from Theorem 3.9.3.

Theorem 3.9.3 (Lubotzky-Phillips-Sarnak abridged [LPS88]). Let p = 1 (mod 4) be a
prime. Then there exists an explicit infinite family of (p + 1)-reqular Ramanujan graphs G1, Gy, . . .
onny < np < --- vertices, i.e.,, 02(G;) <2-/p/(p+1).

In order to construct Ramanujan expanders with arbitrarily good expansion, we will

use the following lemma for finding primes.

Lemma 3.9.4 (From [TS17]). For every « > 0 and sufficiently large n, there exists an algorithm
that given a and m relatively prime, runs in time poly(n) and outputs a prime number p with

p = a (mod m) in the interval [(1 — a)n, n].
This results in Corollary 3.9.5.

Corollary 3.9.5. Let ¢y < 1/2 be a constant and € € (0,¢q). There is an infinite sequence of
explict Ramanujan expanders G1, Gy, ... on ground sets of size ny < np < --- such that the
following holds:

(i)

For every sequence of binary codes C;’ on [n;] with rate and distance uniformly bounded by

rgi) and (1/2 — g) respectively, there exists a sequence of binary lifted codes C]Ei) of the form

167



Clgi) = dsumyp (qo(CY))) on a collection X;(k) with distance (1/2 - 8050<1)) where ¢ is an

explicit linear projection and

- [Efficient List Decoding] If i is (1/2 — \/€)-close to Cy, then we can compute the list
L(i7,Cq,Cy) (c.f. Definition 3.6.15) in time ne O - f(n), where f(n) is the running time

of a unique decoding algorithm of C1.

- [Explicit Construction] The collection W, (k) is obtained from length k walks on a Ra-

manujan d-regular expander G; where k = O (log(1/¢)),d = 8 - ¢ OW) and y = O,

- [Rate] The rate rl((i) ofCIEi) satisfies rl(ci) > rgi) . ¢O(log(1/¢))

- [Linearity] If C{i) is linear, then ¢ is the identity and Clgi) = dsumy) (C{i)) is linear.

Proof. Using Lemma 3.9.4 with 2 = 1 and m = 4, we see that given n,«, a prime p such
that p = 1 (mod 4) may be found in the interval [(1 — a)n, n| for large enough n. For
Ramanujan expanders, the condition that ¢ < ¢C translates to p > 4-¢2C. Choose
&« = 1/2and n > 8-&2C so that we find a prime greater than 4 - e2C, but at most
8.¢72C,

Based on this prime, we use the above Theorem 3.9.3 to get a family of Ramanujan
graphs G1, Gy, ... withny < ny < --- vertices, such that the degree is bounded by 8¢ 2C.

Using the parameters of this family in Theorem 3.9.2, we obtain the desired claims. n

3.9.1 Expander Walks are Two-Step Tensorial

To apply the list decoding framework we need to establish the tensorial parameters of
expander walks Wg (k) for a y-two-sided expander graph G. Although the tensorial
property is precisely what the abstract list decoding framework uses, when faced with
a concrete object such as W (k) it will be easier to prove that it satisfies a splittable prop-

erty defined in [AJT19] for complexes which implies the tensorial property. In turn, this
168



splittable property is defined in terms of some natural operators denoted Swap opera-
tors whose definition is recalled in Section 3.9.1 in a manner tailored to the present case
X(k) = Wg(k). Then, in Section 3.9.1, we formally define the splittable property and
show that the expansion of the Swap operator is controlled by the expansion parameter
of G allowing us to deduce the splittable parameters of W (k). Finally, in Section 3.9.1, we
show how W (k) being splittable gives the tensorial parameters. Some results are quite
similar to the hypergraph case in [A]T19] (which built on [BRS11]). The key contribution
in this new case of W (k) is observing the existence of these new Swap operators along

with their expansion properties.

Emergence of Swap Operators

To motivate the study of Swap operators on W (k), we show how they naturally emerge
from the study of k-CSPs. The treatment is quite similar to the hypergraph case developed
in [AJT19], but this will give us the opportunity to formalize the details that are specific
to Wg (k). Suppose that we solve a k-CSP instance as defined in Section 3.2.4 whose con-
straints were placed on the tuples corresponding to walks in W (k). The result is a local
PSD ensemble {Z} which can then be fed to the Propagation Rounding Algorithm 4.7.16.
It is easy to show that the tensorial condition of Eq. (3.12) (below) is sufficient to guarantee
an approximation to this k-CSP on W (k) within y additive error. The precise parameters
are given in Section 3.9.1. For now, we take this observation for granted and use it to

show how the Swap operators emerge in obtaining the inequality

£ 5l (2 {2, <

present in the definition of tensoriality.
The following piece of notation will be convenient when referring to sub-walks of a

169



given walk.

Definition 3.9.6 (Sub-Walk). Given 1 <i < j < kand w = (wy,...,w;) € Wg(k), we define

the sub-walk w(i, j) from w; to w; as

w(i,j) = (wj, wiyq, ..., wj).

We will need the following simple observation about marginal distributions of IT; on

sub-walks.

Claim 3.9.7 (Marginals of the walk distribution). Let k € Ntandl <i< j < k. Then
sampling w ~ I in Wg (k) and taking w(i, j) induces the distribution I1; ;1 on Wg(j — i+
1).

Proof. Letw = (wq,...,w;, ..., Wj, .., wy) ~ IT;. Since wq ~ II; where I1; is the sta-
tionary measure of G and wj, ..., w; are obtained by (i — 1) successive steps of a random
walk on G, the marginal distribution on wj; is again the stationary measure I1;. Then by
taking (j — i) successive random walk steps from w; on G, we obtain a walk (w;, ..., w;)

distributed according to IT; ;1. |

We also need the notion of a splitting tree as follows.

Definition 3.9.8 (Splitting Tree [AJT19]). We say that a binary tree T is a k-splitting tree if it

has exactly k leaves and

- the root of T is labeled with k and all other vertices are labeled with positive integers,
- the leaves are labeled with 1, and

- each non-leaf vertex satisfies the property that its label is the sum of the labels of its two

children.

170



The Swap operators arise naturally from the following triangle inequality where the
quantity E,, oy (k H {Z],} — H { (@) } Hl is upper bounded by a sum of terms of the

form

W We k1+k2 H{Z { 1k1)}{zé"(k1+1/k2)}ul'

We view the above expectation as taking place over the edges W (k1 + ky) of a bipartite
graph on vertex bipartition (Wg(k1), Wg(kp)). This graph gives rise to a Swap operator
which we formally define later in Section 3.9.1. The following claim shows how a splitting
tree defines all terms (and hence also their corresponding graphs and operators) that can

appear in this upper bound.

Claim 3.9.9 (Triangle inequality). Let k € N and T be a k-splitting tree. Then

}H{Z'}SZ

(kl kz) w~Wg (k] +k2

{z,} - {Z/ k) }{Z;u(kﬁrlkz)}

4

ZUNWG 1

1

where the sum Yy, 1.y is taken over all pairs of labels of the two children of each internal node of

T.

Proof. We prove the claim by induction on k. Let (kq, k,) be the labels of the children of the
root of the splitting tree 7. Suppose 71 and 7, are the corresponding splitting trees rooted
at these children with labels k1 and kj, respectively. By this choice, we have k = ky + k».

Applying the triangle inequality yields

Zy} - H{Z’

S ﬁ(k) {Z} - { 1k1}{zév("1+1'k2)}H1+

E {Z;u(l,iq) } {Z;U(k1+1 k2) } Ik—[{zwr } {Z;U(kﬁl/kZ) }

wNWC(k) i=1

T (o} - 172}

w~Wg (k)

w~W

_|_

1

1

Using the marginalization given by Claim 3.9.7 on the second and third terms and sim-

171



plifying, we get

k
/ !/ !/ / /
ooy |2}~ H{Zw"}| S o |z} = {Zuos HZow s |+
ky ko
E z,} -1z, }| + E z,\) -1z, | .
I EEe 1 (] I (AR VEAT

Applying the induction hypothesis to the second term with tree 77 and to the third term

with tree 7 finishes the proof. n

Swap Operators Arising from Expander Walks

We define the Swap operator associated to walks on a given graph G as follows.

Definition 3.9.10 (Graph Walk Swap Operator). Let G = (V, E, w) be a weighted graph. Let
ki,ko € N be such that k = ky + ko. We define the graph walk Swap operator

Sk k- RWe(k2) s jWa(k1)

such that for every f € RWe(k2),

(5121,1@ (f)> (w) = le/:ww/EW(k) [f(w,)]/

where ww' denotes the concatenation of the walks w and w'. The operator S;l K, A be defined

more concretely in matrix form such that for every w € Wg (k1) and w' € Wg(kp),

kik2 ) T, (w)

Remark 3.9.11. Swap operators are Markov operators, so the largest singular value of a Swap

operator is bounded by 1.

172



Unlike the Swap operators for HDXs described in [A]JT19], which are defined using
unordered subsets of hyperedges, the Swap operators SI%,kz use sub-walks and are thus
directed operators. Instead of analyzing such an operator directly, we will examine the
symmetrized version

(@]
0 Sklsz

<Sz1rk2) + 0

and show that ¢/ (S,‘z1 k2) is the normalized random walk operator of an undirected graph.

u(SzllkZ) -

In particular, Z/I(S]‘z1 kz) defines an undirected weighted bipartite graph on the vertices
Wg (k1) UWg(kp), where each edge ww' in this graph is weighted according to the tran-
sition probability from one walk to the other whenever one of w, w’ is in W (kq) and the

other is in W (ky). This becomes clear when taking a closer look at the adjoint operator
) T
(Skl,kz) .

Claim 3.9.12. Let ky,k; € N and k = ky + ko. Define the operator Sy ., . RWelk) —

RW6(k2) sych that forevery f € RWe ki),

(St () (@) = Brpomyemip Lf ()]

for every w' € Wg(ky). Then

+
o —
(Skl,k2> _ 6kl/kZI-

Proof. Let f € cWe(k1) and g € cWe(k2)  We show that <f, Szl,k2g> = <6k1,k2,f,g>. On

173



one hand we have

<f' Slcgl,kzg> - ]EZUGWG(kl) [f(w)]Ew/:ww’EWG(k) [g(wl)]}

¥ I (ww')

= ]Ewewc(kl) f(ZU) Hk (w) g(wl)

w' €Wg(k2)

= ) Iyfw) )

weWg (k) w'eWg(k2)

= )Y, flw)g(@ ) (ww").

ww'eWg (k)

FI{If,((f‘(J;U))g “/)

On the other hand we have

<6k1,k2,f/g> = ]Ew/EWG(k2) [Ew:ww’ewc(k) [f(w)]g(w/)]

I (waw') /
=Ey f(w)g(w’)
Welt) | ) Tha(@

= )Y I,) )

w’GWG(kz) wEWG(kl)

= ) fw)g@)(w').

ww'eWg (k)

[T (ww') /
Wf(w)g(w )

+ .
Hence, & , — (S;{’l’kz) as claimed. u

Swap Operators are Splittable

At a high level, the expansion of a certain collection of Swap walks Szl k, ensures that we
can round the SOS solution and this gives rise to the splittable notion, which we tailor to

the Wg (k) case after recalling some notation.

Remark 3.9.13. We establish the definitions in slightly greater generality than needed for our

coding application since this generality is useful for solving k-CSP instances on Wg (k) for more

174



general graphs G that are not necessarily expanders (c.f. Section 3.9.1). Solving these kinds of
k-CSPs might be of independent interest. For the coding application, the threshold rank (Defini-

tion 3.9.14) will be one, i.e., we will be working with expander graphs.

Definition 3.9.14 (Threshold Rank of Graphs (from [BRS11])). Let G = (V,E,w) be a
weighted graph on n vertices and A be its normalized random walk matrix. Suppose the eigenval-
uesof Aarel = Ay > - -+ > Ay. Given a parameter T € (0,1), we denote the threshold rank of

G by rank> 1 (A) (or rank>{(G)) and define it as
rank>(A) = [{i | A; > T},

Let Swap(T, Wi (< k)) be the set of all swap graphs over W (< k) finding represen-
tation in the splitting tree 7, i.e., for each internal node with leaves labeled k{ and k, we

associate the undirected Swap operator i/ (5121,k2)'

Given a threshold parameter T < 1 and a set of normalized adjacency matrices A =

{A1,...,As}, we define the threshold rank rank>(.A) of A as

ks-(A) = k~-(A),
rank>,(A) it >7(A)

where rank> 1 (A) denotes the usual threshold rank of A as in Definition 3.9.14.

Definition 3.9.15 ((7, 7, r)-splittability [AJT19]). A collection W (< k) is said to be (T, T, r)-

splittable if T is a k-splitting tree and
rank>,(Swap(7T,Wg)) <.

If there exists some k-splitting tree T such that Wg(< k) is (T, t,r)-splittable, the instance

W (< k) will be called a (t,r)-splittable instance.

175



We show that the expansion of U/ (S;1 kz) is inherited from the expansion of its defin-
ing graph G. To this end we will have to overcome the hurdle that Wg (k) C vk is not

necessarily a natural product space, but it can be made so with the proper representation.

Lemma 3.9.16. Let G = (V = [n|,E) be a d-reqular graph with normalized random walk
operator Ag. Then for every ki,ky € N, there are representations of S,‘;l ks and Ag as matrices
such that

o _ k2—1
Sk1,k2 —AG®J/d 7
where J € lR[d]kl_l x[d]2 ! is the all ones matrix.

Proof. Partition the set of walks W (kq) into the sets Wy, ..., Wy, where w € W; if the last
vertex of the walk is wy, = i. Similarly, partition W (k) into the sets Wy, ..., Wy, where
w' € W]( if the first vertex of the walk is w] = j. Note that |W;| = dk1=1 for all i and

Wi| = @21 forall

Now order the rows of the matrix 5121 k, SO that all of the rows corresponding to walks
in Wy appear first, followed by those for walks in W, and so on, with an arbitrary order
within each set. Do a similar re-ordering of the columns for the sets W7, ..., W,,. Observe

that

4

( o ) B Hk1+k2(ww/) B 1 [wkl is adjacent to w}
k1ka ) o0t Hkl (w) dko—1

which only depends on the adjacency of the last vertex of w and the first vertex of w'.

If the vertices i and j are adjacent, then (Sl‘zl kz) — 1/d*=1 for every w € W; and

w,w’

w' e W]( ; otherwise, <SZ1 k2> . =0. Since the walks in the rows and columns are sorted
’ w,w

according to their last and first vertices, respectively, the matrix S,i’l ks exactly matches the

tensor product Ag ® J/ dk2=1, where the rows and columns of A are sorted according to

the usual ordering on [n]. u

Corollary 3.9.17. Let G = (V,E) be a y-two-sided spectral expander with normalized random

176



walk operator Ag. Then for every kq, ko € NT,

M(U(S,1)) < 7.

Proof. To make the presentation reasonably self-contained, we include the proof of the
well-known connection between the singular values of Sp ; and the eigenvalues of U (S} ; ).

142 142
Using Lemma D.1.10 and the fact that 0;(Ag ® J/d*271) = ¢;(A¢), we have (71-(5131 kz) =
o;(Ag). Since

Sk <513 k )+ 0
<u(521,k2)+> M(S;él,kz) = K2 \ K1k

0 (S’iL’Q) + S’(C)l,kz

the nonzero singular values of U (S,CC’1 kz) are the same as the nonzero singular values of

4

Slil,kz' As U (S;zl’kz) is the random walk operator of a bipartite graph, the spectrum of

U (S,C(’l,kz) is symmetric around 0 implying that its nonzero eigenvalues are

j:al(s;f)l,kz)’ :|:0'2(S;31/k2),. o= :f:(T1(AG), :|:0'2(AG), .

Hence, the second-largest of these is A, (U (S;zl kz)) =0 (Ag) < 7. n

Applying this spectral bound on U(S; ) to each internal node of any splitting tree

readily gives the splittability of W (k).

Corollary 3.9.18. If G is a y-two-sided spectral expander, then for every k € IN the collection
W (k) endowed with 11 is (vy, 1)-splittable (for all choices of splitting trees).

177



Splittable Implies Tensorial

By a simple adaptation of an argument in [AJT19] for hypergraphs which built on [BRS11],
we can use the splittable property to obtain tensorial properties for Wi (k). More pre-

cisely, we can deduce Theorem 3.9.19.

Theorem 3.9.19 (Adapted from [AJT19]). Suppose W (< k) with W (1) = [n] and an (L +
2k)-local PSD ensemble Z = {Z,,...,Zy} are given. There exist some universal constants
¢y > 0and C"" > 0 satisfying the following: If L > C" - (¢*% -k’ - v/ u®), Supp(Z ;) < q forall
j € [n], and Wo (< k) is (ca - (1/ (4k - g5))2, r)-splittable, then

/
.« . < )
& s H{Z { } {Zwk}Hl < (3.13)
where Z' is as defined in Algorithm 4.7.16 on the input of {Z1, ..., Zyn} and I1;.

Using Theorem 3.9.19, we can establish conditions on a y-two-sided expander graph

G = (V,E,w) in order to ensure that W (k) is (u, L)-two-step tensorial.

Lemma 3.9.20 (Expander walks are two-step tensorial). There exist some universal constants
¢/ > 0and C' > 0 satisfying the following: If L > ¢’ - (g* - k7 /u®), Supp(Z;) < q for all
j € [n], and G is a y-two-sided expander for v < C' - u?/ (kz . q2k> and size > k, then Wg (k)

is (u, L)-two-step tensorial.

Proof. The proof is similar to the proof of Lemma 3.7.4 for HDXSs, so we omit it. n

Interlude: Approximating k-CSP on Walk Constraints

Now, we digress to show how using Theorem 3.9.19 it is possible to deduce parameters
for approximating k-CSPs on Wg (k). We believe this result might be of independent

interest and note that it is not required in the list decoding application.

178



Corollary 3.9.21. Suppose J is a g-ary k-CSP instance with constraints on Wg (k). There exist
absolute constants C" > 0 and cy > 0 satisfying the following:

If We (k) is (cq - (/ (4k - g¥))2, r)-splittable, then there is an algorithm that runs in time
n° <q4k'k7‘r/y5) based on (C" - k2 - g* - v/ u*)-levels of SOS-hierarchy and Algorithm 4.7.16 that

outputs a random assignment & : [n] — [q| that in expectation ensures SAT5(&) = OPT(J) — u.

Proof. The algorithm will just run Algorithm 4.7.16 on the local PSD-ensemble {Z1, ..., Z; }
given by the SDP relaxation of J strengthened by L = (C” - k° - g%/ u#)-levels of SOS-

hierarchy and I, where C" > 0 is the constant from Theorem 3.9.19. Z satisfies

SDP(3) = E_
w~11

{%]i} [1[Zy € Pw]]] > OPT(J). (3.14)

Since the conditioning done on {Z’} is consistent with the local distribution, by law

of total expectation and Eq. (3.14) we have

E E 1[Z), € Py] = SDP(3) > OPT(3J). (3.15)
wal_[k

By Theorem 3.9.19 we know that

B oo, |z} =42l 120} < (3.16)

Now, the fraction of constraints satisfied by the algorithm in expectation is

E[SAT;(&)] =E E E 1[¢|w € Puw]]-
E[SAT5 ()] 0w~Hk(él,...,an)~{zg}---{za}[ iq ]

179



By using Eq. (3.16), we can obtain

IE[SAT;;@ )] > g ‘ E ) 1[Z), satisfies the constraint on w] | — p.
Zy

Using Eq. (3.15), we conclude

IE[SATJ((:)] > SDP(J) —u = OPT(J) — u.

3.9.2 Instantiation to Linear Base Codes

We instantiate the list decoding framework to the direct sum lifting given by the collection
Wg (k) of length k walks on a sufficiently expanding graph G = (V,E,w). For parity

sampling of expander walks, we will rely on the following fact.

Theorem 3.9.22 (Walks on Expanders are Parity Samplers [TS17] (Restatement of Theo-
rem 3.4.1)). Suppose G is a graph with second-largest eigenvalue in absolute value at most A,
and let X (k) be the set of all walks of length k on G. Then X (k) is a (Bo, (Bo + 2A) K/2])-parity
sampler. In particular, for any B > 0, if Bo +2A < 1 and k is sufficiently large, then X (k) is a

(Bo, B)-parity sampler.

First, we instantiate the framework to linear codes which already encompasses most

of the ideas need for general binary codes.

Lemma 3.9.23 (Direct sum lifting of linear biased codes Il). Let ¢y < 1/2 be a constant and
e € (0,e0). There exists a universal constant C > 0 such that for any d-regular «y-two-sided

expander graph G on ground set Wg (1) = [n], if v < €€, then the following holds:

For every binary 2¢-biased linear code C1 on Wi (1) = [n], there exists a 2¢e-biased binary

lifted linear code Cy = dsumyy)(Cy) on Wg (k) where k = O (log(1/¢)) and
180



- [Efficient List Decoding] If § is (1/2 — +/€)-close to Cy, then we can compute the list
L(i7,Cq,Cy) (c.f. Definition 3.6.15) in time

where f(n) is the running time of a unique decoding algorithm for Cy.
- [Rate] The rate r of Cy, satisfies ry. = r1/d"=1 where rq is the relative rate of C;.

- [Linear] The lifted code Cy is linear.

Proof. The proof is analogous to the one given in Lemma 3.7.5. We want to define parame-
ters for a y-two-sided expander G = (V, E, w) so that W (k) satisfies strong enough robust
and tensorial assumptions and we can apply Theorem 3.6.17. In this application, we will
rely on parity sampling for robustness. If dsumyy gy is a (2e9, 2¢)-parity sampler, using
the linearity of C1, we obtain a lifted code C}, = dsumX(k) (C1) which is linear and has bias
2¢; thus the lifting is indeed (1/2 — gy, 1/2 — €)-robust. If we want to fully rely on parity
sampling in Theorem 3.6.17, the lifting must be a (By = 1/2 + ¢g, B = 2¢)-parity sampler,
which is more stringent than the first parity sampling requirement. 2! To invoke Theo-
rem 3.9.22 and obtain this (S, B)-parity sampler, we need to choose a parameter 6 (where

0 <6< (1-Bg)/Bo) such that

k> 2-log(11g)p,(B) +2and

9':30
< ¥
T 5

which will ensure that

(Bo +27) %2 < ((1+6)pg)F/2 < .

21. Recall that this strengthening is used in our list decoding framework.

181



To get a (i, L)-tensorial collection of walks, Lemma 3.9.20 requires

where we used that our alphabet is binary (i.e., 4 = 2) and ¢/,C’ > 0 are constants. Fi-
nally, Theorem 3.6.17 requires i < &8/222. The conceptual part of the proof is essentially
complete and we are left to compute parameters. We choose 8 = 1/2 — ¢, so that pro-
vided &y < 1/2 we have (1+6)Bg = 3/4+¢y — €5 < 1. Combining the parity sampling
and tensorial requirements and after some simplification, the expansion <y is constrained

as
16

o (114-8)).

where C” > 0is a constant. We deduce that taking -y as

')/SC"-min(

1/4 —¢2) - 16
(174- )
k2.22k

,)/Scl/.

is sufficient. Further simplifying the above bound gives -y as in the statement of the theo-
rem. Now, we turn to the SOS related parameter L which is constrained to be

" 24k K

L>c ,
= 40

where ¢’ > 0. Note that in this case the exponent O(L + k) appearing in the running
time of Theorem 3.6.17 becomes O(L). Further simplification of the bound on L leads to

. . -0 .
a running time of n® W f(n) as in the statement of the theorem. n

182



3.9.3 Instantiation to General Base Codes

The proof of Theorem 3.9.2 follows from Lemma 3.9.23 in the same way that Theorem 3.7.7

follows from Lemma 3.7.5 in the case of HDXs.

183



CHAPTER 4

DECODING EXPLICIT e-BALANCED CODES NEAR THE
GILBERT-VARSHAMOYV BOUND

4.1 Introduction

Binary error correcting codes have pervasive applications [Gurl0, GRS19] and yet we
are far from understanding some of their basic properties [Gur09]. For instance, until
very recently no explicit binary code achieving distance 1/2 — /2 with rate near ()(¢?)
was known, even though the existence of such codes was (non-constructively) established
long ago [Gil52, Var57] in what is now referred as the Gilbert—Varshamov (GV) bound. On
the impossibility side, a rate upper bound of O (g2 log(1/¢)) is known for binary codes of
distance 1/2 — ¢/2 (e.g., [Del75, MRRW77, NS09]).

In a breakthrough result [TS17], Ta-Shma gave an explicit construction of binary codes
achieving nearly optimal distance versus rate trade-off, namely, binary codes of distance
1/2 —e/2 with rate Q(¢2TP) where B vanishes as ¢ vanishes 1. Actually, Ta-Shma obtained
e-balanced binary linear codes, that is, linear binary codes with the additional property
that non-zero codewords have Hamming weight bounded not only below by 1/2 —&/2
but also above by 1/2 +¢/2, and this is a fundamental property in the study of pseudo-
randomness [NN90, AGHP92].

While the codes constructed by Ta-Shma are explicit, they were not known to admit
efficient decoding algorithms, while such results are known for codes with smaller rates.
In particular, an explicit binary code due to Guruswami and Rudra [GR06] is known to be
even list decodable at an error radius 1/2 — € with rate Q)(e3). We consider the following

question:

1. In fact, Ta-Shma obtained g = B(e) = @(((loglog1/¢)/log1/€)'/3) and thus lim o B(e) = 0.
184



Do explicit binary codes near the GV bound admit an efficient decoding algorithm?

Here, we answer this question in the affirmative by providing an efficient 2 unique
decoding algorithm for (essentially) Ta-Shma’s code construction, which we refer as Ta-
Shma codes. More precisely, by building on Ta-Shma’s construction and using our unique

decoding algorithm we have the following result.

Theorem 4.1.1 (Unique Decoding). For every e > 0 sufficiently small, there are explicit binary

linear Ta-Shma codes Cyy ¢ g © ]PZZV for infinitely many values N € IN with

(i) distance at least 1/2 — €/2 (actually e-balanced),
(ii) rate Q(e2+P) where B = O(1/(log,(1/¢))1/®), and

(iii) a unique decoding algorithm with running time N Ocp(1),

Furthermore, if instead we take B > 0 to be an arbitrary constant, the running time becomes

(log(l/s))o(l) . NOs() (fixed polynomial time).

We can also perform “gentle” list decoding in the following sense (note that this par-

tially implies Theorem 5.1.1).

Theorem 4.1.2 (Gentle List Decoding). For every ¢ > 0 sufficiently small, there are explicit

binary linear Ta-Shma codes Cy e g © lFé\’ for infinitely many values N € IN with

(i) distance at least 1/2 — €/2 (actually e-balanced),
(ii) rate Q(e2+P) where B = O(1/(log,(1/¢))1/®), and

(iii) a list decoding algorithm that decodes within radius 1/2 — 2-0((logy(1/6)"®) 11y time
NOS,‘B(]')'

2. By “efficient”, we mean polynomial time. Given the fundamental nature of the problem of decoding
nearly optimal binary codes, it is an interesting open problem to make these techniques viable in practice.

185



We observe that the exponent in the running time N Ocp(1) appearing in Theorem 5.1.1
and Theorem 5.1.2 depends on ¢. This dependence is no worse than O(loglog(1/¢)), and
if B > Ois taken to be an arbitrarily constant (independent of ¢), the running time becomes
(log(1/¢))°M) . N Op(1), Avoiding this dependence in the exponent when B = B(¢) is an
interesting open problem. Furthermore, obtaining a list decoding radius of 1/2 — &/2
in Theorem 5.1.2 with the same rate (or even ()(e?)) is another very interesting open

problem and related to a central open question in the adversarial error regime [Gur09].

Direct sum codes. Our work can be viewed within the broader context of developing
algorithms for the decoding of direct sum codes. Given a (say linear) code C C F} and a

collection of tuples W C [n], the code dsumyy (C) with block length |W| is defined as
dsumpy (C) = {(zw;, +zw, + -+ + 2w )wew | 2 € C}.

The direct sum operation has been used for several applications in coding and complex-
ity theory [ABN 92, IW97, GI01, IKW09, DS14, DDG ™15, Chal6, DK17, Aro02]. It is easy
to see that if C is gp-balanced for a constant ¢, then for any ¢ > 0, choosing W to be
a random collection of tuples of size O(n/¢?) results in dsumyy (C) being an e-balanced
code. The challenge in trying to construct good codes using this approach is to find ex-
plicit constructions of (sparse) collections W which are “pseudorandom” enough to yield
a similar distance amplification as above. On the other hand, the challenge in decod-
ing such codes is to identify notions of “structure” in such collections W, which can be

exploited by decoding algorithms.

In Ta-Shma’s construction [TS17], such a pseudorandom collection W was constructed
by considering an expanding graph G over the vertex set [1], and generating f-tuples us-
ing sufficiently long walks of length t — 1 over the so-called s-wide replacement product

of G with another (small) expanding graph H. Roughly speaking, this graph product is a

186



generalization of the celebrated zig-zag product [RVWO00] but with s different steps of the
zig-zag product instead of a single one. Ta-Shma’s construction can also be viewed as a
clever way of selecting a sub-collection of all walks in G, which refines an earlier construc-
tion suggested by Rozenman and Wigderson [Bogl2] (and also analyzed by Ta-Shma)

using all walks of length t — 1.

Identifying structures to facilitate decoding. For the closely related direct product con-
struction (where the entry corresponding to w € W is the entire t-tuple (zw,, - .., Zw;))
which amplifies distance but increases the alphabet size, it was proved by Alon et al.
[ABN92] that the resulting code admits a unique decoding algorithm if the incidence
graph corresponding to the collection W is a good sampler. Very recently, it was proved
by Dinur et al. [DHK " 19] that such a direct product construction admits list decoding if
the incidence graph is a “double sampler”. The results of [DHK " 19] also apply to direct

sum, but the use of double samplers pushes the rate away from near optimality.

For the case of direct sum codes, the decoding task can be phrased as a maximum
t-XOR problem with the additional constraint that the solution must lie in C. More pre-
cisely, given i € IFgV within the unique decoding radius of dsumyy (C), we consider the

following optimization problem

argmin A(7, dsumpy(z)),
zeC

where A(-,-) is the (normalized) Hamming distance. While maximum #-XOR is in gen-
eral hard to solve to even any non-trivial degree of approximation [Hds97], previous work
by the authors [AJQ"20] identified a structural condition on W called “splittability” un-
der which the above constraint satisfaction problem can be solved (approximately) re-
sulting in efficient unique and list decoding algorithms. However, by itself the split-

tability condition is too crude to be applicable to codes such as the ones in Ta-Shma’s

187



construction. The requirements it places on the expansion of G are too strong and the

framework in [AJQ20] is only able to obtain algorithms for direct sum codes with rate

p—(log(1/€))* g2+,

The conceptual contribution of this work can be viewed as identifying a different re-
cursive structure in direct sums generated by expander walks, which allows us to view
the construction as giving a sequence of codes Cy,Cy, ..., Cy. Here, Cy is the starting code
C and C, is the final desired code, and each element in the sequence can be viewed as
being obtained via a direct sum operation on the preceding code. Instead of consider-
ing a “one-shot” decoding task of finding an element of Cy, this facilitates an iterative
approach where at each step we reduce the task of decoding the code C; to decoding for
C;_1, using the above framework from [AJQ"20]. Such an iterative approach with a se-
quence of codes was also used (in a very different setting) in a work of Guruswami and
Indyk [GI03] constructing codes over a large alphabet which are list decodable in linear

time via spectral algorithms.

Another simple and well-known (see e.g., [GI04]) observation, which is very helpful
in our setting, is the use of list decoding algorithms for unique decoding. For a code with
distance 1/2 — €/2, unique decoding can be obtained by list decoding at a much smaller
error radius of (say) 1/2 —1/8. This permits a much more efficient application of the
framework from [AJQ*20], with a milder dependence on the expansion of the graphs
G and H in Ta-Shma’s construction, resulting in higher rates. We give a more detailed

overview of our approach in Section 4.3.

Known results for random ensembles. While the focus in this work is on explicit con-
structions, there are several known (non-explicit) constructions of random ensembles of
binary codes near or achieving the Gilbert-Varshamov bound (e.g., Table 4.1). Although
it is usually straightforward to ensure the desired rate in such constructions, the distance

only holds with high probability. Given a sample code from such ensembles, certifying
188



the minimum distance is usually not known to be polynomial time in the block length.
Derandomizing such constructions is also a possible avenue for obtaining optimal codes,

although such results remain elusive to this date (to the best of our knowledge).

One of the simplest constructions is that of random binary linear codes in which the
generator matrix is sampled uniformly. This random ensemble achieves the GV bound

with high probability, but its decoding is believed to be computationally hard [MMT11].

Much progress has been made on binary codes by using results for larger alphabet
codes [Gur09]. Codes over non-binary alphabets with optimal (or nearly optimal) param-
eters are available [vL99, 5ti08, GR06] and thanks to this availability a popular approach
to constructing binary codes has been to concatenate such large alphabet codes with bi-
nary ones. Thommesen [Tho83] showed that by concatenating Reed—Solomon (RS) codes
with random binary codes (one random binary code for each position of the outer RS
code) it is possible to achieve the GV bound. Note that Thommesen codes arise from a
more structured ensemble than random binary linear codes. This additional structure
enabled Guruswami and Indyk [GI04] to obtain efficient decoding algorithms for the
non-explicit Thommesen codes (whose minimum distance is not known to admit effi-
cient certification). This kind of concatenation starting from a large alphabet code and
using random binary codes, which we refer as Thommesen-like, has been an important
technique in tackling binary code constructions with a variety of properties near or at the
GV bound. An important drawback in several such Thommesen-like code constructions
is that they end up being non-explicit (unless efficient derandomization or brute-force is

viable).

Using a Thommesen-like construction, Gopi et al. [GKO™17] showed non-explicit
constructions of locally testable and locally correctable binary codes approaching the
GV bound. More recently, again with a Thommesen-like construction, Hemenway et

al. [HRW17] obtained non-explicit near linear time unique decodable codes at the GV

189



bound improving the running time of Guruswami and Indyk [GI04] (and also the decod-

ing rates). We summarize the results discussed so far in Table 4.1.

Binary Code Results near the Gilbert-Varshamov bound
Who? Construction GV Explicit | Concatenated | Decoding Local
[Gil52, Var57] | existential yes no no no n/a
[Tho83] Reed-Solomon + yes no yes no n/a
random binary
[GI04] Thommesen [Tho83] | yes no yes unique decoding n/a
[GKOT17] Thommesen-like yes no yes unique decoding LTC/LCC
[HRW17] Thommesen-like yes no yes near linear time n/a
unique decoding
[TS17] Expander-based Q(e2P) | yes no no n/a
‘ this paper ‘ Ta-Shma [TS17] ‘ Q(e2HP) ‘ yes ‘ no ‘ gentle list decoding ‘ n/a ‘

Table 4.1: GV bound related results for binary codes.

There are also non-explicit constructions known to achieve list decoding capacity [GROS,
MRRZ119] (being concatenated or LDPC/Gallager [Gal62] is not an obstruction to achieve
capacity). Contrary to the other results in this subsection, Guruswami and Rudra [Gur05,
GRO06, Gur(9], also using a Thommesen-like construction, obtained explicit codes that are
efficiently list decodable from radius 1/2 — & with rate Q(¢3). This was done by con-
catenating the so-called folded Reed—Solomon codes with a derandomization of a binary

ensemble of random codes.

Results for non-adversarial error models. All the results mentioned above are for the
adversarial error model of Hamming [Ham50, Gur10]. In the setting of random corrup-
tions (Shannon model), the situation seems to be better understood thanks to the seminal
result on explicit polar codes of Arikan [Ari09]. More recently, in another breakthrough
Guruswami et al. [GRY19] showed that polar codes can achieve almost linear time de-
coding with near optimal convergence to capacity for the binary symmetric channel. This
result gives an explicit code construction achieving parameter trade-offs similar to Shan-
non’s randomized construction [Sha48] while also admitting very efficient encoding and
decoding. Explicit capacity-achieving constructions are also known for bounded memory

190



channels [SKS19] which restrict the power of the adversary and thus interpolate between

the Shannon and Hamming models.

4.2 Preliminaries and Notation

4.2.1 Codes

We briefly recall some standard code terminology. Given z,z" € %, recall that the relative
Hamming distance between z and 2’ is A(z,2') = [{i | z; # 2/}| /n. A binary code is any
subset C C 4. The distance of C is defined as A(C) = min,_,s A(z,z') where z,z' € C.

We say that C is a linear code if C is a linear subspace of IF}. The rate of C is log, (|C|) /n.

Instead of discussing the distance of a binary code, it will often be more natural to

phrase results in terms of its bias.

Definition 4.2.1 (Bias). The bias of a word z € F} is defined as bias(z) = ‘]Eie[n} (—=1)%|. The

bias of a code C is the maximum bias of any non-zero codeword in C.

Definition 4.2.2 (e-balanced Code). A binary code C is e-balanced if bias(z + z') < ¢ for

every pair of distinct z,z' € C.

Remark 4.2.3. For linear binary code C, the condition bias(C) < e is equivalent to C being an

e-balanced code.

4.2.2  Direct Sum Lifts

Starting from a code C C [F%, we amplify its distance by considering the direct sum lifting
operation based on a collection W (k) C [n]¥. The direct sum lifting maps each codeword

of C to a new word in IF'ZW(k)‘ by taking the k-XOR of its entries on each element of W (k).

191



Definition 4.2.4 (Direct Sum Lifting). Let W (k) C [n]*. For z € FZ, we define the direct sum
lifting as dsumyy iy (z) = y such that ys = Yjes z; for all s € W(k). The direct sum lifting of a
code C C ng is

dsumyy ) (C) = {dsumyy(z) [ z € C}.

We will omit W (k) from this notation when it is clear from context.

Remark 4.2.5. We will be concerned with collections W (k) C [n]* arising from length-(k — 1)

walks on expanding structures (mostly on the s-wide replacement product of two expander graphs).

We will be interested in cases where the direct sum lifting reduces the bias of the base
code; in [TS17], structures with such a property are called parity samplers, as they emulate

the reduction in bias that occurs by taking the parity of random samples.

Definition 4.2.6 (Parity Sampler). A collection W(k) C [n]* is called an (e, €)-parity sam-

pler if for all z € I with bias(z) < ¢g, we have bias(dsumyy (. (z)) < &.

4.2.3 Linear Algebra Conventions

All vectors considered in this paper are taken to be column vectors, and are multiplied on
the left with any matrices or operators acting on them. Consequently, given an indexed
sequence of operators Gy, ..., Gy, (with ky < k) corresponding to steps ky through k, of

a walk, we expand the product Hi.{ikl G; as

ko
H Gi = sz"'le.
i=ky
Unless otherwise stated, all inner products for vectors in coordinate spaces are taken to be
with respect to the (uniform) probability measure on the coordinates. Similarly, all inner
products for functions are taken to be with respect to the uniform measure on the inputs.

All operators considered in this paper are normalized to have singular values at most 1.
192



4.3 Proof Overview

The starting point for our work is the framework developed in [AJQ20] for decoding
direct sum codes, obtained by starting from a code C C IFj and considering all parities
corresponding to a set of t-tuples W(t) C [n]!. Ta-Shma’s near optimal e-balanced codes
are constructed by starting from a code with constant rate and constant distance and con-
sidering such a direct sum lifting. The set of tuples W(¢) in his construction corresponds
to a set of walks of length t — 1 on the s-wide replacement product of an expanding graph
G with vertex set [1] and a smaller expanding graph H. The s-wide replacement product
can be thought of here as a way of constructing a much smaller pseudorandom subset of
the set of all walks of length t — 1 on G, which yields a similar distance amplification for

the lifted code.

The simplified construction with expander walks. While we analyze Ta-Shma’s con-
struction later in the paper, it is instructive to first consider a W(t) simply consisting of all
walks of length t — 1 on an expander. This construction, based on a suggestion of Rozen-
man and Wigderson [Bog12], was also analyzed by Ta-Shma [TS17] and can be used to
obtain e-balanced codes with rate Q(€4+0(1) ). It helps to illustrate many of the conceptual

ideas involved in our proof, while avoiding some technical issues.

Let G be a d-regular expanding graph with vertex set [1] and the (normalized) second
singular value of the adjacency operator Ag being A. Let W(t) C [n]! denote the set of
t-tuples corresponding to all walks of length t — 1, with N = |W(t)| = n - d!~1. Ta-Shma

proves that for all z € FJ, W(t) satisfies
bias(z) < g9 = bias(dsumyy,)(z)) < (g9 +24) [(t=1)/2]

ie., W(t) is an (e, €)-parity sampler for ¢ = (gg + 2A)L(=1)/2] Choosing ¢y = 0.1 and

193



A = 0.05 (say), we can choose d = O(1) and obtain the e-balanced code C’ = dsumyy ) (C)

with rate d—(t=1) = ¢O(1) (although the right constants matter a lot for optimal rates).

Decoding as constraint satisfaction. The starting point for our work is the framework
in [AJQ"20] which views the task of decoding 7 with A(C’,#) < (1 —¢)/4 — & (where the
distance of C’ is (1 — €)/2) as an instance of the MAX t-XOR problem (see Fig. 4.1). The

goal is to find

argmin A (dsumw(t) (2), ;7) ,
zeC

which can be rephrased as

argmax E []1 L ]
gec w=(iy,...,ir) EW(t) {zip ++zi, =Fo )

It is possible to ignore the condition that z € C if the collection W(t) is a slightly stronger

parity sampler. For any solution Z € IF5 (not necessarily in C) such that

1—c¢

9,
4+

A(dsumyy ) (2),7) <

we have
1—c¢

A(dsumyy 4 (2), dsumyy ) (z)) <

by the triangle inequality, and thus bias(dsumw(t) (z—2)) > e If W(t) is not just an
(€9, €)-parity sampler, butin facta ((1+¢g) /2, €)-parity sampler, this would imply bias(z —
Z) > (14¢€g)/2. Thus, A(z,2) < (1 —¢g)/4 (or A(z,Z) < (1 —¢y)/4) and we can use a

unique decoding algorithm for C to find z given Z.

The task of finding such a z € C boils down to finding a solution Z € [F] to a
MAX t-XOR instance, up to a an additive loss of O(¢) in the fraction of constraints satis-

tied by the optimal solution. While this is hard to do in general [Hds01, Gri01], [AJQ120]

194



| Small approximation error §

. "~ _ (comparable to ¢)
Unique decoding radius \

(1—e)/4]

Figure 4.1: Unique decoding ball along with error from approximation.

(building on [A]JT19]) show that this can be done if the instance satisfies a special prop-
erty called splittability. To define this, we let W[t1, tp] C [n]?271171 denote the collection
of (tp — t1 + 1)-tuples obtained by considering the indices between t; and f, for all tuples
in W(t). We also assume that all w € W[ty, t] can be extended to the same number of

tuples in W(t) (which is true for walks).

Definition 4.3.1 (Splittability (informal)). A collection W(t) C [n]! is said to be T-splittable,

if t = 1 (base case) or there exists t' € [t — 1] such that:

1. The matrix S € RWLT<WIH 1] defined by S(w,w') = Ly ewy has normalized

second singular value at most T (where ww' denotes the concatenated tuple).

2. The collections W[1,t'] and W[t' + 1,¢] are T-splittable.

For example, considering walks in G of length 3 (t = 4) and t' = 2, we get that
W(1,2] = WJ[3,4] = E, the set of oriented edges in G. Also S(w,w’) = 1 if and only if
the second vertex of w and first vertex of w’ are adjacent in G. Thus, up to permutation
of rows and columns, we can write the normalized version of S as Ag ® J;/d where Ag
is normalized adjacency matrix of G and J; denotes the d x d matrix of 1s. Hence such
a W(t) satisfies 0»(S) < T with T = 0»(Ag), and a similar proof works for walks of all

lengths.

The framework in [AJQ"20] and [AJT19] gives that if W(t) is T-splittable for T =
195



(6/2H0(1) then the above instance of MAX t-XOR can be solved to additive error O(5)
using the Sum-of-Squares (SOS) SDP hierarchy. Broadly speaking, splittability allows
one to (recursively) treat instances as expanding instances of problems with two “tuple
variables” in each constraint, which can then be analyzed using known algorithms for
2-CSPs [BRS11, GS11] in the SOS hierarchy. Combined with parity sampling, this yields
a unique decoding algorithm. Crucially, this framework can also be extended to perform
list decoding® up to a radius of 1/2 — v/ — § under a similar condition on 7, which will be

very useful for our application.

While the above can yield decoding algorithms for suitably expanding G, the require-
ment on T (and hence on A) makes the rate much worse. We need § = O(¢) (for unique
decoding) and t = O(log(1/¢)) (for parity sampling), which requires A = ¢2(1), yield-
ing only a quasipolynomial rate for the code (recall that we could take A = O(1) earlier

yielding polynomial rates).

Unique decoding: weakening the error requirement. We first observe that it is possible
to get rid of the dependence 6 = O(¢) above by using the list decoding algorithm for unique
decoding. It suffices to take § = 0.1 and return the closest element from the the list of all
codewords up to an error radius 1/2 — /e — 0.1, if we are promised that A(7, C) is within
the unique decoding radius (see Fig. 4.2). However, this alone does not improve the rate

as we still need the splittability (and hence A) to be 270 with t = O(log(1/¢)).

Code cascades: handling the dependence on walk length. To avoid the dependence of
the expansion on the length t — 1 of the walk (and hence on ¢), we avoid the “one-shot”

decoding above, and instead consider a sequence of intermediate codes between C and

3. While unique decoding can be thought of as recovering a single solution to a constraint satisfaction
problem, the goal in the list decoding setting can be thought of as obtaining a “sufficiently rich” set of
solutions which forms a good cover. This is achieved in the framework by adding an entropic term to the
semidefinite program, which ensures that the SDP solution satisfies such a covering property.

196



/
Unique decoding radius

(1/4—¢/4)

- - ___, Constant approximation
List decoding radius \—j/ error (0.1)
(1/2 - V)

Figure 4.2: Unique decoding and list decoding balls along with error from approximation.
Note that the list decoding ball contains the unique decoding ball even after allowing for
a relatively large amount of error.

C'. Consider the case when t = k?, and instead of computing t-wise sums of bits in each
z € Y}, we first compute k-wise sums according to walks of length k — 1 on G, and then a
k-wise sum of these values. In fact, the second sum can also be thought of as arising from
a length k — 1 walk on a different graph, with vertices corresponding to (directed) walks
with k vertices in G, and edges connecting w and w’ when the last vertex of w is connected
to the first one in w’ (this is similar to the matrix considered for defining splittability). We
can thus think of a sequence of codes Cy,Cq,Cp with Cy = C and C, = C’, and both
C; and C, being k-wise direct sums. More generally, when t = k’ for an appropriate
constant k we can think of a sequence C = Cy,Cy,...,Cp = C’, where each is an k-wise
direct sum of the previous code, obtained via walks of length k — 1 (hence k vertices) in
an appropriate graph. We refer to such sequences (defined formally in Section 4.5) as code

cascades (see Fig. 4.3).

Instead of applying the decoding framework above to directly reduce the decoding of
a corrupted codeword from C’ to the unique decoding problem in C, we apply it at each

level of a cascade, reducing the unique decoding problem in C; to thatin C;_q. If the direct
197



Co dsum ¢ iy dsum ¢

€0 €1 &1 \/ & Sg =€

Crude parity sampling via Markov chain walk

Refined parity sampling via Ta-Shma’s walk

Figure 4.3: Code cascading.

sum at each level of the cascade is an (7, 17)-parity sampler, the list decoding algorithm
at radius 1/2 — /7 suffices for unique decoding even if 7 is a (sufficiently small) constant
independent of e. This implies that we can take k to be a (suitably large) constant. This
also allows the splittability (and hence A) to be 20k — Q(1), yielding polynomial
rates. We present the reduction using cascades in Section 4.6 and the parameter choices
in Section 4.8. The specific versions of the list decoding results from [A]JQT20] needed

here are instantiated in Section 4.9.

While the above allows for polynomial rate, the running time of the algorithm is still
exponential in the number of levels ¢ (which is O(logt) = O(loglog(1/¢))) since the list
decoding for each level potentially produces a list of size poly(n), and recursively calls
the decoding algorithm for the previous level on each element of the list. We obtain a
fixed polynomial time algorithm by “pruning” the list at each level of the cascade before
invoking the decoding algorithm for the previous level, while only slightly increasing the

parity sampling requirements. The details are contained in Section 4.6.

198



Working with Ta-Shma'’s construction. Finally, to obtain near-optimal rates, we need to
work with with Ta-Shma’s construction, where the set of tuples W(t) C [n]’ corresponds
to walks arising from an s-wide replacement product of G with another expanding graph
H. One issue that arises is that the collection of walks W(t) as defined in [TS17] does
not satisfy the important splittability condition required by our algorithms. However,
this turns out to be easily fixable by modifying each step in Ta-Shma’s construction to be
exactly according to the zig-zag product of Reingold, Vadhan and Wigderson [RVWOO].

We present Ta-Shma's construction and this modification in Section 4.4.

We also verify that the tuples given by Ta-Shma’s construction satisfy the conditions
for applying the list decoding framework, in Section 4.7. While the sketch above stated
this in terms of splittability, the results in [AJQT20] are in terms of a more technical condi-
tion called tensoriality. We show in Section 4.7 that this is indeed implied by splittability,

and also prove splittability for (the modified version of) Ta-Shma’s construction.

4.4 Ta-Shma’s Construction: A Summary and Some Tweaks

In this section, we first discuss the s-wide replacement product that is central to Ta-Shma’s
construction of optimal e-balanced codes, and then we describe the construction itself (we

refer the reader to [TS17] for formal details beyond those we actually need here).

As mentioned before, we will also need to modify Ta-Shma’s construction [TS17] a
little to get splittability which is a notion of expansion of a collection W (k) C [n]k (and
it is formally defined in Definition 4.7.9). The reason for this simple modification is that
this splittability property is required by the list decoding framework. Note that we are
not improving the Ta-Shma code parameters; in fact, we need to argue why with this
modification we can still achieve Ta-Shma’s parameters. Fortunately, this modification

is simple enough that we will be able to essentially reuse Ta-Shma’s original analysis.

199



In Appendix D.1.3, we will also have the opportunity to discuss, at an informal level,
the intuition behind some parameter trade-offs in Ta-Shma codes which should provide

enough motivation when we instantiate these codes in Section 4.8.

4.4.1 The s-wide Replacement Product

Ta-Shma’s code construction is based on the so-called s-wide replacement product [TS17].
This is a derandomization of random walks on a graph G that will be defined via a prod-
uct operation of G with another graph H (see Definition D.1.3 for a formal definition). We

will refer to G as the outer graph and H as the inner graph in this construction.

Let G be a dq-regular graph on vertex set [n] and H be a dp-regular graph on vertex
set [d1]°, where s is any positive integer. Suppose the neighbors of each vertex of G are
labeled 1, 2, ..., dy. For v € V(G), let v[j] be the j-th neighbor of v. The s-wide replace-
ment product is defined by replacing each vertex of G with a copy of H, called a “cloud”.
While the edges within each cloud are determined by H, the edges between clouds are
based on the edges of G, which we will define via operators Gg, Gy, ..., Gs_1. The i-th op-
erator G; specifies one inter-cloud edge for each vertex (v, (ag,...,a5_1)) € V(G) x V(H),
which goes to the cloud whose G component is v [4;], the neighbor of v in G indexed by
the i-th coordinate of the H component. (We will resolve the question of what happens to

the H component after taking such a step momentarily.)

Walks on the s-wide replacement product consist of steps with two different parts: an
intra-cloud part followed by an inter-cloud part. All of the intra-cloud substeps simply
move to a random neighbor in the current cloud, which corresponds to applying the
operator | ® Ay, where Ap is the normalized adjacency matrix of H. The inter-cloud
substeps are all deterministic, with the first moving according to Gy, the second according

to Gy, and so on, returning to G for step number s + 1. The operator for such a walk

200



taking t — 1 steps on the s-wide replacement product is

t—2

Gi mod s(l ® AH)~
i=0

Observe that a walk on the s-wide replacement product yields a walk on the outer
graph G by recording the G component after each step of the walk. The number of (t —1)-

step walks on the s-wide replacement product is
- -1
V(O IV(H)]-dy " =n-dj-dy ",

since a walk is completely determined by its intra-cloud steps. If d; is much smaller than
dq and t is large compared to s, this is less than ndi_l, the number of (¢ — 1)-step walks
on G itself. Thus the s-wide replacement product will be used to simulate random walks
on G while requiring a reduced amount of randomness (of course this simulation is only

possible under special conditions, namely, when we are uniformly distributed on each
cloud).

To formally define the s-wide replacement product, we must consider the labeling of

neighbors in G more carefully.

Definition 4.4.1 (Rotation Map). Suppose G is a dy-regular graph on [n]. For each v € [n]
and j € [dq], let vg]j] be the j-th neighbor of v in G. Based on the indexing of the neighbors

of each vertex, we define the rotation map * rotg: [n] x [dy] — [n] x [dq] such that for every

(v,7) € [n] x [di],

rotg((0,7)) = (¢/,1') & vlj] = o' and v[f'] = o.

4. This kind of map is denoted rotation map in the zig-zag terminology [RVWO00].

201



Furthermore, if there exists a bijection @: [d1] — [dq] such that for every (v,j) € [n] x [d1],

rotg((v, 7)) = (vglil, ¢(j)),

then we call rotg locally invertible.

If G has a locally invertible rotation map, the cloud label after applying the rotation
map only depends on the current cloud label, not the vertex of G. In the s-wide replace-
ment product, this corresponds to the H component of the rotation map only depending
on a vertex’s H component, not its G component. We define the s-wide replacement prod-
uct as described before, with the inter-cloud operator G; using the i-th coordinate of the

H component, which is a value in [d], to determine the inter-cloud step.

Definition 4.4.2 (s-wide replacement product). Suppose we are given the following:

- A dq-reqular graph G = ([n], E) together with a locally invertible rotation map rotg: [n] X
[d1] = [n] x [d1].

- A dy-reqular graph H = ([dq]°, E).
And we define:

- Fori € {0,1,...,s — 1}, we define Rot;: [n] x [d1]® — [n] x [d1]° as, for every v € [n]

and (ag, . ..,a,_1) € [d1]°,

Rot;((v, (ag, ..., as_1))) = (v, (ag, ..., a;i_1,a, i1, ...,a5_1)),

where (v, a}) = rotg (v, a;).

- Denote by G; the operator realizing Rot; and let Agy be the normalized random walk operator

of H. Note that G; is a permutation operator corresponding to a product of transpositions.
202



Then t — 1 steps of the s-wide replacement product are given by the operator

t—2
Gi mod s(l ® AH)-

i=0
Ta-Shma instantiates the s-wide replacement product with an outer graph G that is a

Cayley graph, for which locally invertible rotation maps exist generically.

Remark 4.4.3. Let R be a group and A C R where the set A is closed under inversion. For every
Cayley graph Cay (R, A), the map ¢: A — A defined as ¢(g) = g~ gives rise to the locally

invertible rotation map

I'OtCay(R,A) ((7’, a)) = (1’ "4, ail)r

foreveryr € R, a € A.

Figure 4.4: An example of the 1-wide replacement product with outer graph G = K5 and
inner graph H = Cj. Vertices are labeled by their H components. Note that the rotation
map is locally invertible, with ¢(1) =2, ¢(2) =1, ¢(3) =4, and ¢(4) = 3.

203



4.4.2 The Construction

Ta-Shma'’s code construction works by starting with a constant bias code Cp in IF} and
boosting to arbitrarily small bias using direct sum liftings. Recall that the direct sum
lifting is based on a collection W(t) C [n]!, which Ta-Shma obtains using ¢ — 1 steps
of random walk on the s-wide replacement product of two regular expander graphs G
and H. The graph G is on n vertices (same as blocklength of the base code) and other
parameters like degrees di and d of G and H respectively are chosen based on target

code parameters.

To elaborate, every t — 1 length walk on the replacement product gives a sequence
of t outer vertices or G-vertices, which can be seen as an element of [n]f. This gives the
collection W(t) with [W(t)| = n - dj - déﬁl which means the rate of lifted code is smaller
than the rate of Cy by a factor of didé_l. However, the collection W(t) is a parity sam-
pler and this means that the bias decreases (or the distance increases). The relationship
between this decrease in bias and decrease in rate with some careful parameter choices

allows Ta-Shma to obtain nearly optimal e-balanced codes.

4.4.3 Tweaking the Construction

Recall the first s steps in Ta-Shma’s construction are given by the operator
Gs 1(1®AR)Gs 2+ G1(1® Ap)Go (I ® Ap).

Naively decomposing the above operator into the product of operators Hf;& G;(I®Ag)is
not good enough to obtain the splittability property which would hold provided o (G; (I ®
Ap)) was small forevery iin {0,...,s — 1}. However, each G;(I1 ® Ag) has |V (G)| singular

values equal to 1 since G; is an orthogonal operator and (I ® Ag) has |V(G)| singular

204



values equal to 1. To avoid this issue we will tweak the construction to be the following

product

s—1

[T0® ARG (1 AR).

i=0

The operator (I ® Ap)G;(1 ® Ag) is exactly the walk operator of the zig-zag product

G@H of G and H with a rotation map given by the (rotation map) operator G;. This
tweaked construction is slightly simpler in the sense that G (@ H is an undirected graph.
We know by the zig-zag analysis that (I ® Ag)G;(l ® Ag) is expanding as long G and H

are themselves expanders. More precisely, we have a bound that follows from [RVWOO].

Fact 4.4.4. Let G be an outer graph and H be an inner graph used in the s-wide replacement

product. For any integer 0 <i <s—1,
(19 AR)Gi(1® Apy)) < 02(G) +2- 0p(H) + 0p(H)?.

This bound will imply splittability as shown in Appendix D.1.4. We will need to argue
that this modification still preserves the correctness of the parity sampling and that it can

be achieved with similar parameter trade-offs.

The formal definition of a length-t walk on this slightly modified construction is given

below.

Definition 4.4.5. Let t € IN, G be a dy-regular graph and H be a dy-regular graph on dj ver-
tices. Given a starting vertex (v,h) € V(G) x V(H), a (t — 1)-step walk on the tweaked s-wide
replacement product of G and H is a tuple ((vg, hg), ..., (vs_1,hi—1)) € (V(G) x V(H))! such
that

- (vo, hg) = (v, h), and

- forevery 0 < i <t —1, we have (v;, h;) adjacent to (v;11,hi11) in (1 @ Ag)G; mod s(| ®

Ap).
205



Note that each (1 ® A)G; mod s (| ® Ay ) is a walk operator of a d3-regular graph. Therefore, the

t—1

starting vertex (v, h) together with a degree sequence (my, ..., my) € [d%] uniquely defines a

(t — 1)-step walk.

Parity Sampling

We argue informally why parity sampling still holds with similar parameter trade-offs.
Later in Section 4.4.3, we formalize a key result underlying parity sampling and, in Sec-
tion 4.8, we compute the new trade-off between bias and rate in some regimes. In Ap-
pendix D.1.1, the definition of the original s-wide replacement product as a purely graph
theoretic operation was given. Now, we explain how Ta-Shma used this construction for

parity sampling obtaining codes near the GV bound.

For a word z € ]F;/ (6) in the base code, let P; be the diagonal matrix, whose rows
and columns are indexed by V(G) x V(H), with (PZ)(U,h),(v,h) = (—1)%. Proving parity

sampling requires analyzing the operator norm of the following product

s—1
P.J] (1 ®A)GP(I®Ay), (4.1)
i=0
when bias(z) < ¢g. Let 1 € RV (G)*V(H) pe the all-ones vector and W be the collection of

all (t — 1)-step walks on the tweaked s-wide replacement product. Ta-Shma showed (and

it is not difficult to verify) that

t—2
bias (dsumyy (z)) = ‘<1 P, H (1®AH)Gj mod sPz(1® AH)1> )
i=0

From the previous equation, one readily deduces that

s—1 L(t=1)/s]
bias (dsumyy(z)) < 0y (PZH (I®AH)GI-PZ(I®AH)) .
i=0
206



Set B := P, H?;& (1® Ap)G;Pz(1 ® Ag). To analyze the operator norm of B, we will first
need some notation. Note that B is an operator acting on the space V = RY(G) @ RV(H),

Two of its subspaces play an important role in the analysis, namely,
Wl =span{a@b e RV g RVH) | p = 1} and W+ = (WIHL.

Note that the complement subspace is with respect to the standard inner product. Ob-
serve that V = Wl @ W, Given arbitrary unit vectors v, w € V, Ta-Shma considers the

inner product

s—1
<v,1‘[ (I®AH)GiPZ(I®AH)w>. (4.2)
i=0
Each time an operator (I ® Ay ) appears in the above expression, the next step of the walk
can take one out of d; possibilities and thus the rate suffers a multiplicative decrease of
1/d;. We think that we are “paying” d, for this step of the walk. The whole problem lies
in the trade-off between rate and distance, so the crucial question now is how much the
norm decreases as we pay dp. For a moment, suppose that the norm always decreases by
a factor of Ay := 0, (H) per occurrence of (I ® Agy). If in this hypothetical case we could
further assume Ay = 1//dy, then if B was a product containing [log) (¢)] factors of (I ®

Ap), the final bias would be at most € and the rate would have suffered a multiplicative

decrease of (essentially) ¢2 and we would be done.

Of course, this was an oversimplification. The general strategy is roughly the above,
but a beautiful non-trivial step is needed. Going back to the bilinear form Eq. (4.2), if
w € W (orv € W), we pay d; and we do obtain a norm decrease of A». More generally,

L

note that can decompose w = wl + wt with wll € Wl and wt e Wt (decompose

v = ol 4ot similarly) and we can carry this process iteratively collecting factors of As.

207



However, we are stuck with several terms of the form for 0 < k; <k, <s,

ko

<U£1, H (12 Ag)G;Pz(1® AH)wl|<|2> ,

i=k

with Uk, Wk, € WIl, and for which the preceding naive norm decrease argument fails.
This is the point in the analysis where the structure of the s-wide replacement product
is used. Since vlul, wl!z S W”, these vectors are uniform on each “cloud”, i.e., copy of H.
Recall that a vertex in H is an s-tuple (mq,...,ms) € [d1]°. Ta-Shma leverages the fact of

having a uniform such tuple to implement k, — k1 + 1 (up to s) steps of random walk on

G. More precisely, Ta-Shma obtains the following beautiful result:

Theorem 4.4.6 (Adapted from Ta-Shma [TS17]). Let G be a locally invertible graph of degree
dq, H be a Cayley graph on IF;logdl, and 0 < k1 < ky < s be integers. vaH =ov®1and

wl = w ® 1, then

ka
<U|, [] G ®AH)pzw|> _ <U, (AGMZ)kz—k1+1w>

i—k;
where My € RV(G)XV(G) s the diagonal matrix defined as (Mz )y 0 = (—1)% forv € V(G).

Remark 4.4.7. Note that the walk operator in this theorem corresponds to the original construc-
tion. Theorem 4.4.6 was used by Ta-Shma to obtain Fact D.1.7 whose Corollary D.1.8 corresponds

to the modified construction.

Ta-Shma proved Theorem 4.4.6 under the more general condition that H is 0-pseudorandom.
Roughly speaking, this property means that if we start with a distribution that is uniform
over the clouds, and walk according to fixed H-steps jg, j1,- - - , js—1, then the distribution
of G-vertices obtained will be identical to the distribution obtained if we were doing the

. slogd
usual random walk on G. We will always choose H to be a Cayley graph on F, °"",

208



which will imply that H is also 0-pseudorandom. The proof of Theorem 4.4.6 crucially
uses the product structure of IF;log a, every vertex of H can be represented by s registers
of logdy bits each, and both inter-cloud and intra-cloud steps can be seen as applying

register-wise bijections using some canonical mapping between [d;] and 1[3120g a,

Ta-Shma’s original parity sampling proof required e + 26 + 20> (G) < o»(H)?, where
gq is the initial bias and 6 is an error parameter arising from a number theoretic construc-
tion of Ramanujan graphs for the outer graph G. This is because gy + 26 + 205 (G) is the
reduction of bias in every two steps while taking a walk on G (see Theorem 4.5.2). Hav-
ing eg + 26 + 20,(G) < 0p(H)? ensured that after establishing Theorem 4.4.6, we were
collecting enough reduction for d% price we paid for two steps. In the modified construc-
tion, we now have d% possibilities for each step in (1 ® A%{) (so d% price for two steps), and
so if instead we have gg + 26 + 205 (G) < 0»(H)* in the modified construction, we claim
that the correctness of the parity sampling analysis is preserved as well as (essentially)
the trade-off between walk length and norm decay. Fortunately, Ta-Shma’s parameters

decouple and we can choose parameters to satisfy the above requirement.

Remark 4.4.8. This modification on the s-replacement product of G and H essentially ® amounts
to taking a different inner graph H which can be factored as H = ~/H+/H (and is still 0-

pseudorandom,).

Spectral Analysis of the Modified Construction

We formally show that we don’t loose much by going from Ta-Shma’s original s-wide
product construction to its tweaked version. The key technical result obtained by Ta-
Shma is the following, which is used to analyze the bias reduction as a function of the

total number walk steps t — 1.

5. Except at the first and last factors in the product of operators.

209



Fact 4.4.9 (Theorem 24 abridged [TS17]). If H is a Cayley graph on ]F;log N and eg+2-0+

2- 0’2(G) < 0'2(H)2, then

< op(H)* +5-0y(H)* 1 +5%-0p(H)*3,
op

|®AH

where P, € RV(G)xV(H))x(V(G)xV(H)) j5 the sign operator of a e biased word z € ]FZ(G)

defined as a diagonal matrix with (Pz) o 1) (o,n) = (—1)% for every (v,h) € V(G) x V(H).

We reduce the analysis of Ta-Shma’s tweaked construction to Fact D.1.7. In doing so,

we only lose one extra step as shown below.
Corollary 4.4.10. If H? is a Cayley graph on nglog N and g0 +2-0+2-05(G) < op(H)*, then

s—1

[TU®AL)P:Gi(1®Ap)
i=0

< op(HA) 4 (s = 1) - op(H?) 2 4 (s = 1)% - o (H?)* ™,
op

where P is the sign operator of an ey-biased word z € IF;/ (©) 4s in Fact D.1.7.

Proof. We have

s—1 s—1
[T0®AmPG (@A) < [(@AR)lop | [TP:G(1@AL)||  [P:Go(1® Am)llop
i=0 op i=1 op
H P.G;(I® A%))
op
< op(HY) T4 (s = 1) - op(HY) 72 4 (s — 1) - o (H?)*,
where the last inequality follows from Fact D.1.7. n

Remark 4.4.11. We know that in the modified construction H? is a Cayley graph since H is a
Cayley graph.

210



From this point onward, we will be working exclusively with the modified construc-
tion instead of using it in its original form. Any references to Ta-Shma’s construction or
the s-wide replacement product will actually refer to the modified versions described in

this section.

4.5 Code Cascading

A code cascade is a sequence of codes generated by starting with a base code Cy and

recursively applying lifting operations.

Definition 4.5.1. We say that a sequence of codes Cy,Cq,...,Cy is a code cascade provided
Ci = dsumyy (;\(Cj_1) for every i € [¢]. Each Wj(t;) is a subset of [n;_1]%, where n;_1 =
|W;_1(t;_1)| is the block length of the code C;_1.

Let us see how code cascades may be useful for decoding. Suppose we wish to lift the
code C to Cy, and there is some W(t) C [np]! such that C; = dsumyy ;) (Cp). In our case of
bias boosting, this t will depend on the target bias e. However, the expansion requirement
of the list-decoding framework of [AJQ™20] has a poor dependence on t. A way to work
around this issue is to go from Cj to C; via a code cascade as above such that each ¢; is a
constant independent of the final bias but 1% t; = t (which means ¢ depends on ¢). The
tinal code C; of the cascade is the same as lt:hle code obtained from length-(t — 1) walks.

While decoding will now become an /-level recursive procedure, the gain from replacing

t by t; will outweigh this loss, as we discuss below.

4.5.1 Warm-up: Code Cascading Expander Walks

We now describe the code cascading construction and unique decoding algorithm in more
detail. Let G = (V, E) be a d-regular graph with uniform distribution over the edges. Let
211



m be a sufficiently large positive integer, which will be the number of vertices of the walks
used for the lifting between consecutive codes in the cascade. At first, it will be crucial
that we can take m = O(1) so that the triangle inequality arising from the analysis of the
lifting between two consecutive codes involves a constant number of terms. We construct

a recursive family of codes as follows.

Start with a code Cy which is linear and has constant bias ¢.

- Define the code C; = dsumw(m) (Cp), which is the direct sum lifting over the collec-

tion W(m) of all length-(m — 1) walks on G using the code Cy.

- Let Gi = (V;, E;) be the (directed) graph where V; is the collection of all walks on
m' vertices on G with two walks (v1, ..., v,i)and (uy,...,u, ;) connected iff v, ; is

adjacent to 11 in G.

- Define C; to be the direct sum lifting on the collection W;(m) of all length-(m — 1)

walks on G;_q using the code C;_1,1i.e,C; = dsumyy, () (Ci_1)-

- Repeat this process to yield a code cascade Cy), ..., Cy.

Thanks to the definition of the graphs G; and the recursive nature of the construction,
the final code C, is the same as the code obtained from Cy by taking the direct sum lifting

over all walks on t = m’

vertices of G. We can use Ta-Shma’s analysis (building on the
ideas of Rozenman and Wigderson [Bog12]) for the simpler setting of walks over a single
expander graph to determine the amplification in bias that occurs in going from C all the

way to Cy.

Theorem 4.5.2 (Adapted from Ta-Shma [TS17]). Let C be an ey-balanced linear code, and let
C' = dsumyy(4) (C) be the direct sum lifting of C over the collection of all length-(t — 1) walks

212



W(t) on a graph G. Then
bias(C’) < (eg + 20 (G))L(E=1)/2],

If 05(G) < ¢p/2and ¢ = [logm (21ogp,, (€) + 3)}, taking t = m! > 2logy,, (¢) +3in
the above theorem shows that the final code Cy is e-balanced. Observe that the required
expansion of the graph G only depends on the constant initial bias &g, not on the desired
final bias e. It will be important for being able to decode with better parameters that both
02(G) and m are constant with respect to ¢; only ¢ depends on the final bias (with more
care we can make 0»(G) depend on ¢, but we restrict this analysis to Ta-Shma's refined

construction on the s-wide replacement product).

As mentioned before, to uniquely decode C; we will inductively employ the list de-
coding machinery for expander walks from [AJQ"20]. The list decoding algorithm can
decode a direct sum lifting ¢’ = dsumw(m)(C ) as long as the graph G is sulfficiently
expanding, the walk length m — 1 is large enough, and the base code C has an efficient

unique decoding algorithm (see Theorem 4.6.1 for details).

The expansion requirement ultimately depends on the desired list decoding radius
of C’, or more specifically, on how close the list decoding radius is to 1/2. If the dis-
tance of C’ is at most 1/2, its unique decoding radius is at most 1/4, which means list
decoding at the unique decoding radius is at a constant difference from 1/2 and thus
places only a constant requirement on the expansion of G. In the case of the code cascade
C; = dsumwl_(m) (C;_1), unique decoding of C;_1 is guaranteed by the induction hypoth-
esis. It is not too difficult to see that each graph G; will have the same second singular
value as G, so we can uniquely decode C; if G meets the constant expansion requirement

and m is sufficiently large.

213



4.5.2  Code Cascading Ta-Shma’s Construction

We will now describe how to set up a code cascade based on walks on an s-wide replace-
ment product. Consider the s-wide replacement product of the outer graph G with the

inner graph H. The first s walk steps are given by the walk operator

s—1

H(l ® AL)G; (1@ Ag).
i=0

LetAs_1 = (I®Ag)Gs (1@ Ag) -+ - (1@ Al)Go(l ® Ag). If the total walk length t — 1 is

a multiple of s, the walks are generated using the operator
(19 AR)Gs_1 (10 Ap)As_1) D75,

Here (I ® Agy)Gs_1(1® Ap) is used as a “binding” operator to connect two walks contain-
ing s vertices at level C,, s2 vertices at level C3, and so on. More precisely, we form the

following code cascade.

- Cp is an gp-balanced linear code efficiently uniquely decodable from a constant ra-

dius.

- € = dsumyy, (5)(Co), where Wy (s) is the set of length-(s-1) walks given by the oper-
ator

(| & AH)GS—Z(I ®AHZ- .- (| &® AH)G0(| ®AHZ'

(.

'

(s —2)th step Oth step

- Gy = dsumyy, () (C1), where W, (s) is the set of length-(s — 1) walks over the vertex
set Wy (s) (with the latter being the set of length-(s — 1) walks on the replacement

product graph as mentioned above).

214



- Cip1 = dsumyy. . (s (C;), where W;_ 1 (s) is the set of length-(s — 1) walks © over the
vertex set W;(s). Similarly to the cascade of expander walks above, the lift can be
thought of as being realized by taking walks using a suitable operator analogous
to G;. Since its description is more technical we postpone its definition (see Defini-

tion 4.7.2) to Appendix D.1.4 where it is actually used.

- Cy denotes the final code in the sequence, which will later be chosen so that its bias

is at most ¢.

Binding operator Binding operator

[ © H)G,_»(I® H (IoH)G(I®H)| I®H)G_1(I®H) |--- | (I8H)G_1(I&H) (I®H)G»(I®H (I® H)Go(I ® H)

(s —1) steps
(s —1) steps

(s — 1)-steps

Figure 4.5: Two levels of code cascading for Ta-Shma’s construction involving codes Cy),
C1 and C; (to make the notation compact we used H to denote Agy).

4.6 Unique Decoding of Ta-Shma Codes

We show how code cascading together with list decoding for each level of the cascade
allow us to obtain an efficient unique decoding algorithm for Ta-Shma'’s construction. We
obtain a sequence of results of increasing strength culminating in Theorem 5.1.1 (which
we recall below for convenience). The approach is as follows: we use several different
instantiations of Ta-Shma’s construction, each yielding a value of s (for the s-wide re-

placement product) and expansion parameters for the family of outer and inner graphs,

6. For simplicity we chose the number of vertices in all walks of the cascade to be s, but it could naturally
be some s; € IN depending on i.

215



and show how the list decoding framework can be invoked in the associated cascade for

each one.

Theorem 5.1.1 (Unique Decoding). For every e > 0 sufficiently small, there are explicit binary

linear Ta-Shma codes Cy ¢ g © ]Fé\’ for infinitely many values N € IN with

(i) distance at least 1/2 — €/2 (actually e-balanced),
(ii) rate Q(e2+P) where B = O(1/(log,(1/¢))1/®), and

(iii) a unique decoding algorithm with running time N Ocp(1),

Furthermore, if instead we take B > 0 to be an arbitrary constant, the running time becomes

(log(1/¢))° L) . NOs() (fixed polynomial time).

In this section, we will fit these objects and tools together assuming the parameters
are chosen to achieve the required rates and the conditions for applying the list decoding
results are satisfied. The concrete instantiations of Ta-Shma codes are done in Section 4.8.
Establishing that the list decoding framework can be applied to this construction is done

in Section 4.7 after which the framework is finally instantiated in Section 4.9.

Ta-Shma uses the direct sum lifting on an s-wide replacement product graph to con-
struct a family of e-balanced codes Cy ¢ g with rate O(e2TP) and finds parameters for
such codes to have the required bias and rate. We will discuss unique decoding results
for several versions of these codes. Throughout this section, we will use collections W (k)
which will always be either the set of walks with k = s vertices on an s-wide replacement
product graph (corresponding to the first level of the code cascade), which we denote
WI0,s — 1], or a set of walks where the vertices are walks on a lower level of the code

cascade.

216



4.6.1 Unique Decoding via Code Cascading

To perform unique decoding we will use the machinery of list decoding from Theo-
rem 4.6.1 (proven later in Section 4.9), which relies on the list decoding framework of
[AJQT20]. Proving that this framework can be applied to Ta-Shma’s construction is one

of our technical contributions.

Theorem 4.6.1 (List decoding direct sum lifting). Let 9 € (0,1/4) be a constant, 1 €
(0,79), and
k= ko(17) == ©(log(1/7)).

Suppose C C 4 is an 1g-balanced linear code and C' = dsumyy i (C) is the direct sum lifting

of C on a t-splittable collection of walks W (k). There exists an absolute constant K > 0 such that

if
;78
< /k = . T AL
T = 7(1,k) K - k- 24k
then the code C' is y7-balanced and can be efficiently list decoded in the following sense:

Ifijis (1/2 — \/7)-close to C', then we can compute the list

L(,C,C) = {(z, dsumyy ) (2)) | z € C,A(dsumw(k) (z),g]) < % - \/ﬁ}

in time

no(l/TO(U'k)4) f(n)

4

where f(n) is the running time of a unique decoding algorithm for C. Otherwise, we return

L(7,C,C") = @ with the same running time of the preceding case.

Note that the requirement on k in the above theorem is necessary for the lifted code

C’ to be n7-balanced. Splittability will imply that the walk collection W (k) is expanding,

which gives us parity sampling for large k. Specifically, k must be large enough for W (k)
217



tobea (1/2 4+ 1y/2, n)-parity sampler.

Applying the list decoding tool above, we can perform unique decoding in the regime
of 19, 17, and k being constant. With these choices the expansion required for splittability

and the parity sampling strength are only required to be constants.

Lemma 4.6.2 (Decoding Step). Let 79 € (0,1/4) and n < min{ry, 1/16}. If W(k) is a walk
collection on vertex set [n] with k > ko(n) and splittability T < 1y(n, k), where ko and Ty are as

in Theorem 4.6.1, we have the following unique decoding property:

If C C ¥} is an yy-balanced linear code that can be uniquely decoded in time f(n), then C' =

dsumyy i (C) is an n-balanced code that can be uniquely decoded in time nO/ (k)% . f(n).

Proof. Using Theorem 4.6.1, we can list decode C" up to a radius of 1/2 — /77 for any 7 if
(k)

we have the appropriate parameters k and 7. Let 7 € IF;V be a received word within
the unique decoding radius of C’. To perform unique decoding, we simply run the list
decoding algorithm on # and return the codeword on the resulting list which is closest
to 7; this will yield the correct result as long as the list decoding radius is larger than

the unique decoding radius. It suffices to have 1/2 — /57 > 1/4 > A(C’)/2. We choose

parameters as follows:

1. Taken < 1/16toensure1/2 — /5 > 1/4.

2. Let kg = O(log(1/7)) be the smallest integer satisfying the assumption in Theo-

rem 4.6.1 with the chosen 7. Take k > k.

3. Take T < 1y(17,k) = 18/ (K - k - 2%K).

Note that k and 7 satisfy the conditions of Theorem 4.6.1, so we can use this theorem
to list decode a received word 7 in time nO/ (k) . f(n). To unique decode, we return

the closest y on the list to 7 (or failure if the list is empty). n

218



Iteratively using the decoding step given by Lemma 4.6.2 above, we obtain unique

decodability of all codes in a cascade (under suitable assumptions).

Lemma 4.6.3 (Code Cascade Decoding). Let g € (0,1/4) and 3 < min{rg, 1/16}. Suppose
Cp C IF;O,Cl - ]FE”, ., C CF, DU is a code cascade where Cy is an o-balanced linear code that

can be uniquely decoded in time g(ng).

If for every i € [{] we have that C; is obtained from C;_q by a t;-splittable walk collection
Wi (k;) on vertex set [n;_q1] with k; > ko(n) and t; < 19(#,k;), where ko and Ty are as in Theo-

rem 4.6.1, then Cy is uniquely decodable in time

H”? 1/70(mki)*)

4

i=1
Proof. Inductoni € [¢] applying Lemma 4.6.2 as the induction step. The code C; produced
during each step will have bias at most 17 < 7, so the hypothesis of Lemma 4.6.2 will be

met at each level of the cascade. ]

We are almost ready to prove our first main theorem establishing decodability close to
the Gilbert—Varshamov bound. We will need parameters for an instantiation of Ta-Shma’s
code that achieves the desired distance and rate (which will be developed in Section 4.8.1)
and a lemma relating splittability to the spectral properties of the graphs used in the

construction (to be proven in Appendix D.1.4).

Lemma 4.6.4 (Ta-Shma Codes I). For any B > 0, there are infinitely many values of € €
(0,1/2) (with 0 as an accumulation point) such that for infinitely many values of N € IN, there

are explicit binary Ta-Shma codes Cy ¢ g © ]Fé\’ with
(i) distance at least 1/2 — ¢/2 (actually e-balanced), and

(i) rate Q(e2+h).

219



Furthermore, Cy ¢ g is the direct sum lifting of a base code Cp IFZO using the collection of
walks W0, t — 1] on the s-wide replacement product of two graphs G and H, with the following

parameters:

- s > s = max{128,26/B}.

The inner graph H is a regular graph with oo (H) < Ay, where Ay = (1653 logs)/ 5257,

The outer graph G is a reqular graph with 05 (G) < Aq, where A\ = A%/ 6.

The base code Cy is unique decodable in time noo(l) and has bias ey < A%/ 3.

The number of vertices t in the walks satisfies A§(1_5/s)(1_1/s)(t_1)

< e

Lemma 4.6.5. Let W (k) be either the collection W[0,s — 1] of walks of length s on the s-wide
replacement product with outer graph G and inner graph H or the collection of walks over the
vertex set W[0,r], where r = —1 (mod s). Then W(k) is t-splittable with T = 0»(G) +
205 (H) + 0 (H)2.

The statement of this first decoding theorem is more technical than Theorem 5.1.1, but
it will be easier to prove while the latter will build on this theorem with a more careful

tuning of parameters.

Theorem 4.6.6 (Main I). For every B > 0, there are infinitely many values € € (0,1/2) (with
0 an accumulation point) such that for infinitely many values of N € IN there are explicit binary

linear Ta-Shma codes Cy ¢ g © IFé\] with
(i) distance at least 1/2 — €/2 (actually e-balanced),
(i) rate Q(e2TP), and

(iii) a unique decoding algorithm with running time NOp(log(log(1/¢))),

220



Proof. We proceed as follows:

1. Let g = 1/10 and # = 1/100 (these choices are arbitrary; we only need 179 < 1/4,
n < 1/16,and 1 < 19). Let kg = ko(77) be the constant from Theorem 4.6.1 with this

value of 7.

2. Given 8 > 0, Lemma 4.6.4 provides a value s such that the direct sum lifting on the
s-wide replacement product with s > s can achieve a rate of Q)(e2*#) for infinitely
many ¢ € (0,1/2). Choose s to be an integer larger than both kj and s that also
satisfies

sz-<s >_52 §17—8,

16 1K (4.3)

where K is the constant from Theorem 4.6.1.

3. Use Lemma 4.6.4 with this value of s to obtain graphs G and H and a base code C;
having the specified parameters A, Ay, gp, and ¢, with the additional requirement
that t = s for some integer /. These parameter choices ensure that the result-
ing code Cp ¢ g has the desired distance and rate. Since s > 128, we have A; =

(1653 log 5)/5252 < s=5*. From the choice of ¢ satisfying /\5(1_5/5)(1_1/5)“_1)

<eg
we deduce that £ = O(log(log(1/¢))). Note also that the bias ¢ of the code Cj is

smaller than 7.

4. Create a code cascade with / levels using the s-wide replacement product of the
graphs G and H as in Section 4.5.2, starting with Cy and ending with the final code

e, each level of the code

Cy = CN e p- As the total number of vertices ina walkis t = s
cascade will use walks with s vertices. Let Cy, Cq, . .., Cy be the sequence of codes in

this cascade.

5. In order to satisfy the splittability requirement of Lemma 4.6.3, the walk collection

W;(s) at each level of the code cascade must be T-splittable, where T < 15(1, 52). (We
221



use k = s? instead of k = s in the requirement for a technical reason that will be clear
in Section 4.8.2.) The bounds on the singular values of G and H and Lemma 4.6.5
ensure that

T = 05(G) + 205 (H) + 05 (H)? < 4Ay < 45—,
which is smaller than 1y(1,5%) = 18/(K - 52 - 2452) by Eq. (4.3)

6. As all hypotheses of Lemma 4.6.3 are satisfied by the code cascade, we apply it to

conclude that Cy ¢ g is uniquely decodable in time

ﬁno V() < no() . T NOp() — NOplloallog(1/6)

where we use that Cj is uniquely decodable in time noo(l), 1/19(y,s) = 20(1/B),

ni_1 <ny = Nforeveryi € [{],and ¢ = O(log(log(1/¢))).

In the code cascade constructed in Theorem 4.6.6, the final number of vertices in a
walk is t = s¢, where s is a sufficiently large constant that does not depend on e. The
limited choices for t place some restrictions on the values of the final bias ¢ that can be
achieved. To achieve any bias ¢ for C; we need to choose the parameters more carefully,

which will be done in Section 4.8.2 to yield our next main result.

Theorem 4.6.7 (Main II). For every B > 0 and every e > 0 with B and e sufficiently small, there

are explicit binary linear Ta-Shma codes Cy e g © IFZZV for infinitely many values N € IN with

(i) distance at least 1/2 — ¢/2 (actually e-balanced),
(i) rate Q(e21P), and

(iii) a unique decoding algorithm with running time NOp(108(108(1/€)))

222



Ta-Shma obtained codes of rate ()(e2+#) with vanishing f as ¢ goes to zero. We obtain
a unique decoding algorithm for this regime (with slightly slower decreasing f as € van-
ishes). More precisely, using the parameters described in Section 4.8.3 and the running
time analysis in Section 4.6.2, we obtain the following theorem which is our main result

for unique decoding.

Theorem 4.6.8 (Main Unique Decoding (restatement of Theorem 5.1.1)). For every ¢ > 0
sufficiently small, there are explicit binary linear Ta-Shma codes Cy ¢ g © IFZZV for infinitely many

values N € IN with

(i) distance at least 1/2 — €/2 (actually e-balanced),
(i) rate Q(e2TP) where p = O(1/(log,(1/€))1/®), and

(iii) a unique decoding algorithm with running time N Ocp(1),

Furthermore, if instead we take B > 0 to be an arbitrary constant, the running time becomes

(log(1/¢))°PM) . NOs() (fixed polynomial time).

Theorem 5.1.2 about gentle list decoding is proved in Section 4.8.4 after instantiating

Ta-Shma codes in some parameter regimes in the preceding parts of Section 4.8.

4.6.2  Fixed Polynomial Time

In Theorem 4.6.7, a running time of N Op(log(log(1/€))) \yag obtained to decode Ta-Shma
codes Cy ¢ g of distance 1/2 — ¢/2 and rate Q(e2TP) for constant f > 0 and block length
N. The running time contains an exponent which depends on the bias ¢ and is therefore
not fixed polynomial time. We show how to remove this dependence in this regime of

B > 0 being an arbitrary constant. More precisely, we show the following.

223



Theorem 4.6.9 (Fixed PolyTime Unique Decoding). Let B > 0 be an arbitrary constant. For
every € > 0 sufficiently small, there are explicit binary linear Ta-Shma codes Cy e 5 © IFzz\] for

infinitely many values N € IN with

(i) distance at least 1/2 — €/2 (actually e-balanced),
(ii) rate Q(e2TP), and
(iii) a unique decoding algorithm with fixed polynomial running time (log(1/¢))°1) . N Op(1),

The list decoding framework finds a list of pairs (z,y = dsum(z)) of size at most
N1/01K)°" at each level of the code cascade and recursively issues decoding calls to
all z in this list. Since the number of lifts in the cascade is Q)(log(log(1/¢))), we end up

with an overall running time of N Op(log(log(1/¢))),

We will describe a method of pruning these lists which will lead to fixed polynomial
running time. Let 1/2 — /77, where 7 > 0 is a constant, be the list decoding radius
used for a unique decoding step in the cascade. To achieve fixed polynomial time we
will prune this polynomially large list of words to a constant size at each inductive step
in Lemma 4.6.3. As we are working with parameters within the Johnson bound, the actual
list of codewords has constant size (1/ 17)0(1). At every step, we will be able to find a small
sublist whose size only depends on 7 that has a certain covering property, and then issue

decoding calls to this much smaller list.

Definition 4.6.10 (-cover). Let W(k) C [n]¥,C CTF}, A C C,and L = {(z,dsumyy ;) (2)) |
z € A}. We say that L = {(z<1),dsumw(k) zW)), .. .,(z(m),dsumw(k) (MmN s a g-
cover of L if for every (z,y) € L, there exists some (z',y') € L' with bias(z —z') > 1 —2¢
(that is, either A(z,2') < Cor A(z,Z') > 1-0).

Lemma 4.6.11 (Cover Compactness). Let W(k) C [n]k, C C IF% be a linear ng-balanced code,

224



C' = dsumyy ) (C) be an 1j-balanced code, and j € IF;/V ®), Define

L(7,C,C) = {(z, dsumw(k) (z)) ]z € C,A(dsumw(k) (z),g) < % — \/ﬁ} _

Suppose L' is a {-cover of L(§,C,C") for some { < 1/2. Further, suppose that for every (z',y') €
L', we have A(y',§) < 1/2 — /5. If W(k) is a (1 — 2, 17)-parity sampler, then there exists
L" C £ with | L£"| < 1/ which is a (27)-cover of L.

Proof. Build a graph where the vertices are pairs (z/,y') € £’ and two vertices (z(), y()),
(z1), y()) are connected iff bias(z(1) — z()) > 1 —27. Let £ be any maximal independent
set of this graph. Any two vertices (z(1),y(1), (z0),y()) e £ have bias(z() — z0))) <
1—27 and thus bias(y() —y()) < 4 since W(k) is a (1 — 2, 57)-parity sampler. This means
that {y" | (z,y"") € L£"} is a code of distance at least 1/2 — 77/2. By the condition that

A(y",5) <1/2— /i forall (z”,y") € L£" and the Johnson bound, we have |£"| < 1/7.

Finally, we will show that £” is a (20)-cover of L. Let (z,y) € L. As L' is a {-cover
of L, there exists a pair (z/,y’) € £ with bias(z — z’) > 1 — 2, so z is within distance {
of either 2z’ or its complement z’. The construction of £ as a maximal independent set
ensures that there is some (z”,y"") € £" with bias(z’ — z'") > 1 — 2, so 2"’ is also within
distance { of either z’ or its complement z/. Applying the triangle inequality in all of the
possible cases, we see that either A(z,z"") < 27 or A(z,z”) > 1 — 27, which implies £ is

a (2¢)-cover of L. u

To decode in fixed polynomial time, we use a modification of the list decoding re-
sult Theorem 4.6.1 that outputs a {-cover L’ of the list of codewords L instead of the list
itself. Theorem 4.6.1 recovers the list £ by finding £’ and unique decoding every element
of it. To get L/, we use the same algorithm, but stop before the final decoding step. This
removes the unique decoding time f(n) of the base code from the running time of the

list decoding algorithm. We will apply Lemma 4.6.11 after each time we call this {-cover
225



algorithm to pare the list down to a constant size before unique decoding; note that this
loses a factor of 2 in the strength of the cover. To compensate for this, we will use a collec-
tion W (k) with stronger parity sampling than required for Theorem 4.6.1. In that theorem,
W(k) was a (1/2 + 19/2,n)-parity sampler to ensure that we obtained words within the
list decoding radius (1/4 — 1/4) of the base code. By using a stronger parity sampler,
the words in the pruned list £ will still be within the unique decoding radius even after
accounting for the loss in the bias from cover compactness, which means decoding will
still be possible at every level of the cascade. Fortunately, improving the parity sampling
only requires increasing the walk length k by a constant multiplicative factor. The cover

retrieval algorithm below will be proven in Section 4.9.

Theorem 4.6.12 (Cover retrieval for direct sum lifting). Let 179 € (0,1/4) be a constant,
n€(0,10),§=1/8~10/8 and

k> Ky(n) = ©(log(1/1)).

Suppose C C 4 is an ng-balanced linear code and C' = dsumyy ) (C) is the direct sum lifting

of C on a t-splittable collection of walks W (k). There exists an absolute constant K > 0 such that

if
8

TS w00K) = g

then the code C' is 5-balanced, W (k) is a (1 — 2¢, 7)-parity sampler, and we have the following:

Ifgis (1/2— \/1)-close to C', then we can compute a {-cover L' of the list

£@£ﬂﬁ:{@Ame@@HZEQA@meM@j)g%—ﬁﬁ

226



in which Ay, 7) < 1/2 — /7 for every (2, y') € L', in time

O/ (k)%

Otherwise, we return L' = @ with the same running time of the preceding case.

We now have all of the pieces necessary to prove Theorem 4.6.9. The process is essen-
tially the same as our earlier unique decoding algorithm, except we use the cover retrieval
algorithm from Theorem 4.6.12 instead of the full list decoding from Theorem 4.6.1. This
allows us to insert a list pruning step in between obtaining the {-cover and calling the

unique decoding algorithm for the previous level of the cascade.

Proof of Theorem 4.6.9. We use the code Cy ¢ g from Theorem 4.6.7 to get the desired dis-
tance and rate, with the slight modification of ensuring s is larger than k{, from Theo-

rem 4.6.12 rather than k( from Theorem 4.6.1.

Each level of the code cascade between C;_1 and C; uses constant 775 < 1/4 and
7 < min{#y,1/16}, which allows for decoding in a similar fashion to Lemma 4.6.2 and
Lemma 4.6.3. The difference is that we use Theorem 4.6.12 as the decoding step to obtain
a {-cover L’ of the list L(§,C;_1,C;) for j € ]ng, where { = 1/8 — 179/8. By Lemma 4.6.11
and the fact that the walk collection is a (1 — 2, #)-parity sampler, £ has a (2{)-cover
L" C L' of size at most 1/1. The covering property says that for every (z,y) € L, there
exists some (z’,y"") € L such that z is within distance 2 = 1/4 — 1y/4 of either z” or
its complement z/. This is the unique decoding radius of the #p-balanced code C;_1, so

we can recursively decode the list
L£"U{(z",dsum(z")) | (z",dsum(z")) € £}

to obtain the complete list of codewords in C;_.

227



Now we analyze the running time. On each level of the code cascade, we run the
cover retrieval algorithm once to get £/, prune the cover to get £, and then feed the
union of £” and its complement (which has size at most 2/7) into the unique decoding
algorithm for the next level of the cascade. Letting T;(n;) be the running time of unique

decoding a single word in the code C; C ]ng, we have the following recurrence:
O(1/T(nk)*) | 2 o(1
Ti(n;) < n; L/ (h) o . Ti_1(nj—1) and Ty(ng) = ”o( )

Note that the base code C( has constant bias ¢y and thus it has a fixed polynomial time de-
coding algorithm (e.g. Theorem 4.6.7). The height of the recursive call tree is the number
of levels in the code cascade, which is ¢ = O(log(log(1/¢))), as in the proof of Theo-
rem 4.6.6. Each node of this tree has a constant branching factor of 2/7. Thus, the tree has

M/ 0@hY) o NO1/T(1hY time,

(log(1/¢))°) nodes, each of which costs at most n?
Furthermore, in this regime of § > 0 being a constant, k is constant as well as 7, so we

have NO(1/10(16)%) — NOB() and the total running time is (log(1/¢))°(1) . NOs u

4.7 Satisfying the List Decoding Framework Requirements

The list decoding framework of [AJQ"20] is capable of decoding codes obtained from
direct sum liftings, provided they satisfy a few requisite properties. The framework was
originally shown to work for expander walks; we need to adapt it to our case of a code
cascade based on walks on the s-wide replacement product. We will start with a broad

overview of the list decoding algorithm and point out where various requirements arise.

The problem of finding a list of codewords in a direct sum lifting close to a received
word can be viewed as finding approximate solutions to a k-XOR instance. This is done
by solving a particular SOS program and rounding the resulting solution. The algorithm

is unable to perform rounding if the k-XOR instance is based on an arbitrary collection

228



of walks W(k); it can only handle liftings in which W (k) satisfies a property called tenso-
riality. If W(k) is tensorial, the SOS local variables in the solution can be approximated
by product distributions, which will allow us to obtain a list of solutions by independent
rounding. Tensoriality for expander walks is a consequence of a simpler property known

as splittability, which is a certain measure of the expansion of a walk collection.

Unfortunately, the list returned by the rounding process will not contain codewords
directly—instead, we only get a guarantee that all of the codewords we are looking for
have a weak agreement (just over 1/2) with something on this list. We will find the
desired codewords by relying on the parity sampling of W(k). If W(k) is a sufficiently
strong parity sampler, weak agreement in the lifted space corresponds to a much stronger
agreement in the ground space. This will allow us to recover the codewords using the

unique decoding algorithm of the base code.

To recap, applying the list decoding framework in our setting requires doing the fol-

lowing;:
1. Proving parity sampling for the walks used in the code cascade (Section 4.7.1).

2. Showing that the walk collection of the s-wide replacement product is splittable
(Appendix D.1.4).

3. Making Ta-Shma’s construction compatible with the Sum-of-Squares machinery (Sec-

tion 4.7.3) and then obtaining tensoriality from splittability (Section 4.7.4).

An additional complication is introduced by using a code cascade instead of a single
decoding step: the above requirements need to be satisfied at every level of the cascade.
The details of the proofs will often differ between the first level of the cascade, which
is constructed using walks on the s-wide replacement product, and higher levels, which

are walks on a directed graph whose vertices are walks themselves. Once we have es-

229



tablished all of the necessary properties, we will instantiate the list decoding framework

in Section 4.9.

We will first define some convenient notation which will be used throughout this

section.

Notation 4.7.1. Let G be a dq-regular outer graph and H be a dy-reqular inner graph used in

Ta-Shma'’s s-wide replacement product.

Let 0 < ki < kp be integers. We define W[kq,kp| to be the set of all walks starting at
time kq and ending at time ko in Ta-Shma’s construction. More precisely, since G and H are
regular graphs, the collection Wk, ky] contains all walks obtained by sampling a uniform vertex

(v,h) € V(G) x V(H) and applying the operator
(1®Ag)G,—1(I®@Ag) - (1© Al) G, (I® Ag),

where the index i of each G; is taken modulo s. Observe that when ki = ky, we have W kq, kp] =

V(G) x V(H).

We define a family of Markov operators which will play a similar role to the graphs
él- from the cascade described in Section 4.5.1, but for Ta-Shma’s construction rather than

expander walks.

Definition 4.7.2 (Split Operator). Let 0 < ki < ko < k3. We define the graph walk split

operator

. mWlky+1,k Wik ,k
Sk, kpks: R lko+1ks] _y RWIk1/ko]

such that for every f € RWIka+1ks]

<5k1,k2,k3 (f )) (W) = By .pur ety k] Lf (@),

where ww' denotes the concatenation of the walks w and w'. The operator Sky ko ks Can be defined
230



more concretely in matrix form such that for every w € W(kq, kp] and w' € W[k, + 1, k3],

Ly ew [k1,k3] Ly ew [k1,k3]

<Sk1’k2’k3>w,w’ " H@:ww € Wiky, k3] b dg(kg—kﬁ

4.7.1 Parity Sampling for the Code Cascade

To be able to apply the list decoding machinery to the code cascade Cy C F,°,C; C
ng L., ¢ C IFZZ , we need the direct sum lifting at every level to be a parity sampler. The
tirst level in the cascade uses walks directly on the s-wide replacement product, which we
can show is a good parity sampler using the spectral properties proven in Appendix D.1.3.
However, it will be more convenient for calculating parameters later on to prove a weaker
result, which will suffice for our purposes since we only need to obtain constant bias
for every level of the cascade. We analyze the parity sampling of these walks with the
same strategy Ta-Shma employed to show parity sampling for walks on expander graphs

(which resulted in Theorem 4.5.2).

Claim 4.7.3. Let W|0,s — 1] be the collection of walks on the s-wide replacement product of the
graphs G and H and z € IF;/ () be a word with bias(z) < 5g. Let P be the diagonal matrix with
entries (Pz) (o ), (o) = (—1)% for (v,h) € V(G) x V(H). If o((1 @ Ag)Gi(1® App)) <y
forall0 <i<s—2, then

s—2

[T0®A)G(1@AL)P;
i=0

< (g +27) =72,
2

Proof. Let0 < j < s — 2 be even. Take a vector v € RV (G)*V(H) with |v|l, = 1 and let oll
and v be its parallel and orthogonal components to the all ones vector. For 0 < i < s—2,

let A; = (I® Ag)G;(1® Ap). Consider two terms A 1PzA;P; of the product appearing in

231



Aiiq PZAj“z' We have

the claim. Since P is unitary, Aj+1 PZA]'PZ )= ‘ j

|Aj 1P| < A aPAel]| + Ay aPaARt||

1
< A]'HPZAijHer ‘Ajv Hz
< |AjaP=ol| ) +oa(ay)

< |[Aj11 (Pl H2 + HA]'H(F’ZUH)L H2 +02(A))

< || (Pl H2 + 02 (Aj1) + 02(Aj)

<1o+27.

Applying this inequality to every two terms of the product, the result follows. n

Corollary 4.7.4. Let W[0,s — 1] be the collection of walks on the s-wide replacement product of
the graphs G and H and 1y > 0. If oo ((I @ Ag)G;(1® Ay)) < yforall 0 < i < s—2, then

WI0,s — 1] is an (1, n)-parity sampler, where 5 = (179 + 2y) L 6=1)/2],

Proof. Let z € F} have bias at most 779. The bias of dsumyy(g ;_1](2) is given by 7

bias(dsumyy g s_1)(z)) =

7

<1, P (8_1—120 & AH)G1(| ®AH)PZ> 1>

i=0

where P; is the diagonal matrix with entries (Pz) ) (o,n) = (—=1)% for (v, 1) € V(G) X

V(H) and 1 is the all-ones vector. Since P; is unitary, we have

s—2
bias(dsumw[ols_l] (z)) < H(I R AH)G; (1@ Ag)Pz|| < (n9+27) [(s=1)/2) _ n
i=0 )
by Claim 4.7.3. Hence W|0,s — 1] is an (7, 17)-parity sampler. u

7. This is slightly different from the expression for the bias given in Appendix D.1.3, but both are equal
since moving on the H component of the graph doesn’t affect the bit assigned to a vertex.

232



For higher levels of the cascade, we need to prove parity sampling for collections
of walks over walks. Since the walks on the first level contain s vertices, when we take
walks on higher levels, the operator linking different walks together will always use G
as the walk operator for the G step. Thus we can consider a more specific form of the split

operator where we split at a time parameter that is one less than a multiple of s.

Definition 4.7.5. Let r = —1 (mod s) be a positive integer. We define the operator Sfr as

A
ST,T = Skl,kz,k3/
where k1 = 0, ky = r, and k3 = 2r + 1. In this case, Wky, kp| = Wlky + 1, k3).

All levels of the code cascade beyond the first use walks generated by the directed
operator SrA,r. Proving parity sampling for these walks is analogous to the proof of Corol-

lary 4.7.4, but slightly simpler since the walk operator doesn’t change with each step.

Claim 4.7.6. Let r = —1 (mod s) be a positive integer and z € IF;N [07]

be a word with
bias(z) < 1. Let P, be the diagonal matrix with entries (P3)ww = (—1)% for w € W[0,7].

For every integer k > 1, we have

[ )

) < (770 +2-07 <Sr,r

Proof. Take a vector v € RWIO/] with |oll, = 1 and let ol and v be its parallel and

NS AT
Sr,r P Sr,r P 5

orthogonal components to the all ones vector. Since P, is unitary,

233



’ SrA,rﬁszr . We have
Ay A A

< SrrPZ rrUHH "“

rr? Hz
< Sr,erUH HZ + (Tz(SrA,r)
< st

- A 4
S (PZZ)H)HHZ—FUZ(S;’,;’) +0'2(Sr,r)

A
<no+2- UZ(Sr,r)-

, the result follows. n

As||(siP2)k1| < ||(shiP) HUk—l)/ZJ

Corollary 4.7.7. Let r = —1 (mod s) be a positive integer and 1y > 0. The collection of walks
W (k) with k vertices over the vertex set W0, ] using random walk operator Sfr is an (g, 1)-

parity sampler, where n = (179 + 2 - 02(Sr%)) L(k=1)/2]

Proof. Letz € lF;N 07] have bias at most 1o- The bias of the direct sum lifting of z is given

by
bias(dsumyy (g (2)) = ‘<1 ﬁz(srﬁ,rﬁz)k—11> ,

where P; is the diagonal matrix with entries (P;)yw = (—1)% for w € W[0,7] and 1 is

the all-ones vector. Since P, is unitary, we have

A)) L(k=1)/2] _y

[(1,P(s7,P) 1) < H (sr%ﬁz)k_l < (no+2-02 (Srr

2

by Claim 4.7.6. Hence W (k) is an (7, i7)-parity sampler. n

234



4.7.2  Splittability of Tu-Shma’s Construction

We investigate the splittability of the collection of walks generated by Ta-Shma’s con-
struction. In order to formally define this property, we will need the concept of an interval

splitting tree, which describes how a walk is split into smaller and smaller pieces.

Definition 4.7.8 (Interval Splitting Tree). We say that a binary rooted tree T is a k-interval

splitting tree if it has exactly k leaves and

- the root of T is labeled with (0, m,k — 1) for some m € {0,1, ...,k —2}, and

- each non-leaf non-root vertex v of T is labeled with (kq,ko, k3) for some integer ky €
k1, k3 — 1]. Suppose (k' kb, k%) is the label assigned to the parent of v. If v is a left child,

we must have ky = k' and k3 = kb; otherwise, we must have ky = kb, + 1 and k3 = k%,

Given an interval splitting tree 7, we can naturally associate a split operator Sy, ., i,
to each internal node (kq, kp, k3). The splittability of a collection W0, k — 1] of k-tuples is

a notion of expansion at every node in the splitting tree.

Definition 4.7.9 ((7, 7)-splittability). The collection W|0, k — 1] is said to be (T, T)-splittable

if T is a k-interval splitting tree and

02 (Sky ey hs) < T

for every internal node (kq,kp,k3) of T

If there exists some k-interval splitting tree T such that W[0,k — 1] is (T, T)-splittable, then
W10, k — 1] will be called t-splittable.

In order to prove that the collection of walks in Ta-Shma’s construction is splittable, a

split operator Sy, . r, can be related to the walk operator (I ® Ay)Gy, (I ® Ap) as shown

235



below. This structural property will allow us to deduce spectral properties of Sy , i,

from the spectrum of (1@ Ag)Gy, (1@ Ag).

Lemma 4.7.10. Let 0 < ky < kp < k3. Suppose G is a d1-reqular outer graph on vertex set [n]
with walk operator Gy, used at step ky of a walk on the s-wide replacement product and H is a
dy-regular inner graph on vertex set [m| with normalized random walk operator Agy. Then there
are orderings of the rows and columns of the representations of Sy, x, k, and Ag as matrices such
that

2(ks—kpy—1
Sky ko ks = ((I@AH)G,Q(I@AH)) o J/d2oh)

[dz]Z(k2—k1) X [dZ]Z(k3—k2—l

where J € R ) is the all ones matrix.

Proof. Partition the set of walks W{kq, kp| into the sets Wi1,---, Wnm, where w € Wi,j
if the last vertex of the walk wy, = (vy,, hy,) satisties vy, = i and hy, = j. Similarly,
partition W[k, + 1, k3] into the sets Wy 4,..., W}, ,,, where w' € W/ ; if the first vertex of

the walk w] = (v1,hy) satisfies v = i and hj = j. Note that ‘Wi,j = d%<k2_k1) and

= dg(k3 —k=1) for all (i,j) € [n] x [m], since there are d3 choices for each step of the

/
‘ Wi,

walk.

Now order the rows of the matrix Sy , r, so that all of the rows corresponding to
walks in W 1 appear first, followed by those for walks in Wy 5, and so on in lexicographic
order of the indices (i,]) of Wi j, with an arbitrary order within each set. Do a similar

re-ordering of the columns for the sets W{ 1rees W{ - Observe that

(S ) . ﬂww’eW[kl,k3]
kq,ko,k3 ww dz(k3_k2)
2

_ d3 - (weight of transition from (v, hy, ) to (0, h}) in (1© Ay) Gy, (1© Apy))

2(ks—ky)
dZ 37— A2

which only depends on the adjacency of the last vertex of w and the first vertex of w’. If

236

7



the vertices wy, = (vy,, h,) and w} = (vy, hy) are adjacent, then

2(ks—ky—1)
S = ((I®Ay)G, (I®A d ,
< kl’kz’k?))w/w/ <( = H) kZ( = H)>(vk2rhk2)r(v/1/hll) / 2

for every w € Wiy, and w' e WZ/Ukl; otherwise, (Sk1/k2/k3)w,w/ = 0. Since the walks in

the rows and columns are sorted according to their last and first vertices, respectively, the
. 2(kg—kp—1
matrix Sy, ¢, k, exactly matches the tensor product ((1® Ag) Gy, (1@ Ap)) ® J/dz( 3=kl

Corollary 4.7.11. Let 0 < kq < ko < k3. Suppose G is a dq-reqular outer graph with walk
operator Gy, used at step ky of a walk on the s-wide replacement product and H is a dp-regular

inner graph with normalized random walk operator Agy. Then

02(Sky ky k3) = 02((1® ARGy, (1 Ag)).

Proof. Using Lemma D.1.10 and the fact that
2(k3—ky—1
(18 Ar)Gry (12 Ap)) © 3/ 72 7) = 03((10 Ar)Giy (18 Ar),

the result follows. ™

Remark 4.7.12. Corollary D.1.11 is what causes the splittability arqument to break down for

Ta-Shma's original construction, as 02 (G, (1 ® Ag)) = 1.

By combining this result with the spectral bound from Fact D.1.5, we find that the
collection of walks of length s on the s-wide replacement product is (7, T)-splittable for
any splitting tree 7, where T is controlled by the second singular values of the graphs G
and H. This analysis can also be applied to walks on higher levels of the cascade where
the vertex set is W|0, r].

237



Corollary 4.7.13 (Restatement of Lemma 4.6.5). The collection of walks W[0,s — 1] on the
s-wide replacement product with outer graph G and inner graph H and the collection of walks
W (k) on the vertex set W[0, r| with random walk operator SrA,r and r = —1 (mod s) are both
T-splittable with T = 0»(G) + 205 (H) + 0o (H)?.

Proof. By Corollary D.1.11 and Fact D.1.5, the split operator Sy , i, for any 0 < k; <

ky < k3 satisfies
02 (Sky ko) = 2((1® App) G, (1@ Apy)) < 02(G) + 202 (H) + 0o (H)?,

so W[0,s — 1] is T-splittable with T = 03(G) + 20»(H) + 0»(H)?, as any internal node
(k1,ko,k3) of any s-interval splitting tree will have 03(Sk, i, k,) < T. The split operators
of any k-interval splitting tree for the collection W (k) are of the form Sy . r, with k; =0

(mod s) and kp, k3 = —1 (mod s), which means W (k) is T-splittable as well. u

4.7.3 Integration with Sum-of-Squares

Before defining tensoriality and obtaining it in our setting, we examine how the Sum-of-

Squares hierarchy is used in the list decoding algorithm in more detail.

SOS Preliminaries: p-local PSD Ensembles

The SOS hierarchy gives a sequence of increasingly tight semidefinite programming re-
laxations for several optimization problems, including CSPs. Since we will use relatively
few facts about the SOS hierarchy, already developed in the analysis of Barak, Raghaven-
dra and Steurer [BRS11], we will adapt their notation of p-local distributions to describe

the relaxations.

Solutions to a semidefinite relaxation of a CSP on n boolean variables using p levels

238



of the SOS hierarchy induce probability distributions g over ng for any set S C [n]
with |S| < p. These distributions are consistent on intersections: for T C S C [n], we
have pg i = pr, where g1 denotes the restriction of the distribution yg to the set T.
We use these distributions to define a collection of random variables Z1,...,Z; taking
values in [Fp such that for any set S with |S| < p, the collection of variables {Z;},.¢ has
joint distribution pg. Note that the entire collection {Zq,...,Z,} may not have a joint
distribution: this property is only true for sub-collections of size at most p. We will refer

to the collection {Zy,...,Zy} as a p-local ensemble of random variables.

For any T C [n] with |T| < p —2 and any & € !, we can define a (p — |T|)-local
ensemble {Z!,...,Z}} by “conditioning” the local distributions on the event Z = ¢,
where Zt is shorthand for the collection {Z;},_7. For any S with |S| < p —|T|, we define
the distribution of Z as p% := pugyr|{Z1 = ¢}

Finally, the semidefinite program also ensures that for any such conditioning, the

conditional covariance matrix

M(Sl/al)(SZIIXZ) - COV (1[2,51:061]’11[2,52:0(2])

is positive semidefinite, where |S1|,|S2| < (p — |T|)/2. Here, for each pair S1,S; the
covariance is computed using the joint distribution p 5,Us,” In this paper, we will only
consider p-local ensembles such that for every conditioning on a set of size at most (p — 2),
the conditional covariance matrix is PSD. We will refer to these as p-local PSD ensembles.

We will also need a simple corollary of the above definitions.

Fact 4.7.14. Let {Z1,...,Zy} be a p-local PSD ensemble and W (k) C [n]k For1l < i <k,
define W(i) C [n]' to be the collection of tuples of size i appearing in elements of W (k). For
all p' < p/2, the collection {Zset(w)}

p) = UP W(i).

wew(<p) isa (p/p')-local PSD ensemble, where W (<

239



For random variables Zg in a p-local PSD ensemble, we use the notation {Zg} to
denote the distribution of Zg (which exists when |S| < p). As we will work with ordered
tuples of variables instead of sets, we define Z, for w € [n]* based on the set Sy, = set(w),

taking care that repeated elements of w are always assigned the same value.

Definition 4.7.15 (Plausible assignment). Given w = (wy, ..., wy) € [n]X and an assignment

a € FY, we say that w is plausible for w if there are no distinct i,j € [k] such that w; = wj but

j # .

The distribution {Zy} = iy is defined as g (x) = pg (als,) if « € FY is plausible

for w, and py(a) = 0 otherwise.

Tensoriality

A key algorithm in the list decoding framework is propagation rounding (Algorithm 4.7.16),
which solves a CSP to find solutions close to a codeword. Suppose W (k) C [n] is a col-
lection of walks, or more generally, a collection of any k-tuples. The algorithm starts with
a local PSD ensemble {Z,...,Z;} which is the solution to an SOS program for list de-
coding. Propagation rounding takes this solution and conditions some of the variables

according to a random assignment to these variables to yield another local PSD ensemble

Z'.

240



Algorithm 4.7.16 (Propagation Rounding Algorithm, adapted from [AJQ™20]).
Input An (L + 2k)-local PSD ensemble {Z1, ..., Z,} and collection W (k) C [n]k.

Output A random assignment (01, ..., 0y) € FY and 2k-local PSD ensemble Z'.
1. Choose m € {1,...,L/k} uniformly at random.
2. Forj=1,...,m, sample a walk w; independently and uniformly from W (k).
3. Write S = 1 set(w;) for the set of the seed vertices.
4. Sample an assignment o : S — Fy according to the local distribution {Zg}.
5. SetZ ={Z4,...,Z4|Zg = 0}, i.e. the local ensemble Z conditioned on agreeing with o.
6. Forall i € [n], sample independently o; ~ {Z}.

7. Output (04, ...,04) and Z'.

If the collection W(k) C [n]* used in the direct sum lifting is amenable to SOS round-
ing, the conditioned ensemble Z’ will be able to recover a word close to some codeword
on the list. This is quantified by the following tensorial properties. We will see shortly

how splittability will be used to obtain tensoriality in our setting.

Definition 4.7.17 (Tensorial Walk Collection). Let W(k) C [n]¥, u € [0,1], and L € N.
Define Q) to be the set of all tuples (m, S, o) obtainable in propagation rounding (Algorithm 4.7.16)
on W (k) with SOS degree parameter L. We say that W (k) is (u, L)-tensorial if the local PSD

ensemble Z' returned by propagation rounding satisfies

E Bz {zin - {Zuw ], < e (4)

The framework actually uses a strengthening of the above property, in which vari-

ables for pairs of walks chosen independently approximately behave as a product.

241



Definition 4.7.18 (Two-Step Tensorial Walk Collection). Let W (k) C [n]¥, u € [0,1], and
L € IN. Define Q) to be the set of all tuples (m,S, o) obtainable in propagation rounding (Al-
gorithm 4.7.16) on W (k) with SOS degree parameter L. We say that W (k) is (u, L)-two-step
tensorial if it is (u, L)-tensorial and the local PSD ensemble Z' returned by propagation rounding
satisfies the additional condition

E E z\z' N —{zZ. 7! M <
Qw,w/GW(k)”{ w w} { w}{ w}H1—l/‘

From Directed to Undirected

In order to apply the list decoding framework using the directed split operator Sy i, k..

we will replace it with the symmetrized version

0 Sky ko k
U(Sky ko ks) = o
<5k1,k2,k3) 0

and show how U (S, , k,) corresponds to a particular undirected graph.

Definition 4.7.19. Let 0 < ki < kp < k3. We define the operator Sy, ., . : RWIkika]

RWIka+1k3] syychr that for every f € RWIkika]

<6k21k31k1 (f)) (WI) = Ew:ww’eW[kl,k3] [f(w)]/
for every w' € Wlky + 1, k).

The operator U (Si, i, k;) defines an undirected weighted bipartite graph on the ver-
tices W(ky, ko] U Wky + 1,k3]. We can see that &y, . i, is the adjoint of Sy, , x,, which
means that each edge ww’ in this graph is weighted according to the transition probabil-
ity from one walk to the other whenever one of w, w’ is in W[kq, k»] and the other is in

242



W[kz +1, k3]

Claim 4.7.20.

.l.
(Skl,kz,k3> = ko ks by

Proof. Let f € cWlkike] and g € CWlket1lks]  For i < j, define IT; ; to be the uniform
distribution on W[i, j]. We show that <f, Skl,kz,k38> = <6k2,k3,k1f/8>- On one hand we

have

<f : Skl,kz,k38> = Epewlk k) [f (@) Ewcow ewlky ks (8 (w')]]

ITj, o (ww')

= Epewky iy | f(@) )3 g(w')

w' €W ko +1,k3) [ e, ()

I, s (W)
weW ky ko] W eW[ky+1ks] ~ kukz

= )Y flw)g@)I g (wa').

ww' W |[kq k3]

g(w')

On the other hand we have

<6k2,k3,k1f’ g> = IEw’EW[kz—i-l,kg,] |:IEZU:ZUZUIEW[k1,k3} [f(w)]g(wl)]

I, e, (ww')

= By ewk,+1k Y. flw)g(w)
el weWky,ky] ey 41, (@)
[T, k, (ww')
= Y, @) ) ﬁ (w)g(w')
ZUIEW[k2+1,k3] ZUEW[kl,kz] k2+11k3
- Z f(w)g(w/)nkl,kg (ww/)
ww' €W kq ks3]
Hence, Sy, 1, k; = (Skl,kz,kg,)Jr as claimed. -

243



Variables for Walks on the s-wide Replacement Product

When analyzing walks on the s-wide replacement product, we actually need to use two
separate, but related, local PSD ensembles. In Ta-Shma'’s construction, the vertices of the
outer graph G correspond to positions in the base code Cy C 3, wheren = [V(G)|. Given
avertex (v,h) € V(G) x V(H) in the s-wide replacement product and codeword z € C,
(v,h) is assigned bit z,, regardless of the vertex i of the inner graph. We will enforce
this property by working with variables in V(G) rather than the full V(G) x V(H). The
local PSD ensemble Z = {Zv}veV(G) contains one variable for every vertex of G, with
local distributions for sets of variables up to a given size. For a walk w on the s-wide
replacement product, we will use Zy, as an abbreviation for Zg_, where Sy, is the set of all

G-components of vertices visited on the walk.

The constraints of the CSP are placed on walks on the s-wide replacement product
that do care about the H-component of the vertices, so we define a second local PSD en-
semble Y = {Y(v,h) }(v,h) eV(G)x V(H) with a variable for each vertex of the s-wide replace-
ment product of G and H. It is this collection Y for which we need to prove tensoriality
in order to use the list decoding framework. When we perform propagation rounding,
we condition the ensemble Z on a random assignment ¢ to a subset S C V(G), rather
than conditioning Y on a random assignment to a subset of V(G) x V(H). Working with
Z ensures that the rounded assignments will be consistent on each cloud of the s-wide
replacement product. Since the bit assigned to a vertex (v, 1) only depends on v, inde-
pendent rounding of {Z | Zg = ¢} will also yield the desired rounding of {Y | Zg = c}.

We can define Y based on the ensemble Z more concretely. Suppose S’ C V(G) x
V(H) is a subset of size at most p, where p is the locality of the ensemble, and define
T = {v | (v,h) € S'}. The distribution yg of Yy is defined based on the distribution ut
of Z7 by ug(a) = ur(a|r), where o € ngl is an assignment to S’ whose value on each

vertex (v, h) only depends on v.
244



Observe that the introduction of the ensemble Y is only necessary on the first level of
the Ta-Shma code cascade between the codes Cy and Cq, which takes place on the s-wide
replacement product. Higher levels of the cascade use walks on graphs whose vertices are
the walks from the level below. The association of the bits of a codeword to the vertices
of this graph has no consistency requirement, so we simply use a single local ensemble Z

with a variable for each vertex.

4.7.4  Splittability Implies Tensoriality

The connection between splittability and tensoriality will be made with the help of a

version of the triangle inequality.
Claim 4.7.21 (Triangle inequality, adapted from [AJQ"20]). Let s € N and T be an s-

interval splitting tree. Then

E
weW|[0,5—1]

7

{Zs} - jl_i{zw(i)}

< ) E

1 (klkark3)€T wGW[kl,k3]

{Zo} - {Zw(kl,k2)}{Zw(kz+1,k3)}

1
where the sum is taken over the labels of the internal nodes of T .

To prove tensoriality, we will use the method of [BRS11] and [A]T19] to show that we
can break correlations over expanding collections of tuples arising in the s-wide replace-

ment product of the form

E 2wt — Lw i\ Ly
o e = Za}Zaly

wEW[kl,kz],w’GW[kQ—i—l,kg]

appearing on the right-hand side of the triangle inequality.

245



The First Level of the Cascade

We now check the technical details to obtain tensoriality for the first lifting in the code
cascade between the codes C and Cq, which corresponds to taking s steps in Ta-Shma’s
construction. Recall that in order to obtain an assignment z’ € F4 whose lifting is con-
sistent on vertices with the same G-component, we need to prove tensoriality for the

ensemble Y with a variable for each vertex in V(G) x V(H).

The proof of tensoriality will make use of a specific entropic potential function. For
an arbitrary random variable X taking values in a finite set [g], define the function # (X)

as

H(X) = = ) Hlx—g) = Epe[qHQx=g),
ac(q]

where H is the binary entropy function. Using this, we define a potential function for a

weighted undirected graph G.

Definition 4.7.22 (Graph Potential). Let G = (V, E) be a weighted graph with edge distribution
ITg. Let Ty be the marginal distribution on V. Suppose that {Y;};cy is a p-local PSD ensemble
for some p > 1. We define ®C to be

o6 = inIETV [H(Y;)].

Let 7 be an s-interval splitting tree associated with the s-wide replacement product

of graphs G and H. We define

o7 — y @Y Sky iy ky).
(k1kok3)eT

where U (Sk, i, k;) is the associated bipartite undirected graph of the operator Sy, , k-

Lemma 4.7.23 (Splittability Implies Tensoriality). Let W0, s — 1] be the walk collection of the
246



s-wide replacement product of two graphs G and H. If L > 128 - (s* - 2% /u*) and W[0,s — 1] is
T-splittable with T < u/(4s - 2%), then W[0,s — 1] is (u, L)-tensorial.

Proof. We need to show that

E

< 7
weW|0,s—1] =H

/ i /
%o} = TH{¥aw }
1=0 1
which can be proven by adapting a potential argument technique from [BRS11]. First, set

the potential

.
b, = E E & , 4.5
n=E E b, (45)

where the distribution IT;, on S C V(G) is obtained from the process of choosing S in

propagation rounding (Algorithm 4.7.16) once m has been fixed. Consider the error term

= E E D(S,0), 46
= sty om{zs) (5,) (46

where D(S,0) := Ey,cpjos—1) H{Yw | Zg = 0} —Hls';é{Yw(i) | Zs = ‘7}H1- If pm > /2,

then

oy 1205 2 12

=

For each choice of S and ¢ such that D(S,0) > u/2, applying the triangle inequality

from Claim 4.7.21 to the conditioned variables gives us

B«
5 S

s—1
]E YZ Z = — Yw ; Z —
weW[0,5—1] Yo |25 =0} g{ 0 | Zs U} 1

VAN

]EHY Zo=ot—{Y Zs = oty Z:H.
(kater VW k] Yo 25 =0} { wlkik) | Zs a}{ wlka+1a) | Zs ‘T} 1

247



Hence, there exists (kq, ky, k3) such that

ZES = weW]}[Ekl,k3] H{Yw | Zs =0} — {Yw(klrkz) | Zs = a}{Yw(k2+1rk3) | Zs = O}HT

Note that choosing w € WJ[0,s — 1] uniformly and restricting to w(kq,k3) gives a uni-
formly random element of W{kq, k3]. If we choose w(kq,ky) or w(ky + 1,ksz) with equal
probability, then the final walk is distributed according to the stationary measure of
U (Sky iy k). Let w’ denote the chosen walk. Observe that Y, is a deterministic func-
tion of Z,y | Zg = 0. Now, we sample Z,, | Zg = o, which gives us a sample of Y.

Applying Lemma C.1.1, we have

U(Sky ey ks) U(Sky ey ks) u?
koks) 1koks)
Py, izs=0} = Pzs=c 1652 25

This conditioning on an assignment to Z ) | Zs = 0 does not increase the other terms

set(w’
of ®7 associated to split operators other than U (S, , k,) since entropy is non-increasing
under conditioning. Similarly, conditioning on the remaining variables that are part of w

but not w’ does not increase ®7 . Then, we obtain

2

U
Dy — P > P D(S,0) > 2] ——.
m m+l = ¢ m,UN{Zs}[ (5,0) = pm/2] 1652 - 24s

Sinces > ®q > -+ > CDL/(s—H) > (), there can be at most 32s° - 245/y3 indices m € [L/s]

such that py;, > pu/2. In particular, since the total number of indices is L/s, we have

3253 . 245

2 S
< L — .

mée|[L/s]

Our choice of L is more than enough to ensure E,, ¢ (1 /¢ [1m] < p- n

Applying the list decoding framework will require the stronger property of two-step

248



tensoriality, which we can obtain under the same assumptions.

Lemma 4.7.24 (Splittability Implies Two-step Tensoriality). Let W[0,s — 1] be the walk col-
lection of the s-wide replacement product of two graphs G and H. If L > 128 - (s* - 2% /u*) and
W(0,s — 1] is T-splittable with T < u/(4s - 2%%), then W[0,s — 1] is (u, L)-two-step tensorial.

Proof. Under our assumptions the (y, L)-tensorial property follows from Lemma 4.7.23

(which is the only place where the assumption on 7 is used), so we only need to show

ww/6£[0 s—1] H{YQUY;U,} B {Yév}{Y;U’}Hl < W

which can be proven by adapting a potential argument technique from [BRS11]. First, set
the potential

Oy = E E E HYw | Zs =0), 4.7
" S~ Iy o~{Zg} weW(0,5—1] Yo | Zs ) @7

where the distribution IT;, on S C V(G) is obtained from the process of choosing S in

propagation rounding (Algorithm 4.7.16) once m has been fixed. Consider the error term

= E E D(S,0), 48
= sty om{zs) (5,) (45)

where D(S,O’) = ]Ew,w/EW[O,s—l][H{Ywa’ | ZS = 0'} — {Yw|ZS = U}{Yw/‘ZS = 0'}”1]
If wm > /2, then
[D(S,0) > um/2] >

RS

P

Let G = (V = WJ[0,s — 1],E) be the graph with edges E = {{w,w'} | w,w’ €
W]0,s — 1]}. Local correlation (expectation over the edges) on this graph G’ is the same

as global correlation (expectation over two independent copies of vertices). Then, we

249



obtain 8

2
U

O > P D(S,0) > um/2] - ——-=.

" m+1_SNHm,0'N{ZS}[( )2 pm ]2-225

Sincel > &1 > --- > CDL/(s—i—l) > 0, there can be at most 8 - Zzs/pt3 indices m € [L/s]

such that y;; > /2. In particular, since the total number of indices is L /s, we have

8 . 225
]/l3

uook
E <-4+ -
mG[L/s]]/lm_2 L

Our choice of L is more than enough to ensure E, ¢ (1 /¢ [1m] < p. n

We have already established that W[0, s — 1] is T-splittable with T = 0»(G) + 20, (H) +
0> (H)? in Corollary 4.7.13, so we can obtain (y, L)-two-step tensoriality for any y if this

quantity is small enough.

Higher Levels of the Cascade

We now discuss tensoriality of the other levels of the cascade between C;_; and C; for
i > 2. Tensorial properties are simpler to establish here than on the first level of the
cascade. The relevant split operators are special cases of Sy, , r, where k; = 0 (mod s)
and ky, k3 = —1 (mod s). The main difference now is that we can associate the parity bits
of C;_q with the vertices of U (SrA,r), which themselves represent walks. As this association
of parity bits doesn’t need to satisfy a consistency condition, we only need to work with
a single ensemble Z instead of working with two different ensembles as in the previous

case. The proofs of Lemma 4.7.23 and Lemma 4.7.24 with these slight modifications give

us two-step tensoriality.

Lemma 4.7.25 (Two-step Tensoriality for Higher Levels). Let W (k) be the set of walks defined
using (k — 1) steps of the operator SrA’r. IfL > 128 - (k*- 2%/ u*) and W (k) is T-splittable with

8. See [AJT19] or [BRS11] for the details.
250



T < u/(4k - 2%), then W (k) is (u, L)-two-step tensorial.

We know from Corollary 4.7.13 that the collection of walks obtained from Uz(SrA,r) is
(02(G) +2- 02(H) + 0»(H)?)-splittable, so the parameters necessary to obtain two-step

tensoriality are the same as in the first level of the cascade.

4.8 Choosing Parameters for Ta-Shma’s Construction

We explore how some choices of parameters for Ta-Shma’s construction interact with the
requirements of our decoding algorithm. The analysis is divided into rounds of increas-
ingly stronger decoding guarantees with later rounds relying on the codes obtained in
previous rounds. Naturally, the stronger guarantees come with more delicate and techni-
cal considerations. We briefly summarize the goals of each round and some key parame-

ters.

1. Round I: For any constant B > 0, we obtain efficient unique decodable codes C, with
distance at least 1/2 — ¢ and rate Q(¢27P) for infinitely many discrete values of ¢ > 0
(with € as close to 0 as desired). In this regime, it suffices for the expansion of H to

be constant. This round leads to Theorem 4.6.6.

2. Round II: Similar to Round I, but now ¢ can be any value in an interval (0, b) with
b < 1/2Dbeing a function of . Again the expansion of H can be constant. This round

leads to Theorem 4.6.7.

3. Round III: We want B to vanish as ¢ vanishes (this is qualitatively similar to Ta-
Shma’s result). In this regime, we make the expansion of H be a function of ¢, and we

rely on the uniquely decodable codes of Round II. This round leads to Theorem 5.1.1.

4. Round IV: For any constant By > 0, we obtain efficient list decodable codes C, with list

decoding radius 1/2 — By and rate Q(¢27P) with  — 0 as e — 0. In this regime, we
251



make the expansion of H be a function of ¢, and we rely on the uniquely decodable

codes of Round III. This round leads to Theorem 5.1.2.

The way we choose parameters for Ta-Shma’s construction borrows heavily from Ta-
Shma’s arguments in [TS17]. We fix some notation common to all rounds. A graph is
said to be an (n,d, A)-graph provided it has n vertices, is d-regular, and has second largest

singular value of its normalized adjacency matrix at most A.

Notation 4.8.1. We use the following notation for the graphs G and H used in the s-wide replace-

ment product.
- The outer graph G will be an (n',dq, A1)-graph.
- The inner graph H will be a (d3,da, Ap)-graph.

The parameters n',dy, dp, Ay, Ay and s will be chosen in the subsequent sections.

4.8.1 Round I: Initial Analysis

We are given the dimension D of the desired code and ¢ € (0,1/2). We set a parameter

a < 1/128 such that (for convenience) 1/« is a power of 2 and

«® N 1
4log,(1/a) ~ log,(1/e)

(4.9)

We can assume that « < 1/128 satisfy Eq. (D.2) since otherwise ¢ is a constant and we can
use the list decodable codes from [AJQ"20]. The use of Eq. (D.2) will be clear shortly. It
becomes a necessity from round III onward. For rounds I and II, the parameter a will be
a constant, but it will be useful to establish the analysis in more generality now so that

subsequent rounds can reuse it.

252



The inner graph H. The choice of H is similar to Ta-Shma’s choice. More precisely,
wesets = 1/a and dy = s4s? (Ta-Shma took dy = s%). We obtain a Cayley graph
H = Cay(lF;LS logz(dZ),A) such that H is an (1, = d%s,dz, Ay) graph where Ay = by/+/d>
and by = 4slog,(dy). (The set of generators, A, comes from a small bias code derived from
a construction of Alon et al. [AGHP92], but we will rely on Ta-Shma'’s analysis embodied

in Lemma C.2.2 and not discuss it further.)

The base code Cy. Seteg =1/ d% = A‘ZJ‘/ b‘zl < /\‘2"/ 3 (this choice differs from Ta-Shma'’s
and it appears because we are essentially working with H? rather than H). We will choose
a base code Cy such that the desired code will be obtained as a direct sum lifting of C,
and because this lifting preserves the dimension, the dimension of Cy should be D. We
choose C to be an gy-balanced code with dimension D and block length 7 = Og, (D). For
instance, we can start with any good (constant rate and relative distance) linear base code
Cp that has an efficient unique decoding algorithm and obtain a ep-balanced lifted code
that can be efficiently unique decoded (as long as ¢( is constant) using the framework
in [AJQT20].
The outer graph G. Set d; = d% so that np = dj as required by the s-wide replacement
product. We apply Ta-Shma’s explicit Ramanujan graph Lemma C.2.1 with parameters
n, d; and 6 to obtain an (n’,d;, A{) Ramanujan graph G with Ay < 2v/2/,/dj and n’ €
[(1—0)n,n]orn’ € [(1—0)2n,2n]. Here, 6 is an error parameter that we set as § = )\%/6
(this choice of 8 differs from Ta-Shma). Because we can construct words with block length
2n (if needed) by duplicating each codeword, we may assume w.l.o.g. that 1’ is close to
and (n —n’) < 6n < 20n’. See Appendix C.2 for a more formal description of this graph.
Note that A < )L‘zl/6 since Ay < 3/\/d—1 = 3/d% =3- /\‘21/17‘21 < /\‘21/6. Hence, ¢¢ +
20+ 27 < A3,

253



The walk length. Set the walk length t — 1 to be the smallest integer such that

(A2) 150 (1-a)(-1) <

This will imply using Ta-Shma’s analysis that the bias of the final code is at most ¢ as

shown later.

0(5 > 1
0g,(1/a) = log,(1/¢)

s = 1/a, such that ]

Vi
G:(n,dy,Ay), n' ~n=0(D/e), di=df A <22

t : smallest integer such that (/\%)(1_5"‘)(1_“)“_1) <e

H: (712,012,)\2), Ny = ds, dz = 5452, )‘2 = &, b2 = 4510gd2

Claim 4.8.2. We havet — 1 > s/a = s2.

Proof. Using dy = s%” and Eq. (D.2), we have

1 (1-5a)(1—a)s/a 1 s/ p s/u
() )= (g) s
AZ AZ bZ

= 2453 logy(s)/a — 2410552(1/"‘)/“4 < ology(1/¢) — =

Hence, € < ()\%)(1_5“)(1_“)5/“ and thus t — 1 must be at least s/ a.

Remark 4.8.3. By our choice of t, we have ()\%)(1_5“>(1_“)(t_2) > e Sincel/(t—1) < a, we

get (/\%)(1—504)(1—04)2(1?—1) > ¢

Final Bias. We denote by C, the final code obtained by ¢ steps of the s-wide replacement

product. The bias of C is given by Corollary D.1.8 (which in turn is a simple corollary of

Ta-Shma’s Fact D.1.7) as shown next.

Corollary 4.8.4. The code Cy is e-balanced.
254



Proof. Using Corollary D.1.8, we have that the final bias

bi= (a(H2 714 (s = 1) - op(H2) 2 4 (s = 1)% - op(H2)4) L(t=1)/s]

is bounded by

b < (3(s — 1)20y (H2)s—4)((t-1)/5)—1 (Using 05 (H?) < 1/352)
< ((O.Z(HZ)S—S)(t—l—S)/S
_ UZ(HZ)(1—5/5)(1—5/(t—1))(t—1)

< 0.2(H2) (1-5a)(1—a)(t—1)

<g

_ <A5> (1-5a)(1—a)(t—1)

where the last inequality follows froms = 1/aand t —1 > s/, the latter from Claim 4.8.2.

Rate. The proof of the rate follows a similar structure of Ta-Shma’s original argument
except that we take s to be a constant independent of € so that ¢y, A1, and A, are also
constants independent of e. Note that we previously said « = 1/s needs to satisfy Equa-
tion D.2, but that implies only an upper bound for s, and smaller (even constant) values

for s are still permissible.

Claim 4.8.5. Cy has rate Q(e2726%) provided ey > 0 is constant.

Proof. The support size is the number of walks of length t on the s-wide replacement

255



product of G and H (each step of the walk has d% options), which is

IV(G)||V(H)|d§(f—1) — . s ~d§<t—1) — . d§<t_1)+4s <n- d%(t—l)—b—éls
e (D ) (d%)t_l"f—ZS)

—0 (D , (d%)(l—i-Zuc)(t—l)) )

where the penultimate equality follows from the assumption that ¢( is a constant.

Note that d5 = d%/ S = % > b, since by = 4slog,(dy) = 1653 log,(s) < s* (recall that

s =1/a > 128). Thus,

d d 1
120 _ 4“2 2 _
%2 T2 nH)
2 2 2
We obtain
. 2(t—1)
12«
(dZ)(t—l) < < )
o (H?)
2
1 —20)(1-5a) (1—)2
< (E) (1-20)(1=5u)(1-0) (Using Remark 4.8.3)
1\ 2(1+10a)
S <_> 7
€

which implies a block length of

O <D . (dZ)(lJrZuc)(t—l)) _olp (1)2(1—1—10&)(1—0—2“) —olb (1)2(14-130() |
2 c -

Lemma 4.8.6 (Codes Near the GV bound I). For every constant f > 0, there exists a suffi-
ciently large constant s in the above analysis so that for any dimension value D € IN™ (sufficiently

large) and e > O (sufficiently small) the final code Cy; ¢ g, where N is the block length, satisfies
256



- CNe,p 1 e-balanced,
- CN,e,p has rate Q(e2th), and
- CNe,p is a linear code of dimension D.

Remark 4.8.7. As a consequence of code cascading, the final attainable walk lengths have the form
s* — 1 where € is a positive integer. Given B > 0, we have infinitely many values of € attainable
by such walk lengths which gives infinitely many codes Cy ¢ g. This means that although the bias
e cannot be arbitrary, we have an infinite sequence of values of € for which the rates of the codes
CN,e,p are near the GV bound. In Section 4.8.2, we show how to bypass this artificial limitation.

These codes are used in the proof of Theorem 4.6.6.

We can view the above analysis as defining a function I' that receives

the dimension D € N T,

the final bias ¢ > 0,

the approximating error « € (0,1/128] with s := 1/a being a power of two, and

a multiplying factor Q € IN™ such that d, = s4s*Q (in the above Q was 1).

and outputs a tuple of parameters (t,¢€g,6,dq, A1, n'), graphs G and H (as above) where,
in particular, the number of steps t € N is such that the final code C, has bias at most ¢
and rate (21262,

In future rounds, I' may be called with Q = s instead of Q = 1. This will cause d;
to increase from 545 to 3452'Q, and so in the proof of Claim 4.8.2, p4logy(1/a) /et i) be
replaced by 24108:(1/4)/ *° This explains why Eq. (D.2) has a stricter requirement than

needed in the Q = 1 case above.

257



4.8.2 Round II: A More Careful Analysis

We are given the dimension of the code D and € € (0,1/2). As before, we set a parameter

a < 1/128 such that (for convenience) 1/« is a power of 2. Sets =1/a and Q = s.

Apply T to (D, ¢, &, Q) to obtain all parameters except f. Choose t to be the smallest
integer satisfying

4

(A2) (150 (1-20) (1-a) (1) <

where observe that an extra (1 — 2«) factor appears in the exponent. This change in ¢ will
worsen the rate but by losing a factor of ﬁ in the exponent, we can lower bound the

2+26-n

rate. That is, (d%)*(tfl) = Qe T2 ).

Set £ € N to be the smallest value such that s’ > t (here we are implicitly assuming
that t > s). If s’ = t, we are done since we can use all the parameters returned by I' for the
construction of Cy. Now assume s’ > t and let { = t/s!~1. Note that { € (1,s). Choose P

to be the integer in the interval [Q, s - Q] such that

P 1
0< =0 < —.
<0 ¢=< 0
Because s’ > t, and only powers of s may be chosen for walk length, we might over-

shoot in walk length by a multiplicative factor of s. This will cause a corresponding decay
in rate computation that we cannot afford. To overcome this, in the last level of the cas-
cade between codes Cy_1 and Cy, perform the direct sum over walks of length (P — 1)
instead of length (s — 1). The new total number of vertices is ' = Ps‘~1. Note that P can

2, 50 our splittability guarantee of W(P) (the walk collection from the lift

be as large as s
between C,y_q1 and Cy) has to be strong enough to accommodate this larger arity and not

only arity s.

Claim 4.8.8. We have t —1 < £51 < (14 2a)(t - 1).

258



Proof. By construction, we have the sequence of implications

from which we obtain

and

1

-1y <1+§>+1:(1+o¢)(t—1)+1<(1+2“)(t_1)/

Q

the latter using Q =s =1/a. n

We apply I again but this time to (D, ¢, «,1) to obtain new parameters (t”,¢f, ¢', d},

Ay, n"), and graphs G’ and H'.

Claim 4.8.9. The code C; obtained by t' walk steps on the s-wide replacement product of G’ and

H' from the second application of T has bias at most & and rate Q) (e2+40%),

Proof. Letd, = 5452'Q, by = 4slog,(dy) and Ay = by/+/dy be the parameters of the first

invocation of I'. Recall that t was chosen to be the smallest integer satisfying

(/\%)(1—5a)2(1—a)(t—1) <e

Letd), = s4? by, = 4slog,(dy) and A = b5,/ |/ d} be the parameters of the second invoca-

259



tion of I'. Observe that

o_ ()2 ()  (165°10gy(s))°

Jae Vb 20
40

1 1 1—2« b 1-2a
=20 2200-3)  \27Q ~ Vb 2

Then the bias of C 2 is at most

(A2)

(((/\§)Q)2)(1—50¢)(1—0¢)(t/—l)/Q < (A%)(1—50&)(1—204)(1—04)(15/—1)/Q

< (A=) (1-20)(1-a)(-1) < ¢

For the rate computation of Cj, we will lower bound the term ((d'z)z)*(t,*l). Since dy =
(d’z)Q, (d%)_(t_l) = Q(szltzg&“) and % < (14 2a)(t — 1) (the latter by Claim 4.8.8), the

rate of C 2 is

Q(((d/Z)Z)—(t’—l)) — Q((d%)—(t'—l)/Q) — Q((d%)—(l—&-m)(t—l)) _ Q((82+26.a)§j§g) _ Q(82+4O'04)_

4.8.3 Round III: Vanishing B as € Vanishes

We are given the dimension of the code D and € € (0,1/2). As before, we set a parameter
a < 1/128 such that (for convenience) 1/« is a power of 2. Sets :=1/«.

We will consider the regime where s is a function of e. As a consequence, the param-
eters dp, Ay, d1, A1, €9 will also depend on ¢. Since x < 1/ logz(l/x) forx < 1/2 (and
a < 1/2), if u satisfies a®/4 > 1/ log,(1/p), it also satisfies Eq. (D.2) (we lose a log factor

by replacing 1/ log,(1/«) by a, but we will favor simplicity of parameters). In particular,

260



we can set « so that s is

s = ©((logy(1/¢))1/°),

and satisfy Eq. (D.2).
We follow the same choices as in Round II except for the base code Cj.

The base code Cy. Setey =1/ d% = )\‘21/ b% < /\‘21/ 3. We choose an ¢p-balanced code C
with support size n = O(D/¢j;) where ¢ = 2.001 (this choice of c is arbitrary, it is enough
to have c as a fixed small constant) using the construction from Round II. It is crucial that
we can unique decode Cy (using our algorithm), since this is required in order to apply

the list decoding framework.

Note that ¢( is no longer a constant. For this reason, we need to consider the rate
computation of the final code Cy more carefully. The proof will follow an argument similar

to Ta-Shma’s.

Claim 4.8.10. C; has rate Q(e2+20°%) where a = ©(1/ (log,(1/¢))1/©).

Proof. The support size is the number of walks of length t — 1 on the s-wide replacement

product of G and H (each step of the walk has d% options), which is

t=1)

VO[VE)GTY =g a3 = g 2T <y e

2 <n-d,

D 2(t—1)+4s
C) <% -dy )

) (D ) (d%)(t—1)+25+2.001>
O

(D ) (d%)(1+21x)(t—1)> .

From this point the proof continues exactly as the proof of Claim D.1.17. n

261



4.8.4 Round IV: Arbitrary Gentle List Decoding

In round III, when we take

s = ©((logy(1/¢))"/°),

we will have Ay = 4s log(s452) /8% < 57 provided s is large enough. This non-constant
Ao will allow us perform “gentle” list decoding with radius arbitrarily close to 1/2. More

precisely, we have the following.

Theorem 4.8.11 (Gentle List Decoding (restatement of Theorem 5.1.2)). For every ¢ > 0
sufficiently small, there are explicit binary linear Ta-Shma codes Cy ¢ g © ]Fzz\f for infinitely many

values N € N with

(i) distance at least 1/2 — €/2 (actually e-balanced),
(i) rate Q(e2TP) where p = O(1/(log,(1/¢))1/®), and

(iii) a list decoding algorithm that decodes within radius 1/2 — 2-0((logy(1/e))V®) 11y time

Noe,ﬁ<1) .

Proof. We consider some parameter requirements in order to apply the list decoding
framework Theorem 4.9.1 between Cy_; and Cy. Suppose we want to list decode within

radius 1/2 — /7. For parity sampling, we need

s > O(logy (1/1)).

Since the number of vertices in a walk can be at most s2, for splittability we need

n8/ (s> 2252) >2. s

In particular, we can take 7 = 2-9() and satisfy both conditions above. n

262



4.9 Instantiating the List Decoding Framework

We established the tensoriality (actually two-step tensoriality) and parity sampling prop-
erties of every lifting between consecutive codes C;_1 and C; in Ta-Shma’s cascade. Using
these properties, we will be able to invoke the list decoding framework from [AJQT20] to

obtain the following list decoding result.

Theorem 4.9.1 (Restatement of Theorem 4.6.1). Let g € (0,1/4) be a constant, n € (0, 1),

and

k> ko() = ©(log(1/1)).

Suppose C C 4 is an ng-balanced linear code and C' = dsumyy ) (C) is the direct sum lifting
of C on a t-splittable collection of walks W (k), where W (k) is either the set of walks W0, s] on
an s-wide replacement product graph or a set of walks using the random walk operator SrA,r. There

exists an absolute constant K > 0 such that if

8

TS 000 K) =

then the code C' is -balanced and can be efficiently list decoded in the following sense:

Ifjis (1/2 — \/1)-close to C', then we can compute the list

L(7,C,C" = {(z, dsumyyj) (z)) ]z € C,A(dsumw(k) (z),g) < % — \/ﬁ}

in time
no(l/TO(ﬂ/k)4) .f(n),
where f(n) is the running time of a unique decoding algorithm for C. Otherwise, we return

L(7y,C, c’ ) = @ with the same running time of the preceding case 9,

9. In the case § is not (1/2 — ,/77)-close to C’, but the SOS program turns out to be feasible, some of the

263



4.9.1 List Decoding Framework

We recall the precise statement of the list decoding framework tailored to direct sum

lifting.

Theorem 4.9.2 (List Decoding Theorem (Adapted from [AJQ20])). Suppose dsumyy ) is
an (78239, L)-two-step tensorial direct sum lifting from an ng-balanced code C C IF} to C' ona

multiset W(k) C [n]X which is a (1/2 + 1¢/2, y)-parity sampler.

Let j € IF;N ®) pe (1/2 — /i)-close to C'. Then the List Decoding algorithm returns the
coupled code list L(y,C,C"). Furthermore, the running time is nO(L+k) (polylog(1/%) + f(n))

where f(n) is the running time of an unique decoding algorithm of C.

We apply the list decoding framework of Theorem 4.9.2 to the liftings arising in the
Ta-Shma cascade to obtain Theorem 4.9.1. This requires choosing parameters so that both
the parity sampling and tensoriality requirements are met at every level of the cascade,

which we do by appealing to our results from Section 4.7.

Proof of Theorem 4.9.1. We want to define parameters for t-splittability so that W (k) satis-

ties strong enough parity sampling and tensoriality assumptions to apply Theorem 4.9.2.

For parity sampling, we require W (k) to be an (1/2 + 10/2, )-parity sampler. Sup-
pose W (k) is t-splittable with T < 1/16. By Corollary 4.7.4 or Corollary 4.7.7 and split-
tability, the collection of walks W(k) is an (1, #')-parity sampler, where " < (1) +
27) [(k=1)/2] " To achieve the desired parity sampling, we take 1 = 1/2+19/2 and

choose a value of k large enough so that 4’ < 7. Using the assumption 777 < 1/4, we

calls to the unique decoding algorithm of C (issued by the list decoding framework) might be outside all
unique decoding balls. Such cases may be handled by returning failure if the algorithm does not terminate
by the time f(n). Even if a codeword in C is found, the pruning step of list decoding [AJQ"20] will return
an empty list for £(§,C,C") since § is not (1/2 — ,/7)-close to C.

264



compute
7' = +20) L6072 < (1724 g 24+ 20K/ < (37427,
which will be smaller than # as long as k is at least

ko) =2 (14 1574 ) = ©dlos(1/1).

Achieving this level of parity sampling also ensures that the lifted code C’ is 57-balanced.

The list decoding theorem also requires (178 /230, L)-two-step tensoriality. Lemma 4.7.24
(with s = k) and Lemma 4.7.25 each provide (y, L)-two-step tensoriality for T-splittable

walk collections on the s-wide replacement product and using Sr%, respectively, with

12 4.24](
L>8k—4 and Tng.
u 4k - 24

To get u = 118/239, we require

K/'k4'24k ;78
Lz=—m — ad T<00b =35 o

where K and K’ are (very large) constants. This ensures that 7 is small enough for the
parity sampling requirement as well. With these parameters, the running time for the list

decoding algorithm in Theorem 4.9.2 becomes

nO9) (polylog(1/1) + f(n) = nOE) - f(m) = nOW/DORD. ().

For decoding in fixed polynomial time, we also need a variation of list decoding

265



where we don’t run the unique decoding algorithm of the base code and only obtain
an approximate list of solutions. The proof is very similar to the proof of Theorem 4.9.1

above.

Theorem 4.9.3 (Restatement of Theorem 4.6.12). Let 17 € (0,1/4) be a constant, n € (0, 1),
=1/8—1y/8, and
k> k() == ©(log(1/1)).

Suppose C C 4 is an ng-balanced linear code and C' = dsumyy i (C) is the direct sum lifting
of C on a t-splittable collection of walks W (k), where W (k) is either the set of walks W0, s] on
an s-wide replacement product graph or a set of walks using the random walk operator SrA,r. There

exists an absolute constant K > 0 such that if

8

TS 00 =

then the code C' is n-balanced, W (k) is a (1 — 2, 17)-parity sampler, and we have the following:

Ifijis (1/2 — \/1)-close to C', then we can compute a {-cover L' of the list
£(3,€,€') = { (2 dsumyy (2) | 2 € €, (dsumyyy 2),7) < 3~ Vi
in which A(y',§) < 1/2 — /7 for every (', y') € L' 19, in time
1O/ T4

Otherwise, we return L' = @ with the same running time of the preceding case.

Proof. The list decoding framework produces a cover L’ of the list L(7,C, c’ ), and, as its

final step, corrects the cover to obtain the actual list £(7, C,C’) by running the unique de-

10. A randomized rounding will ensure this, but see Appendix C.4 for obtaining this property determin-
istically.

266



coding algorithm of C on each entry of £’ (see [A]JQ"20] for details). Using Theorem 4.9.2
with a (1 — 27, n)-parity sampler and omitting this final step of the algorithm, we can
obtain the {-cover £/ in time n©(L+k)

polylog(1/7).

The tensoriality part of the proof of Theorem 4.9.1 applies here unchanged, so we
need only make sure k is large enough to yield the stronger parity sampling necessary
for this theorem. As in that proof, we have that W(k) is an (1, 1’)-parity sampler with
n' < (ny+21) L(k=1)/2]  Take 1y =1—27 =3/4+1/4 Using 17y < 1/4 and assuming

T < 1/16, we have
' < (b +20) D20 < (374 4+ y9/4+20)K/ 271 < (15/16)K/271,
which will be smaller than # as long as k is at least

ko) =2 (14 iy ) = ©Ulog(1/m))

267



CHAPTER 5

NEAR-LINEAR TIME DECODING OF TA-SHMA’S CODES VIA
SPLITTABLE REGULARITY

5.1 Introduction

A binary code C C lFé\[ is said to be e-balanced if any two distinct codewords x,y € C
satisfy A(x,y) € [(1—¢)/2,(1+¢)/2], where A(x,y) denotes the relative distance between
the two codewords. Finding explicit and optimal constructions of such codes, and in-
deed of codes where the distances are at least (1—¢)/2 is a central problem in coding the-
ory [Gur10, Gur(09], with many applications to the theory of pseudorandomness [Vad12].
Recently, Ta-Shma [TS17] gave a breakthrough construction of (a family of) explicit e-
balanced codes, with near-optimal rates, for arbitrarily small ¢ > 0. For the case of
codes with distance at least (1—¢)/2, the existential rate-distance tradeoffs established
by Gilbert [Gil52] and Varshamov [Var57], prove the existence of codes with rate Q)(¢2),
while McEliece et al. [MRRW?77] prove an upper bound of O(e? log(1/¢)) on the rate. On

the other hand, Ta-Shma’s result yields an explicit family of codes with rate Q(ez‘H’(l)).

Decoding algorithms. The near-optimal e-balanced codes of Ta-Shma [TS17] (which we
will refer as Ta-Shma codes) were not known to be efficiently decodable at the time of
their discovery. In later work, polynomial-time unique decoding algorithms for (a slight
modification of) these codes were developed in [JQST20] (building on [AJQ"20]) using
the Sum-of-Squares (SoS) hierarchy of semidefinite programming (SDP) relaxations. For
unique decoding of codes with rates Q(e2%) (when « > 0 is an arbitrarily small constant)
these results yield algorithms running in time N Ox(1), These algorithms also extend to
the case when « is a vanishing function of ¢, and to the problem of list decoding within

an error radius of 1/2 — ¢’ (for ¢ larger than a suitable function of ¢) with running time
268



NOes o), However, the O, (1) exponent of N obtained in the unique decoding case is
quite large even for a fixed constant a (say @ = 0.1), and the exponent in the list decoding

case grows with the parameter e.

In this work, we use a different approach based on new weak regularity lemmas (for
structures identified by the SoS algorithms), resulting in near-linear time algorithms for
both the above tasks. The algorithms below work in time O;(N) for e-balanced Ta-Shma

codes with rates Q) (e27%), even when « is a (suitable) vanishing function of .

Theorem 5.1.1 (Near-linear Time Unique Decoding). For every € > 0 sufficiently small, there

are explicit binary linear Ta-Shma codes Cnj ¢ o C lFé\’ for infinitely many values N € IN with

(1) distance at least 1/2 — €/2 (actually e-balanced),
(ii) rate Q(e2+%) where a = O(1/ (logy(1/¢))1/®), and

(iii) an r(e) - O(N) time unique decoding algorithm that that decodes within radius 1/4 — /4

and works with high probability,

where r(e) = exp(exp(polylog(1/¢))).
We can also obtain list decoding results as in [JQST20], but now in near-linear time.

Theorem 5.1.2 (Near-linear Time Gentle List Decoding). For every ¢ > 0 sufficiently small,
there are explicit binary linear Ta-Shma codes Cn ¢ o © ]FZZV for infinitely many values N € IN

with
(i) distance at least 1/2 — €/2 (actually e-balanced),
(i) rate Q(e2T%) where a = O(1/ (log,(1/¢))1/®), and

(iii) anr(e) - O(N) time list decoding algorithm that decodes within radius 1/2 — 2~ ©((log,(1 /€))'/®)

and works with high probability,
269



where r(e) = exp(exp(poly(1/e))).

While Theorem 5.1.2 yields a list decoding radius close to 1/2, we remark that the
above tradeoff between the list decoding radius and rate, is far from the state-of-the-
art of 1/2 — ¢ radius with rate Q(¢3) of Guruswami and Rudra [GR06]. Considering a
three way trade-off involving distance, rate, and list-decoding radius, Theorem 5.1.2 can
be seen as close to optimal with respect to the first two parameters, and quite far off
with respect to the third one. Finding an algorithm for codes with optimal tradeoffs in
all three parameters, is a very interesting open problem. Another interesting problem
is understanding the optimal dependence of the “constant” factors r(¢) in the running

times. We have not tried to optimize these factors in our work.

Direct-Sum Codes and “Structured Pseudorandomness”. Ta-Shma'’s code construction
can be viewed as a special case of “distance amplification via direct-sum", an operation
with several applications in coding and complexity theory [ABN 192, TW97, GI01, IKW09,
DS14, DDG ™15, Chal6, DK17, Aro02]. Given a (say) linear code Cy C IFg and a collection

of tuples W C [n]k, we define it’s “direct-sum lifting" as C = dsumyy (Cp) C ]F|2W| where
dsumyy (Cp) := {(Zi1 + o+ 2y ) iy, iew | Z€ Co} :
It is easy to see that if C is ¢g-balanced for a constant ¢(, then taking W = [n]k results in

dsumyy (Cy) being e-balanced with ¢ = e’é (though with vanishing rate). A standard sam-
pling argument shows that a random W C [n]* with |W| = O(n/¢2) also suffices, while
yielding rate Q)(¢?). Rozenman and Wigderson [Bog12] suggested a derandomization of
this argument using a “pseudorandom" W constructed from iteratively considering the
edges from larger and larger expanders graphs. While this result can be shown to achieve
a rate of Q(e*+0 (1)), Ta-Shma achieves a rate of Q(€2+0(1)) using a carefully constructed

sub-collection of walks on an expander with a special form.

270



The above results show that pseudorandomness can be used to amplify distance,
since the collections W above behave like a random W. However, finding decoding al-
gorithms for such codes requires understanding properties of these collections which are
unlike a random W, since random collections yield codes with (essentially) random gen-

erator matrices, where we do not expect efficient algorithms.

Our results can be viewed as showing that when the collection W satisfies a form
of “structured multi-scale pseudorandomness" property ! called splittability (identified in
previous work), it can be exploited for algorithm design. One can think of splittability as
capturing properties of the complete set [n]k, which are not present in a (sparse) random
W C [n]*. For the case of k = 4, when W = [n]*, if we consider a graph between
pairs (i1, i) and (i3, i4), which are connected when (iy,...,ig) € W, then this defines an
expanding (complete) graph when W = [1]%. On the other hand, for a random W of size
O(n), such a graph is a matching with high probability. Splittability requires various such

graphs defined in terms of W to be expanders.

Definition 5.1.3 (Splittability, informal). Given W C [n]* and a,b € [k], let W[a,b] C
[n]b=9+1 denote the tuples obtained by considering (iq, ..., i) for every (i1,...,i) € W. We
say W can be T-split at position t, if the bipartite graph with vertex sets W[1,t] and W[t + 1,k],

edge-set W, and (normalized) biadjacency matrix S; € RWILAXWIt+1A]

, 1s an expander satisfy-
ing 0»(St) < 7. We say that W is T-splittable if forall 1 < a <t < b <k, W[a, b] can be T-split

at position t.

Note that when k = 2, this coincides with the definition of (bipartite) graph expan-
sion. It is also easy to show that collections of length-(k — 1) walks on a graph with

second singular value A, satisfy the above property with T = A. The sub-collections used

1. As discussed later, there are several notions of “structured pseudorandom” for (ordered and un-
ordered) hypergraphs. We describe splittability here, since this is the one directly relevant for our algorith-
mic applications.

271



by Ta-Shma can also be shown to splittable (after a a slight modification) and we recall

this proof from [JQST20] in Appendix D.1.

The key algorithmic component in our decoding results, is a general list decoding re-
sult for codes constructed via direct-sum operations, which reduces the task of list decod-
ing for dsumyy,(Cp) to that of unique decoding for the code Cy, when W is t-splittable
for an appropriate 7. The splittability property was identified and used in previous
work [AJQ 120, JQST20], for the analysis of SoS based algorithms, which obtained the
above reduction in NO¢(1) time. Regularity based methods also allow for near-linear time
algorithms in this general setting of direct-sum codes, with a simpler and more transpar-

ent proof (and improved dependence of the list decoding radius on T and k).

Theorem 5.1.4 (List Decoding Direct Sum (informal version of Theorem 5.5.1)). Let Cy C
IF% be an eg-balanced linear code, which is unique-decodable to distance (1—€0)/4 in time Ty. Let

W C [n]* be a T-splittable collection of tuples. Let C = dsumyy(Cy) be e-balanced, and let B be

B> max{\/g, <T~k3>1/2, (%—l—Zso)k/z}.

Then, there exists a randomized algorithm, which given ij € IFW, recovers the list

such that

L) ={yeC|A(gy) <1/2-B},

with probability at least 1 — o(1), in time O(Cﬁ,kl,go - (IW[+ o)), where Cy g ¢, only depends on
k, B and .

Splittable Regularity. The technical component of our results is a novel understanding
of splittable structures, via weak regularity lemmas. This provides a different way of
exploiting “structured pseudorandomness" properties in hypergraphs, which may be of

interest beyond applications considered here.

272



For the case of graphs (i.e., k = 2), several weak regularity lemmas are known
which can be applied to (say) dense subgraphs of an expanding graph [RTTV08, TTV09,
COCF09, BV20]. Asin the Frieze-Kannan [FK96] weak regularity lemma for dense graphs,
these lemmas decompose the adjacency matrix Ay of a subgraph W/ C W, as a weighted
sum of a small number of cut matrices (1g élr}g for Sy, Ty C [n]), such that one can use this

decomposition to count the number of edges between any subsets S, T C [#n] i.e.,

< e |W]|.

T T
15 (AW’ — ZCg . 1S£1Tg> 1T
/

This can be thought of as computing an “approximation” of Ay using a small number

of cut matrices 1 5].1}‘, which is “indistinguishable” by any cut matrix 1g 1}.
j

More generally, one can think of the above results as approximating any function
g : W — [—1,1] (with g = 1y in the example above) with respect to a family of "split"
functions F C {f : [n] — [—1,1]}®2, where the approximation itself is a sum of a small

number of of functions from Fi.e, forall f1, f, € F

'<g—;ce'fe,1 ® fr2.f1 ®f2>‘ < e |[W].

Our regularity lemma for splittable W C [n]k, extends the above notion of approximation,

using k-wise split functions of the form f{ ® - - - ® f;.. We obtain near-linear time weak

regularity decompositions for classes of k-wise cut functions of the form
k.
CUT®* = {:l:lsl XX 1Sk ’ 51, .. '/Sk - [1’1]},
and also for signed version of these k-wise cut functions

CUTEF == {£xs, @+ ® x5, | S1,-.., S C [n]},

273



where x5 = (—1)15. For our decoding results, we will use CUT?k . Our near-linear time

weak regularity decomposition result is given next.

Theorem 5.1.5 (Efficient Weak Regularity (informal version of Theorem 5.4.11)). Let W C
[n)* and let F be either CUT®* or CUT%k. Suppose § € R s supported on W and has
bounded norm. For every 6 > 0, if W is T-splittable with T = O(6%/k3), then we can find
h=Yl_ co- frinOxs(|W|) time, where p = O(k*/6%), fy € F and ¢y € R, such that h is a

good approximator to g in the following sense

“hf) < 6-|W|,
;nea% (§—hf) < - |W|

where the inner product is over the counting measure on [n]¥.

We note that an existential version of the above theorem follows known abstract ver-
sions of the Frieze-Kannan regularity lemma [TTV09, BV20], via a relatively simple use of
splittability. However, making a black-box application of known regularity lemmas algo-
rithmic, requires computing a form of "tensor cut-norm", which is believed to be hard to
even approximate in general® (unlike the matrix case). The nontrivial component of the
result above, is obtaining a regularity lemma which allows for a near-linear time computa-

tion, while still achieving parameters close to the existential version.

Related Work. As discussed above, decoding results for Ta-Shma’s codes were derived
earlier using algorithms based on the SoS hierarchy [AJQ 120, JQST20]. The biggest ad-
vantage of the present work being the near optimal (i.e., near linear) dependence of the

running time on block length of the code whereas this dependencce is at best a large

2. Strictly speaking, we only need to approximate this for “splittable" tensors. It is possible that one
could use existing regularity lemmas black box, and use splittability to design a fast algorithm for tensor
cut-norm. In our proof, we instead choose to use the matrix cut-norm algorithms as black-box, and use
splittability to modify the proof of the regularity lemma.

274



polynomial function in [JOST20]. However, in some regimes the dependence of the de-
conding time on ¢ is polylogarithmic in [JQST20] wheares here it is super exponential.
Therefore, our work and [JQST20] are incomparable. We will comment more on their
difference at the end of this section. A common thread in the SoS algorithms is to re-
late the task of decoding, to that of solving instances of constraint satisfaction prob-
lems with k variables in each constraint (k-CSPs). The original weak regularity lemma
of Frieze and Kannan [FK96] was indeed motivated by the question of approximately
solving k-CSPs on dense structures (see also [KV(09]). Several extensions of the Frieze-
Kannan lemma are known, particularly for various families of sparse pseudorandom
graphs [KR02, RTTV08, TTV09, OGT15, BV20]. Oveis-Gharan and Trevisan [OGT15] also
proved a new weak regularity lemma for “low threshold-rank" graphs, which was used
to obtain approximation algorithms for some 2-CSPs, where the previously known algo-
rithms used the SoS hierarchy [BRS11, GS11]. Our work can be viewed as an extension of

these ideas to the case of k-CSPs.

Ideas based on regularity lemmas, were also employed in the context of list decod-
ing of Reed-Muller codes, by Bhowmick and Lovett [BL18]. They use analogues of the
abstract weak regularity lemma [TTV09] and the Szemerédi regularity lemma over finite
tields, but these are only used to prove bounds on the list size, rather than in the algo-
rithm itself. On the other hand, our decoding algorithm crucially uses the decomposition
obtained via our weak regularity lemma for (real-valued functions on) splittable struc-

tures.

In general, expansion phenomena have a rich history of interaction with coding the-
ory (e.g., [GI01, Gur04, GI05, RWZ20]) including to the study of linear (or near-linear) time
decoding backing to the seminal work of Sipser and Spielman [SS96]. The codes in [SS96]
were good codes, though not near optimal in terms of distance-rate trade-off. Several

other notions of “structured pseudorandomness” for hypergraphs (referred to as high-

275



dimensional expansion) have also been considered in literature, which also have connec-
tions to the decoding of good codes. In particular, the notion of “double sampler” was
used to obtain algorithms for the list decoding for direct-product codes [DHK " 19]. The
notions of local spectral expansion [DK17], cosystolic expansion [EK16b], and multilayer
agreement samplers [DDHRZ20], are also used to connect structured pseudorandomness
to the design of locally testable codes. The notion of splittability was also studied for
unordered hypergraphs in terms of “complement walks” by Dinur and Dikstein [DD19],
and in terms of “swap walks” in [A]JT19], for high-dimensional expanders defined via
local spectral expansion. The concept of splittability also arose in the ealier work of Mos-
sel [Mos10] when giving bounds to the expected value of products of low influence func-

tionsS.

We now give more details on some of the differences between our work and [JOST20]
in the case of unique decoding. For a Ta-Shma code of block length N, distance 1/2 — ¢
and rate Q)(e2+%) where & > 0 quantifies how far we are from the Gilbert-Varshamov pa-
rameters*, we will consider a few scenarios for the decoding time. The biggest advantage
of the present work is a near linear dependence of the running time on the block length N,
i.e., O(exp(exp(polylog(1/¢))) - N) time, whereas the decoders in [JQST20] take O¢(N7)
with v is at least a large constant (and in some cases y grows with 1/¢). More preceily,
for constant &« = O(1) their decoders take O(log(1/¢)°(1) . NO«(1)) and for a = a(e)
they take O(NPoly(1/¢)) time. On the other hand, our decoding times have a super ex-
ponential dependence on e whereas this dependence can be polylogarithmic in [JOST20].
Roughly speaking, the use of Sum-of-Squares leads to a larger polynomial dependence on
the block length while the use of a regularity based approach leads to large dependence

on ¢. It is an open problem to find a decoding algorithm having at the same time a linear

3. We thank the announymous reviewer for bringing the work [Mos10] to our attention.

4. In Ta-Shma’s construction, the exponent « can be taken to be a constant or a suitable function of € that
vanish with e.

276



or near-linear dependence on N and a polynomial dependence on e.

5.2 A Technical Overview

We now give a more detailed overview of some of the technical components of our proof.

Splittability. The key structural property used for our algorithmic and structural re-
sults, is the “structured pseudorandomness" of ordered hypergraphs W C [n]k, which we
call splittability. The canonical example one can think of for this case, is a collection of all
length-(k — 1) walks on a (say) d-regular expander graph G on n vertices. Note that this
satisfies |W([a, b]| = d?~% . n, where W|a, b] represents the collection of sub-tuples with
coordinates between indices a and b i.e., portions of the walks between the a'"" and b"
step. We will restrict our discussion in this paper only to d-regular collections W C [n]*
satisfying |W[a, b]| = d?=% - n.

We briefly sketch why the collection of length-3 walks (i.e., the case k = 4) is splittable.
Recall that splittability requires various graphs with sub-tuples to be expanding, and in
particular consider the graph between W[1,2] and W3, 4], with edge-set W[1,4]. If E(G)
is the set of edges in G included with both orientations, then note that W[1,2] = W|3,4] =
E(G), and (i1, 1), (i3, is) are connected iff (iy,i3) € E(G). If M € RWIL2AXWBA] denotes
the biadjacency matrix of the bipartite graph H on W[1,2] x W3, 4], then up to permuta-
tions of rows and columns, we can write M as Ag ® J;/d, where J; denotes the d x d all-1s
matrix and Ag is the normalized adjacency matrix of G, since each tuple (ip,i3) € E(G)
contributes d? edges in H (for choices of iy and is). Thus 05(M) = 0»(Ag), which is small
if G is an expander. A similar argument also works for splits in other positions, and for

longer walks.

The above argument can also be extended to show that the sub-collections of walks

277



considered by Ta-Shma (after a slight modification) are splittable, though the structure

and the corresponding matrices are more involved there (see Appendix D.1).

Regularity for graphs and functions. We first consider an analytic form of the Frieze-
Kannan regularity lemma (based on [TTV09]). Let g : X — [—1,1] be any function on a
finite space X’ with an associated probability measure y, and let ¥ C {f : X — [-1,1]}
be any class of functions closed under negation. Say we want to construct a “simple
approximation/decomposition” /i, which is indistinguishable from g, for all functions in
fie,

§—mfly = E [(gx)—h(x))-f(x)] <46 VferF.

x~p

We can view the regularity lemma as saying that such an i can always be constructed as a
sum of 1/62 functions from F. Indeed, we can start with h(0) — 0, and while there exists
fp violating the above condition, we update p(e+1) = p0) 4 5. fp. The process must stop
|12

in 1/62 steps, since ||g — h(#)||2 can be shown to decrease by 62 in every step.

o O ~ s -1V = 25 (g n01) sty =

In fact, the above can be seen as gradient descent for minimizing the convex function
F(h) = SUp e ¥ (g—h, f) . Taking X = [n]? with u as uniform on [1]?, g = 1g () for a
(dense) graph G, and F as all functions (cut matrices) of the form +1 51 yields the weak

regularity lemma for graphs, since we geth =) ycy- fy =Y pcp - 1g fng such that

(g—hf), <6 VfeF & L Ea(s, ) chsmsmmﬂq ¥S,T C [n].
1’l

Note that the inner product in the above analytic argument can be chosen to be according
to any measure on X, and not just the uniform measure. In particular, taking W C [n]?

to be the edge-set of a (sparse) d-regular expander with second singular value (say) A,
278



and y = pup to be uniform over W, we obtain the regularity lemma for subgraphs of
expanders. In this case, after obtaining the approximation with respect to y, one shows
using the expander mixing lemma that if (g — h’f>}42 < ¢, then (g — (d/n) - b f e <
(d/n) - &', where pq denotes the uniform measure on [n] and 6’ = 6 + A. This gives a

sparse regularity lemma, since for G C Wand g = 1,

<g—<d>h,f> gé-é’ Ve F <
n F‘?z n

The algorithmic step in the above proofs, is finding an f, such that (¢ —h, f;) > 6. For

EG(S,T> —ZCg-%|SgﬂS’ |TgﬂT| <d-nd VS,T.
l

the function class F corresponding to cut matrices, this corresponds to solving a prob-
lem of the form maxg 1 llngT‘ for an appropriate matrix M at each step. This equals
the cut-norm and can be (approximately) computed using the SDP approximation algo-
rithm of Alon and Naor [AN04]. Moreover, this can be implemented in near-linear time
in the sparsity of M, using known fast, approximate SDP solvers of Lee and Padmanab-

han [LP20] or of Arora and Kale [AKO07] (see Section 5.4.5 for details).

Splittable regularity. For our regularity lemma, the class F comprises of “k-split func-
tions” of the form f; ® - - - ® fi, where for each f; can be thought of as 1g, (or (=1)"st) for
some S; C [n]. An argument similar to the one above, with the measure ;. uniform on
W C [n]¥, can yield an existential version of the splittable regularity lemma, similar to the
one for expander graphs (we now transition from . to yi@k using a simple generalization
of the expander mixing lemma to splittable collections). However, the algorithmic step in

the above procedure, requires computing

—h .
fl,??kxe - (§—hfi® & fr)

Unfortunately, such an algorithmic problem is hard to even approximate in general, as

opposed to the 2-split case for graphs. Another approach is to first compute an approxi-
279



mation of a given g : W — [—1, 1], in terms of 2-split functions of the form f; ® f,, where
f1: WL t] — [-1,1] and fp : W[t + 1,k] — [—1,1], and then inductively approximate
f1 and f» in terms of 2-split functions, and so on. Such an induction does yield an al-
gorithmic regularity lemma, though naively approximating the component functions f;
and f; at each step, leads to a significantly lossy dependence between the final error, the

splittability parameter 7, and k.

We follow a hybrid of the two approaches above. We give an inductive argument,
which at step t, approximates ¢ via h; which is a sum of t-split functions. However,
instead of simply applying another 2-split to each term in the decomposition h; to com-
pute 1,1, we build an approximation for all of h; using the regularity argument above
from scratch. We rely on the special structure of h; to solve the algorithmic problem
maxys, . f o (ht —hiy1, f1 ® -+ ® fro1), reducing it to a matrix cut-norm computation?.

This yields near-optimal dependence of the error on T and k, needed for our coding ap-

plications.

Decoding direct-sum codes using regularity. We now consider the problem of decod-
ing, from a received, possibly corrupted, i ]ng , to obtain the closest y € dsumyy(Cp)
(or a list) i.e., finding argmin, .o A(7, dsumpy(zp)). Let g : [k — {—1,1} be defined
as ¢(i1,..., i) = (_1)9(1‘1,...,1',() if (i1,...,ir) € W and 0 otherwise. Also, for any z € F%,

define the function x; as xz(i) = (—1)%. Asbefore, let y11 denote the uniform measure on

5. Strictly speaking, we also need to be careful about the bit-complexity of our matrix entries, to allow
for near-linear time computation. However, all the entries in matrices we consider will have bit-complexity

Oy s(logn).

280



n|. Using that ¢ is 0 outside W, and that |W| = dk—1. n, we get
] g that g g

1—2-A(f,dsumy(z)) = B [g(iy,... i) - xz(i1) - -~ xz(ig)]
(11,...,1k)EW
= <E>k_1' E (g1, - ik) - xz(i1) - - - xz(ik)]
d (il,...,ik)E[Tl]k

SORIGTN

At this point, we modify the problem in three ways. First, instead of restricting the op-
timization to zy € Cp, we widen the search to all z € Fj. We will be able to show that
because of the pseudorandom (distance amplification) properties of W, a good (random)
solution z found by our algorithm, will be within the unique decoding radius of Cy (with
high probability). Secondly, using the fact that for splittable W, the function ¢ has an ap-
proximation h = 2521 co fo1® - @ fy given by the regularity lemma, we can restrict

our search to z which (approximately) maximize the objective

p
<h,?c£®k>yi®k = Elcé' [T feroxz)y,

telk]

Finally, instead of searching for x; : [n] — {—1,1}, we further widen the search to
f :[n] = [~1,1]. A random “rounding” choosing each x:(i) independently so that
E[xz] = f should preserve the objective value with high probability. We now claim that

. . = o —®k . .
the resulting search for functions f maximizing <h, f ® > can be solved via a simple

@k’
H
brute-force search. Note that the objective only depends on the inner products with a fi-
nite number of functions {fy;}, clpltel] with range {—1, 1}. Partitioning the space [n] in
2Pk “atoms” based on the values of these functions, we can check that it suffices to search

over f, which are constant on each atom. Moreover, it suffices to search the values in each

atom, up to an appropriate discretization 1, which can be done in time O ((1/ % ) .

For the problem of list decoding # up to radius 1/2 — B, we show that each zy €
281



Co, such that dsumyy(zg) is in the list, there must be an f achieving a large value of

<h, 7®k> »¢ Which then yields a z within the unique decoding radius of zy. Since we
H

enumerate over all f, this recovers the entire list. Details of the decoding algorithm are

given in Section 5.5.

5.3 Preliminaries

We now introduce some notation. The asymptotic notation O(r(n)) hides polylogarithmic

factors in r(n).

5.3.1 Codes

We briefly recall some standard code terminology. Given z,z’ € %, recall that the relative
Hamming distance between z and 2’ is A(z,z') = [{i | z; # z/}| /n. A binary code is any
subset C C IF5. The distance of C is defined as A(C) := min,_,/ A(z, z') where z,z' € C.
We say that C is a linear code if C is a linear subspace of IF5. The rate of C is log, (|C|) /n,

or equivalently dim(C)/n if C is linear.

Definition 5.3.1 (Bias). The bias of a word z € IF is defined as bias(z) = ‘]Eie[n} (—1)%|. The

bias of a code C is the maximum bias of any non-zero codeword in C.

Definition 5.3.2 (e-balanced Code). A binary code C is e-balanced if bias(z + z') < ¢ for

every pair of distinct z,z' € C.

Remark 5.3.3. For linear binary code C, the condition bias(C) < e is equivalent to C being an

e-balanced code.

282



5.3.2 Direct Sum Lifts

Starting from a code C C [F%, we amplify its distance by considering the direct sum lifting
operation based on a collection W (k) C [n]¥. The direct sum lifting maps each codeword

of C to a new word in IF'ZW(k)‘ by taking the k-XOR of its entries on each element of W (k).

Definition 5.3.4 (Direct Sum Lifting). Let W (k) C [n]*. For z € FZ, we define the direct sum
lifting as dsumyy ) (z) = y such that y; .y = Z}‘Zl zj; for all (i1,...,1x) € W(k). The

direct sum lifting of a code C C F7 is
dsumyy ) (C) = {dsumyy(z) [ z € C}.

We will omit W (k) from this notation when it is clear from context.

Remark 5.3.5. We will be concerned with collections W (k) C [n]* arising from length-(k — 1)

walks on expanding structures (mostly arising from Ta-Shma's direct sum construction [TS17]).

We will be interested in cases where the direct sum lifting reduces the bias of the base
code; in [TS17], structures with such a property are called parity samplers, as they emulate

the reduction in bias that occurs by taking the parity of random samples.

Definition 5.3.6 (Parity Sampler). A collection W(k) C [n]* is called an (e, €)-parity sam-

pler if for all z € IFy with bias(z) < ¢g, we have bias(dsumyy (;(z)) < &.

5.3.3 Splittable Tuples

We now formally define the splittability property for a collection of tuples W(k) C [n]k.

For1 <a < b <k, we define W(a, b] C [n](b_“+1) as

W[ﬂ,l’)] = {(ia;ia+1;---/ib) | (i]/iZI---/ik) S W(k)},

283



and use Wla| to stand for W[a,a]. We will work with d-regular tuples in the following

sense.
Definition 5.3.7 (Regular tuple collection). We say that W(k) C [n]K is d-reqular if for every
1 <a<b <k, wehave

- |W[a,b]| = db=2 - n,

- Wla] = [n].

A collection W(k) being d-regular is analogous to a graph being d-regular.

Example 5.3.8. The collection W (k) of all length-(k — 1) walks on a d-regular connected graph
G = ([n], E) is a d-regular collection of tuples.

[a,b]

The space of functions R4 is endowed with an inner product associated to the

uniform measure ji[, ;] on Wia, b]. We use the shorthand y, for M1
Definition 5.3.9 (Splitable tuple collection). Let T > 0. We say that a collection W (k) C [n]¥

is T-splittable if it is d-reqular and either k = 1 or for every 1 < a <t < b < k we have

- the split operator Syy1, n wit41,5] € RWIEAXWIEHLY dofined as

< W[a,t},W[t—l—l,b])( = Jk—t

iyeerit) (it 41 eenrip)

satisfy ‘TZ(SW[a,t},W[t +1,b]) < T, where o denotes the second largest singular value.

Example 5.3.10. The collection W (k) of all length-(k — 1) walks on a d-reqular a graph G =
([n], E) whose normalized adjacency matrix has second largest singular value at most T is a col-

lection of T-splittable tuples as shown in [AJQ™20].

Example 5.3.11. The collection W (k) of tuples arising (from a slight modification) of the direct
sum construction of Ta-Shma [TS17] is a T-splittable as shown in [JQST20]. Precise parameters

are recalled later as Theorem D.1.1 of Appendix D.1.
284



5.3.4 Factors

It will be convenient to use the language of factors, to search the decompositions iden-
tified by regularity lemmas, for relevant codewords. This concept (from ergodic theory)
takes a rather simple form in our finite settings: it is just a partition of base set X', with an

associated operation of averaging functions defined on X, separately over each piece.

Definition 5.3.12 (Factors and measurable functions). Let X be a finite set. A factor B is a
partition of the set X, and the subsets of the partition are referred to as atoms of the factor. A
function f: X — R is said to measurable with respect to B (B-measurable) if f is constant on

each atom of B.

Definition 5.3.13 (Conditional averages). If f : X — R is a function, y is a measure on the

space X, and B is a factor, then we define the conditional average function E[f|5] as

EfBI() = E )],

where B(x) denotes the atom containing x. Note that the function E[f|B] is measurable with

respect to B.

We will need the following simple observation regarding conditional averages.

Proposition 5.3.14. Let h : X — R be a B-measurable function, and let f : X — R be any

function. Then, for any measure y over X, we have

(hf), = (WELfB)), .

Proof. By definition of the B-measurability, / is constant on each atom, and thus we can

285



write h(x) as h(B(x)).
0fly = B, 000 f() = E, E () F)

- x]E# HB) 'yNy]FB(x) )

— E [h(x)-E[f|B](x)] = (WE[f|B]),. m

XU

The factors we will consider will be defined by a finite collection of functions appear-

ing in a regularity decomposition.

Definition 5.3.15 (Function factors). Let X and R be finite sets, and let Fo = {f1,...,fr: X - R}

be a finite collection of functions. We consider the factor B g defined by the functions in F, as

the factor with atoms {x | f1(x) =c1,..., fr(x) = ¢} forall (c1,...,¢r) € R.

Remark 5.3.16. Note that when the above function are indicators for sets i.e., each f; =1 5; for
some S; C X, then the function factor B, is the same as the o-algebra generated by these sets®,
Also, given the functions f, ..., fr as above, the function factor Bx, can be computed in time

O(|X[-[R[).

5.3.5 Functions and Measures

We describe below some classes of functions, and spaces with associated measures, aris-
ing in our proof. The measures we consider are either uniform on the relevant space, or

are products of measures on its component spaces.

6. For a finite &', the o-algebra generated by Sq,...,S, C X is the smallest subset of the power set of X
containing X, Sy,...,S p that is closed under union, intersection and complement. This finite version will
be enough for us in this work (see [Bil95] for the general definition).

286



Function classes. Let S C [n]. We define xg: [n] — {£1} as xs(i) := (—1)%ies (we
observe that as defined xg is not a character”). We need the following two collection of

functions for which algorithmic results will be obtained.

Definition 5.3.17 (CUT functions). We define the set of 0/1 CUT cut functions as
CUT®k = {:l:lsl X lsk | Sl,. . '/Sk - [11]},
and defined the set of £1 CUT functions as

CUTE = {£x5, ® - ® x5, | S1,..., S C [n]}.

We will use a higher-order version of cut norm.

Definition 5.3.18. Let g € IR[”]k, the k-tensor cut norm is

where the inner product is over the counting measure on [n]k.

Some of our results hold for more general class of functions.

Definition 5.3.19 (f-split functions). Suppose W (k) is a reqular collection of k-tuples. For

t €40,...,k—1}, we define a generic class of tensor product functions Fy as
Fr € {j:f1 Q- ®fi®fr1] fj € R for j < t, fipq € RVIFIA, 1 fillo < Lforj<t+ 1} -

To avoid technical issues, we assume that each Fy is finite.

7. Strictly speaking xs is not a character but by identifying the elements of [n] with those of a canonical
basis of IF} it becomes a character for IF.

287



Fixing some F C RY , we define the set of functions that are linear combinations
of function from F with coefficients of bounded support size and bounded ¢{-norm as

follows

p
H(Ro, Ry, F) = {Z co-folp<Ro ) lesl <Ry fr € f}-
=1

Measures and inner products. Recall that y; = M) is the uniform measure on W|[1]
(equivalently uniform measure on W[i] since W (k) is regular) and j[; 1  is the uniform

measure on W{t + 1, k]. We define following measure v; as

V= (.”1)®t ® (,”[H-l,k]) '

Note that v is the equal to yj and v;_q is equal to yi@k. We will need to consider inner
products of functions according to various measures defined above, which we will denote
as (-, '>V for the measure u. When a measure is not indicated, we take the inner product

(f,g) to be according to the counting measure on the domains of the functions f and g.

5.4 Weak Regularity for Splittable Tuples

We will show how functions supported on a (possibly) sparse splittable collection of tu-
ples W(k) C [n]* admit weak regular decompositions in the style of Frieze and Kan-
nan [FK96]. In Section 5.4.1, we start by showing an abstract regularity lemma for func-
tions that holds in some generality and does not require splittability. Next, in Section 5.4.2,
we show that splittable collections of tuples satisfy suitable (simple) generalizations of the
expander mixing lemma for graphs which we call splittable mixing lemma. By combin-
ing this abstract weak regularity decomposition with splittable mixing lemmas, we obtain
existential decomposition results for splittable tuples in Section 5.4.3. Then, we proceed

to make these existential results not only algorithmic but near-linear time computable

288



in Section 5.4.4. These algorithmic results will rely on fast cut norm like approximation
algorithms tailored to our settings and this is done in Section 5.4.5. As mentioned previ-

ously, this last step borrows heavily from known results [AN04, AK07, LP20].

5.4.1 Abstract Weak Regularity Lemma

We now show a weak regularity decomposition lemma for functions that works in some
generality and does not require splittability. We now fix some notation for this section.
Let X be a finite set endowed with a probability measure y. Let R be a Hilbert space
endowed with inner product (f, g),, = Ey [f - g] and associated norm ||-||,, = /-, -),-

Let FC{f: X - R||f I < 1} be a finite collection of functions such that F = —F.

In a nutshell, given any ¢ € RY, the abstract weak regularity lemma will allow us
to find an approximator #, with respect to the semi-norm® ¢ — i — max fer (8§ —hf)
which is a linear combinations of a certain small number of functions from F (where this
number depends only on the approximation accuracy and the norm ||g|| ). This means
that ¢ and h have approximately the same correlations with functions from F. We will
produce / in an iterative procedure, where at each step an oracle of the following kind

(cf., Definition 5.4.1) is invoked.

Definition 5.4.1 (Correlation Oracle). Let1 > 6 > 8 > 0 be accuracy parameters and B > 0.
We say that O, p is a (8,6")-correlation oracle for F if given h € R with ||h||i = O(B) if there
exists f € F with (h, f) > 6, then O, g returns some f' € F with (h, f') > &'.

More precisely, our abstract weak regularity decomposition is as follows.

Lemma 5.4.2 (Abstract Weak Regularity). Let O, p bea (6, &")-correlation oracle for F with
5 > 06 > 0. Let g: X — R satisfy Hg||]21 < B. Then, we can find h = 2521 cp-fr €

8. See [Rud91, Chapter 1] for a definition of semi-norm.

289



H(B/(6')%, B/, F) with f; € F,c; € [8'/(1+8'/v/B)P,&'| and ||h||5, < B such that

—hf), <6
max (§—=hfly

Furthermore, if O, g runs in time TOy,B’ then h can be computed in

O (poly(B,1/8) - (To, , +ISupp(i)]))

time, where Supp (1) is the support of u. The function h is constructed in Algorithm 5.4.3 as the
final function in a sequence of approximating functions h\Y) € #(B/(6')2,B/¢&', F).

The proof is based on the following algorithm.

Algorithm 5.4.3 (Regularity Decomposition Algorithm).
Input g: X — R

Output h = 25:1 co- fo
- Let 1 be the projector onto the convex ball {g' € R | ||g’ ||i < B}.
- Let £ = 0and ht) = 0
- While maxger (g —h("), f) > 6

M
=041

— Let fy € F besuch that <g — h(é_l),fg>y > ¢’ (Correlation Oracle Oy, Step)
— Letcy=¢

- 10 = (h(=1) Yo fo)
- Letp =14

- return h = ZZ:l cofy

290



9

We will need the following general fact about projections” onto a convex body.

Fact 5.4.4 (Implicit in Lemma 3.1 of [Bub15]). Let ) be a compact convex body in a finite
dimensional Hilbert space V equipped with inner product (-, -),, and associated norm ||-||,.. Let

Iy be projector onto Y. Then, fory € Y and x € V, we have

ly—xI2 > [ly =Ty |* + [MTy(x) — x|

Proof of Lemma 5.4.2. We will show that the norm of H g — h(t) H strictly decreases as the
H
algorithm progresses. Computing we obtain

Hg —h" HZ = |lg = II(h" +¢ -fz)H

2
K 4

IN

g— (h 4 'fz)Hi - H(h((H) +og- fo) — TR 4 ¢ 'ff)Hi (By Fact 5.4.4)

< |lg— D 1 ¢ 'f‘)Hi
= Js=HI + @1l - 26 (g-nONf),
< g—h“”Hi — (5

where the inequality follows from ¢, = ¢’, the bound || f/|| y <land
<8 - h(g_l)/f£> >4
14

2
Since || g||i < Band H g—h0 H decreases by at least (¢")? in each iteration, we conclude
14

that the algorithm halts in at most p < B/ (¢")? steps.
By construction each ¢, is initialized to 6’ and can not increase (it can only decrease

due to projections). Thus, we obtain 2521 lcg] < p-6" < B/&'. Also by construction

at termination ||h|]124 < B. It remains to show that ¢, > &'/(1+ ¢’/+/B)P. Note that

9. See [Bub15, Chapter 3] for a defintion of projector.
291



the projection H(h(g -1 4 ¢y - fy) at each iteration either does nothing to the coefficients
c/’s or scales them by a factor of at most (1 + &'/+/B) since Hh(g_l)Hy +llee- fell, <
VB (1+ 5'/v/B ). This readily implies the claimed lower bound on the coefficients c;’s at
termination. Moreover, we have h(Y) € #(B/(8')2,B/&', F) also by construction.

Running Time: The decomposition algorithm calls the correlation oracle at most p + 1
times. Since the coefficients c, always liein [6' /(146" /v/B)?,8'] C [6'/ exp(pé' /v/B), 8],
the bit complexity is C = O(pé’/+/B) and computing the projection (which amounts to
computing h(t) / Hh(@Hﬂ if Hh(@ Hi > B) takes at most O(p? - poly(C) - |Supp(#)|). Then

the total running time is at most

O(p(To,,, + p* - poly(C) - [Supp(u)])) = O (Poly(B,l/fS’) (To, 5 + |5upp(u)|)) :

concluding the proof. n

Remark 5.4.5. If we are only interested in an existential version of Lemma 5.4.2, we can always
use a trivial existential (5,8 )-correlation oracle. However, to obtain weak regularity decomposi-

tions efficiently in our settings, we will later use efficient (8, 6")-correlation oracle with 5" = Q)(6).

5.4.2 Splittable Mixing Lemma

A splittable collection of tuples gives rise to several expanding split operators (see Defini-
tion 5.3.9). This allows us to show that a splittable collection satisfies some higher-order
analogues of the well known expander mixing lemmas for graphs (cf.,[HLWO06][Section

2.4]) as we make precise next.

Lemma 5.4.6 (Splittable Mixing Lemma). Suppose W (k) C [n]¥ is a T-splittable collection of

tuples. For every t € {0,...,k—2} and every f, f' € F;,1, we have

< 7.

oy — (£,

292

Vi1



Proof. Letf=fi @ ®f; @ fr11 @ frapand f' = f1 @ @ f{ @ f{1 @ f, . We have

t
’<f'rf>w+l — {0 = \TTEAf| | B frrfia ® friofio— E frafia ® fioafi
i H1@H 1124 Ht+1,K]
< E  fiifia @ firafiia— B fiiifia © freafiial -
PO t42K] Hit+1,4

Let f{ y = fiy1fi 1 and fi' 5 = fiyaf{,,. Note that

J rec

E ”®”—IEH®N:<N,< S >//>,
V1®.”[t+2,k]ft+1 fria V[f+1/k]ft+1 fti2 1 W[t +2,4]] W[t+1],W[t+2,k] fii2 N

where Jrec is the (rectangular) |W(t + 1]| x |W[t 4 2,k]|| all ones matrix. Using the 7-

splittability assumption, we have the following bound on the largest singular value

‘JreC

Then
IE / ® / _ ]E !/ ® /! S T,
ST fre1fi41 © freafita o ft+1fio1 @ fisafiin
concluding the proof. .

We can iterate the preceding lemma to obtain the following.

Lemma 5.4.7 (Splittable Mixing Lemma Iterated). Suppose W(k) C [n]k is a T-splittable

collection of tuples. For every f = f1 ® -+ - ® fi € Fy_1, we have

Vk—1

Ef - B f' < (k-1)-r

Proof. Let 1 € Fj_q be the constant 1 function. Note that for any t € {0,...,k — 1} the

restriction of any f’ € Fj_q to the support of v; which we denote by f’|; belongs to F. It

293



is immediate that (f,1),, = (f[t,1),,- Computing we obtain

Ef — Efl = [(£1),, — (£, ] < Z\ - (£,

— z\ Flole, — (Flen ey,

< i (By Lemma 5.4.6)
finishing the proof. n

In Section 5.4.4, we will need two corollaries of the splittable mixing lemma which we

prove now.

Claim 5.4.8. Let W(k) C [n]X be a t-splittable collection of tuples. Let t € {0,...,k —2} and

hiyq € H(Ro, Ry, Fyy1). Forevery f € Fiyq, we have

<ht+1’f>vt+1 - <ht+1/f>1/t < T Rl'

Proof. Since h; 1 € H(Rg, Ry, Ft11), we can write hy 1 = Y pcy - fy, where f;, € F;, 1 and

Y.rlcs| < Rq. By the splittable mixing lemma, cf., Lemma 5.4.6, we have

(heufhy,, = (nenfhy, <tR. m

< ;|cu~]<fe,f>vtﬂ — fufly

Claim 5.4.9. Let W(k) C [n] be a T-splittable collection of tuples. Let t € {0,...,k —2} and
ht+1 S H(RO, Rl, Ft+1)' Then

2 2 2
Ml — Mhell] < € RS

Proof. Since h; 1 € H(Rg, Ry, Fy11), we can write hy 1 = Y pcy - fy, where f;, € F;, 1 and

294



Y.¢ lcy| < Rq. By the splittable mixing lemma, c¢f., Lemma 5.4.6, we have

< Yled-leol-|Fofodyy — o fody| < T-RE.

(e i)y, — (g )y,
0o

5.4.3 Existential Weak Regularity Decomposition

Using the abstract weak regularity lemma, Lemma 5.4.2, together splittable mixing lem-
mas of Section 5.4.2, we can obtain (non-constructive) existential weak regularity decom-

positions for splittable structures.

Lemma 5.4.10 (Existential Weak Regularity for Splittable Tuples). Let W (k) C [n]¥ be a
T-splittable structure. Let g € RV pe supported on W (k) with ||g||uk < 1. Let F = Fp_4
(cf., Definition 5.3.19) be arbitrary. For every 6 > 0, if T < O(6%/(k — 1)), then there exists
h e RWII supported on O(1/6%) functions in F such that

max (§—hf) < 6-|W(k)|,

where the inner product is over the counting measure on W[1]k.

Proof. Apply the weak regularity Lemma 5.4.2, with parameters 6 and ¢’ equal to 6,
collection F, input function g, measure y = ji (i.e., uniform measure on W(k)) and
a non-explicit correlation oracle based on the existential guarantee. This yields h =
Y1 fo € H(1/6%,1/5, F) where

max (g—h,f>yk < 4.

feF

Let f € F. We claim that i/ = h- |[W (k)| / ]W[l]\k satisfies the conclusion of the current

295



lemma. For this, we bound

< WO )y — (& 1)] +

W) (& =1 f)y, — (8= W, f)]
4
zwﬂMMWﬁm—ww

(=1

The first term in the RHS above is zero since

WK (g fl, = X &) fls) = (&),

seW(k)

where in the second equality we used that g is supported on W(k). Suppose that f =
fie @ frand fy=fr1© - ® for. Set fy = (f1- fr1) ® - @ (fx - fr,1) where (f; - f;1)
is the pointwise product of f; and f; 1. Note that

Vel = BUA and b0 = E [,

is equal to vj_1. Moreover, f é is the tensor

where we recall that y is equal to vp and p
product of k functions in RX 1 of foo-norm at most 1. By the splittable mixing lemma

(cf., Lemma 5.4.7), we have

< (k—=1)-7.

B [fe] — [f]

Vk,

Hence, we obtain

I [EL - B, [

W (g =k Sy, = (s=H.f)| <
Jeel (k=) T [WE) < 5 [W(R,

I M‘u I M‘m

from which the lemma readily follows.
296



5.4.4 Efficient Weak Regularity Decomposition

The goal of this section is to prove an efficient version of weak regularity that can be
computed in near-linear time. We obtain parameters somewhat comparable to those pa-
rameters of the existential weak regularity in Lemma 5.4.10 above with a mild polynomial

factor loss of @(1/k?) on the splittability requirement.

Theorem 5.4.11. [Efficient Weak Regularity] Let W (k) C [n] be a t-splittable collection of

tuples. Let g € RV pe supported on W (k) with || g||yk < 1. Suppose F is either CUT®K

or CUTEX. For every 6 > 0, if T < 6%/ (k- 220), then we can find h = Y.)_ ¢/ - fy with

p=0(k*/6%),c1,...,cp € Rand functions fy, ..., fy € F, such that Hh”y®" <2and hisa
1

good approximator to g in the following sense

ma <g—(§)k_1h,f> < 5 W),

where the inner product is over the counting measure on W[l]k
~ O(k2 /52
0(22°*/

. Furthermore, h can be found in

VOW(K)|) time.

Warm-up: We first sketch a simpler naive algorithmic weak regularity decompoistion for
CUT®* whose parameters are much worse than the existential parameters of Lemma 5.4.10,
but it can be computed in near-linear time. The fast accumulation of errors will ex-
plain our motivation in designing the efficient algorithm underlying Theorem 5.4.11. The

reader only interested in the latter is welcome to skip ahead.

Lemma 5.4.12 (Naive Efficient Weak Regularity). Let W/ C W (k) where W (k) is T-splittable.
Let F be either CUT®K or CUT%k. For every 6 > 0, if T < (O(d))zk, then we can find h
supported on (O(1/9 ))2k functions of F such that

thax (w =h, f) < (k=1)-6-[W(k)|,

297



where the inner product is over the counting measure on W[1)X. Furthermore, this can be done in

time Og(|W (k)]).

Proof Sketch: In this sketch, our goal is to show the fast accumulation of errors when
applying the weak regularity decomposition for matrices. For simplicity, we assume that
this can be done in near-linear time on the number of non-zero entries of the matrix.
Precise details and much better parameters are given in the proof of Theorem 5.4.11.

Applying the matrix regularity decomposition to 1y, viewed a matrix in RWILk—1]xWIk]

supported on W[1, k], with accuracy parameter 6; > 0, we get in Oy, (|W[1,k]|) time

d P
Ly — — ) ey 1g, ®1g, || < 61+ [W[LK],
=1 .
where p = O(l/é%) and )/, ‘%1‘ < 0O(1/671)-

[1k—2] x W[k—1] supported on W[Lk - 1]1

In turn, for each 15, viewed a matrix in RW
1
we apply the matrix regularity decomposition with accuracy parameter J, > 0 getting in

Oy, (IW[1,k —1]|) time

d P2
I, — Y Cou1s,, @11, | < - [WLk=1]],
(=1 _

where p, = O(1/63) and >0, ’052151‘ < 0O(1/d,). Continuing this process inductively

with accuracy parameters d3, ..., d;_1, we obtain

d k—1 P1 Pr—1
h = (E) Yoo X CopeeClypliy lTel ..... 01 - lel’
6 =1

in time 651,_'.,5k71(|W(k)|). We show that & is close in k-tensor cut norm (cf., Defini-

298



tion 5.3.

18) to 1. Computing we have

Ty = hllger <
k=2 p1
Z Z Z ‘%1 €y, 0 ‘
] Ogl 1 =
A\ k—i—1 Pj+1
1 i c R | 1
Sfl,...,é]' (n) ‘. Z_l gl/'-'rg]—‘rl Sfl,...,£j+1 ® Tgl"”’é]'-‘rl '
j+1 [I®k—j
d\J
Z) .1 @1
(n) ‘ Tey,.0; ®--olr, o®i
k-2 P1 pi
< L L L fen e,
d k—]—l p
1 i c R | 1
Sfl,.“,g]' (n) ‘. 2_1 gl/"-/g]—‘rl Sfl,...,£j+1 ® Tgl""’éj-i-l
j+1 O
k-2 p1 pi
< LY X ey S WK ]
j=06=1 (=1
j
k—2 j
< )| Y, 61 [TO(1/6)).
j=0 (=1
By setting §; = @ (5% , the LHS becomes at most (k —1) -6 - |[W(k)]|. O
y 89
We now proceed to prove our main result in this section, namely Theorem 5.4.11.

Fist, we establish some extra notation now. Let W(k) be a d-regular collection of tuples.

Most of our derivations which are existential hold for a generic F; (cf., Definition 5.3.19).

However, we only derive near-linear time algorithmic results when F; is either the CUT

functions

FO = {i1sl®---®15t®1T |S; C W[, TC W[t+1,k]},

299



or “signed” CUT functions
FiEL = { x5, @ S C W], TC Wt+1,k
Po= X @ @ xs, @xT | S S WL, T C Wt + 1Lk ¢,

where above we recall that for S C [n], we have yg(i) = (—1)%es for i € [n]. Observe

that the condition 5; C W[1] is equivalent to S; C W[i] since W(k) is d-regular.

For quick reference, we collect the notation needed in our algorithmic weak regularity

decomposition in the following table.

Foim {200 £ fian | ;S RV fori <, fryy RV, 1] <1}
F= {5 0 015,010 | S, C WL TC Wi+ 1K} C 7

Fit= {i?csl ®- - ®xs, @xr|S; S W[ TC W[t-i—l,k]} C 5
H(Ro, Ry, F) = {227:1 co foelp <RoXlegl <Ry fyr € ]—“}

p1 is the uniform distribution on W[1] and p(; 1 j is the uniform distribution on W[t +1, k]

vei= (u) ' ® (P‘[t+1,k]>

Our main result of this section, namely, the near-linear time weak regularity decom-

position Theorem 5.4.11, can be readily deduced from Lemma 5.4.13 below.

Lemma 5.4.13 (Efficient Weak Regularity Induction). Let W(k) C [n]X be a T-splittable d-
regular collection of tuples. Let ¢ € Fyandt € {0,...,k— 1} with 18], < 1. For every
8 >0, if T < 8%/(k-218), then there exists hy € H(O(1/6%),28(1 +1/k)t/68, F;) with
Ihell3, < (1+1/k)! such that



70(1/6?)

Furthermore, the function hy can be found in O((2t) - |[W(k)|) time.

We restate Theorem 5.4.11 below and then prove it assuming Lemma 5.4.13.

Theorem 5.4.11. [Efficient Weak Regularity] Let W(k) C [n] be a T-splittable collection of

tuples. Let g € RV pe supported on W (k) with || g||yk < 1. Suppose F is either CUT®K

or CUT%k. For every 6 > 0, if T < 62/ (k3 - 220), then we can find h = 25:1 cy - fp with

p = O(k*/6%), c1,.--,cp € Rand functions fy,..., fp € F, such that Hh”y®k <2and hisa
1

good approximator to g in the following sense

(o= (3) wr) < o

where the inner product is over the counting measure on Wi[1]*
0(22°*/

. Furthermore, h can be found in

VOWK)|) time.

Proof. Set F; = ]_—tO/l if F = CUT®K or set F; = ftil it F = CUT%k. We apply Lemma 5.4.13
with t = k — 1, accuracy ¢ as §/(2k) and input function g. This gives h; = 2521 ¢y fr €
H(O(K?/62%),0(k/5), Ft) such that

d\! d\!

vt

Note that vy = v} = yi@k is the uniform measure on W[1]¥. Since W(k) is d-regular,
(W (k)| = |W[1] ]k - (d/n)*=1. Set h = -h;. Then the guarantee in Eq. (5.1) becomes

ma <g—(§)k_1h,f> < 5 W),

where the inner product is under the counting measure. By Lemma 5.4.13, we have
”ht”%t < (1+1/k)f < e s0 [htll,, < 2. Then ||h||ﬂ?k < 2. The running time follows

from Lemma 5.4.13 completing the proof. ]
301



We now prove Lemma 5.4.13 above assuming the following algorithmic result which

we prove later.

Lemma 5.4.14. [Algorithmic Weak Reqularity Step] Let 6 > Oand t € {0,...,k—2}. Let hy €
H(O(B/682%),0(B/6), Fi) with |\htH§t < B. Then there exists hy .1 € H(O(B/6%),28B/5, Fy11)

with ||ht+1||5t < B such that

max hy —hyyq, < 4.
fEF1 i o+l f>vt N

50(1/6?)

Furthermore, each h, 1 can be found in time O((2t) W (k)|).

Proof of Lemma 5.4.13. We will prove the lemma with the following simple equivalent con-

clusion
AW <2dtt§ N <245
Q) G e (), s
t

which we will prove holds for every f € F;. The base case t = 0 follows immediately
by setting iy = g. Let t € {0,...,k —2}. Since h; € H(0O(1/6%),28(1+1/k)t/6, F;), in-
voking Lemma 5.4.14 with accuracy parameter 6 and input function ;, we obtain h; 1 €
H(O(1/6%),28(1 +1/k)*1/5, F, 1) satisfying

max (h; — ht+1’f>l/t < 4. (5.2)

fe€Fi

Let f € F;11. We will show that ;| satisfies the conclusion of the lemma. Expanding

302



we have

(O smas), = (@smr), + () (o, — 60.)

Vi1 th N ~ v

5 (i1

+ <ht - ht—|—1/f>1/t + <ht+1/f>1/t - <ht+1’f>vt+1 .

7 N
~~ -

(iii) (iv)

We will bound each of the terms in RHS above.

Term (i): Suppose f = f1 ® - ® fi11 ® fryo € Fypq- Let f = f1®--- @ £ ® f[, 1, where

ft/+ 1= (fi1 ® fe +2)‘W[t 2,k SO that f € F;. Using the induction hypothesis, we have

<<E>tg—hf'f> =<(g)tg—ht,f’> < 2-t0.

Vvt Vt

QU

Term (ii): Since g € Fy, it is supported on W (k) and so we have

1

& = T W *

n 1
= 3 W W 2R s S

) <g/f>1/t_|_1 :

SIS

where the second equality follows from |W|t + 1,k|]| = d - |W[t + 2, k]| by the d-regular

assumption.
Term (iii): By Eq. (5.2), we have (h; — ht+1'f>vt < 4.

Term (iv): For notional convenience, set Ry = 28(1+1/k)*1/6. Since h; 1 € H(co, Ry, Fii1)

and the splittability parameter T satisfies T < 62/ (k - 218), from Claim 5.4.8 we obtain

<ht+1’f>1/t - <ht+1’f>1/t+1 S T Rl S 5'

303



Putting everything together yields

n t+1
N ) < 2s+ (D)
<<d> s > s
Vit1 (i) (if) (it) (iv)

concluding the claimed inequality.

Now we use the bound ||/ ||12,t < ||y H%t from Lemma 5.4.14 together with the split-
tability assumption T < 62/ (k - 2') to bound the norm ||l 4 ||§t+1 under the new mea-
sure v 1. Under these assumptions and using Claim 5.4.9 we get

2 16 2(t+1)
2 2 2 6c  2°(1+1/k)
erally, g = lheally ] < TRy < g 52

- (1+1/k)f_
= k

where we used the bounds on 7, Ry and (1 + 1/k)(t+2) < 4for0 <t < k—2. From
the previous inequality and the induction hypothesis || ; ||3t < (14 1/k)t, we finally get

|heaq ||12/t+l < (14 1/k)*1 as desired. u

We now show a near-linear time weak regularity decomposition for special functions
of the form hy € H(O(1/6%),0(1/6),F;) that admit a tensor product structure. The
goal is to design a correlation oracle that exploits the special tensor product structure of
the function (hy — hgi)l), where h§?1 is the /th approximator of h; in the abstract weak
regularity algorithm (cf., Algorithm 5.4.3).

Lemma 5.4.14. [Algorithmic Weak Regularity Step] Let 6 > Oand t € {0,...,k—2}. Let hy €
H(O(B/62%),0(B/6), Fi) with ||ht||12/t < B. Then thereexists hy, .1 € H(O(B/4%),28B/6, Fii1)

with Hht+1|‘3t < B such that

max hy —hyyq, < 4.
max (ht —heya, f)y, <

304



~ 2
Furthermore, each h; 1 can be found in time O((Zt)zo(l/b L (W (k)]).

Our correlation oracle for higher-order tensors will make calls to a correlation oracle
for matrices Theorem 5.4.15 (i.e., 2-tensors) stated below. This matrix oracle is presented
in Section 5.4.5 and it follows from a simple combination of a matrix cut norm approxima-
tion algorithm by Alon and Naor [AN04] with known fast SDP solvers for sparse matrices

such as those by Lee and Padmanabhan [LP20] and Arora and Kale [AK07].

Theorem 5.4.15. [Alon—Naor Correlation Oracle] Let F be either CUT®? or CUT?2 and p be
the uniform measure supported on at most m elements of [n'] x [n’]. There exists an algorithmic
(0, & AN - 0)-correlation oracle O, p running in time T, = O (poly(B/d) - (m+n')), where

wAN > 1/2% is an approximation ratio constant.

Proof. We will apply the abstract weak regularity lemma, cf., Lemma 5.4.2, with 7 = F;q,
6,0 = 6/28 and u = v;. This will result in a function from H(O(B/6%),28B/5, F11).

Correlation oracle task: To make this application take near-linear time, we need to specify
a correlation oracle Oy, = O,, (1) and now we take advantage of the special tensor

structure in our setting. We want an oracle that given

p
hi=) ci-8 8§ €Ft =81 ® - ®8® &1 and
(=1 ——

G]RW[t+l,k}
P !/ / / / / / / /
hpr=0,¢8 8 €T+, & =819 @81 ®E&111© Supyn
=] NN

cRWI  cRWIH2K

if there exists
f=A® - ®fi® fri1 ® frro € Fria
—~— —~—
cRWI[1] cRWI[t+2k]
satisfying

<ht - ht+1lf>1/t 2 5/
305



for some f € F; 1, finds f' € F;, 1 in near-linear time such that

(bt =hsr, f),, =0 = 4.

Here, h; 1 is the current approximator of /; in the abstract weak regularity algorithm and,

by Lemma 5.4.2, hy 11 € H(O(1/6%),28(14+1/k)!*+1 /6, Fiiq). Expanding (hy — hyyq, f)

vt

we get

t

p
(he —hyy1, f)y, = Y c]l <ge,j,fj>m (8041, fr41 @ fry2),, -

P [t+14]
Ve
P / ! / / /
> o]l <8£,jrfj> ‘ <8£,t+1 ® 8y frr1® ft+2> /
=1 j=1 " Hlt+1,k4)
g

where we define 7, := H§:1 <gg,]-,f]->y1 and 7y, = Hj’:l <g21].,f]->y1 for ¢ € [p], ] € [t].
Suppose gy ; = fS&j and gz,]. = fSZ,j for ¢ € [p],j € [t], where fsé,j’fsé,,- are either Is, s 152,]_

Or Xs, v XSZ,]‘ depending on F; being .7-")9 1 or .Ftil, respectively.

Sigma-algebra brute force: Now for each j € [t], we form the c-algebra X; generated by
{S¢, SZ,]'}EG[P} which can be done in 27 - O(|W[1]|) time by Remark 5.3.16 and yields at
most 2P atoms. Hence, the generation of all these o-algebras takes at most ¢ - 27 - O(|W([1]|)
time. Suppose f; = ij for some S; C WI1]. Let 7 > 0 be an approximation parameter
to be specified shortly. For each atom ¢;» € X, we enumerate over all possible values for

J

the ratio )aj/ NS ]-‘ / ‘(7]-/ up to accuracy 7. More precisely, if ‘(Tj/ > 1/n, we consider the

values

0,1-#,2-n,...,[1/n]-n,

and we consider 0,1/ ’Uj/ soes |0

,2/ ‘U']'/

/ ‘(Tj/ otherwise. Let ‘Zj’ denote the number

306



of atoms in ;. This enumeration results in H§:1 (1/ 17)’ ]) configurations which allows

us to approximate any realizable values for < 80,js f]> within additive error at most 4 - i
" H

since either

_Jseinsi| s

(g0}, = B [t 35) = "oy =y, B vl o

(W[ —2(|Se,;| + [Si] —2[Se; N Sj])
<g€/j'fj>y1 = Ey, [Xs/,,v'Xs]} = ‘ J‘|W[‘1]J” ‘ j ]{

Wl - 2(S0] + 5,

0']'/ N S]| - 22(7]./25“' |0—]/ N S]D
WIL]] ’

according to F;, 1. We can approximate < gé i f]> similarly. In turn, we can approxi-
7 Vl
mate each of the realizable values in {75,72} ve(p] within additive error 4 - t - 7 by some

configuration of fractional value assignment to the atoms of each c-algebra.

Invoking the matrix correlation oracle: LetA := ), (05 Y81 TV 8y © &) t+2>'
We conveniently view A as a sparse matrix of dimension W[t + 1]| x |W[t + 2, k]| with at
most |W[t + 1, k]| non-zeros entries. Define ¢ (fi11, fri2) == (A fi1 ® ft+2>]’"[t+1k].

fine

OPT(A) :== max  @a(fi+1,fi+2), (5.3)
fr+1.fr42

where f;1, f142 range over valid fs, , fs, , (again according to kind of F;,1 we have).

In the computation of OPT(A), we have incurred so far an additive error of at most
4-t-17-Y (leg| +|cp|)-
14

Let A be obtained from A by zeroing out all entries of absolute value smaller than ¢/8.

Note that OPT(A) > OPT(A) — §/8 and the absolute value of the entries of A lie [§/8,0(1/6)].

307



For each entry of A, we compute a rational approximation £P/Q where Q = ®(1/4) and
P € [1,0(1/6)] obtaining A’ such that

OPT(A’) > OPT(A)—4/8 > OPT(A) > OPT(A) —4/4.

Using Theorem 5.4.15 with accuracy parameter §/4 and input matrix A/, we obtain in
Ta == O(poly(1/6) - |W[t +1,k]|) time, with an extra additive error of /4 and a multi-

plicative guarantee of a A, a 2-tensor f; 1 ® f; » satisfying

9x(fr1, fivn) = aan- (OPT(A) - 2'2 - 4't"7';(|%| + |CZ\)> :

Since iy € H(O(1/6%),28 - (14+1/k)t/6, Fy) and by q € H(O(1/62),28- (1 +1/k)1H1 /6, Fiiq),
we have Y y(|cg| +|cj|) < 210/5 and p = O(1/6?). By choosing 7 < O(6%/t) appropri-

ately, we can bound

, 210 5
4-toq7-) (leg +ep)) < 4t S 4
0

Hence, @5 (fi41, fie2) > aaN - 0/4 since we are under the assumption that OPT(A) > 6.

Running Time: First, observe that with our choices of parameters the total number of
configurations ¢opfig is at most

t 2p
pp t 0(1/62)
o < T < () < ™
j=1

so that the correlation oracle Oy, takes time at most

0(1/6%) ~ ~ 0(1/62)
Meonfig - Ta < (2t)° -O(poly(1/6) - [W[t+1,K]|) = O((2t)? W[t +1,k])).

308



Using the running time of the oracle Oy,, the total running time of the weak regularity

decomposition follows from Lemma 5.4.2 which concludes the proof. n

5.4.5 Near-linear Time Matrix Correlation Oracles

The main result of this section, Theorem 5.4.15 below, is a near-linear time correlation or-
acle for CUT®? and CUT%Z. We combine the constant factor approximation algorithms
of Alon-Naor [AN04] for ||A||o_,1 and ||A||; based on semi-definite programming (SDP)
with the faster SDP solvers for sparse matrices such as those by Lee and Padmanabhan
[LP20] and by Arora and Kale [AK07]. We point out that these SDP solvers provide addi-
tive approximation guarantees which are sufficient for approximating several CSPs, e.g.,
MaxCut, but they do not seem to provide non-trivial multiplicative approximation guar-
antees for ||A||,_,1 or ||A||5 in general. Since in our applications of computing regularity
decomposition we are only interested in additive approximations, those solvers provide

non-trivial sufficient approximation guarantees for ||Al|,,_,; or ||A]| in our settings.

Theorem 5.4.15. [Alon-Naor Correlation Oracle] Let F be either CUT®Z or CUT%2 and u be
the uniform measure supported on at most m elements of [n'] x [n']. There exists an algorithmic
(0, xaN - 8)-correlation oracle Oy, p running in time To), , = O (poly(B/d) - (m+n')), where

wAN > 1/2% is an approximation ratio constant.

Theorem 5.4.15 is a simple consequence of the following theorem.
Theorem 5.4.16. Let A € R"*" be a matrix of integers with at most m non-zero entries. Let

6 € (0,275) be an accuracy parameter. Suppose that

n
OPT := max A xy: > 6-m.
xi,yie{il}i’jgl ijXiYj =

Then, with high probability,i.e., 0,(1), we we can find in O (poly(||Al|s /) - (m +n)) time
309



vectors X, € {£1}" such that

i=1
and find sets S, T C [n] such that
1
L Aijl = 57 lIAlo,
ieS,jeT

where ||A|| is the cut norm of A.

The proof of the preceding theorem will rely on the following result which encapsu-
lates the known sparse SDP solvers [AK07, LP20]. For concreteness, we will rely on [LP20]

although the guarantee from [AKO07] also suffice for us.

Lemma 5.4.17. [Sparse SDP Solver Wrapper based on [LP20] and partially on [AKO7]] Let
C € R"™ " be a matrix with at most m non-zero entries. For every accuracy vy > 0, with high
probability we can find in time O((m + n) /poly(v)) vectors uq,...,uy € R™ in the unit ball

(ie., ||u;]| < 1) such that that the matrix >~<i,j = <“i/ u]-> satisfies

Cl,] .

Tr(C-X) > o max T (C-X) - 7%
Proof of Theorem 5.4.16. We now implement the strategy mentioned above of combing the
approximation algorithms of Alon-Naor [AN04] with the near-linear time sparse SDP
solvers. We still need to argue that this indeed leads to the claimed approximation guar-
antees while being computable in near-linear time overall. We point out that Alon-Naor
actually give a constant factor SDP based approximation algorithm for ||Al/,,_,; from

which a constant factor approximation algorithm for ||A||5 can be readily deduced from

310



in near-linear time incurring an extra 1/4 factor approximation loss'?. Using the matrix

A, we set

0 A
0

The SDP relaxation of Alon-Naor for ||Al|,_,; becomes

max Tr(C-X) =: SDP*
s.t. Xi,i <1 Vi € [271]
X =0,

except for the constraints X;; < 1 which they instead take to be X;; = 1. This technical
difference will play a (small) role in the rounding of this SDP since Alon-Naor analysis
relies on Gram vectors of X being on the unit sphere. Moreover, we will be solving this
SDP within only a weak additive approximation guarantee!!. Although these technical

differences need to be handled, this will be simple to do.

Applying the solver of Lemma 5.4.17 with accuracy parameter v = 62/ ||Al|, to the

above SDP, we obtain in O(poly(||A|ly, /9) - (m + 1)) time vectors uy,...,u, € R¥" in

the unit ball so that the matrix Xz’,j = <ui, u ]-> satisfy

Tr(C-)~(> >  max Tr(C-X) — 62-m.
X=0,X; ;<1

By assumption, we have SDP* = mMaxy=0,x; <1 1¥ (C-X) > OPT > ¢ - m, in which case

10. In Section 5.4 of Alon-Naor [AN04], there is a transformation avoiding any loss in the approximation
ratio. Since constant factors are not asymptotically important for us, we rely on the simpler transformation

which loses a factor of 1/4. It simply consists in choosing S € {{i | ¥; = 1},{i | X; = —1}}and T € {{j |
y;i =1}, {j | yj = —1}} maximizing I%Alf, which can be done in near-linear time given as input ¥, i/.

11. This may not be sufficient to obtain X;; ~ 1 by an extremality argument

311



the above guarantee becomes
Tr (c : >~<) > (1—26)-SDP*.

To obtain diagonal entries equal to 1 in our SDP solution we simply consider the new
SDP solution X' = X 4+ A, where A is the diagonal matrix defined as A;; = 1 — >~<i,i-
Gram vectors uf, ..., u5 of X' can be obtained in near-linear time from i, . .., up, and A
by setting

whi=u; @ (/A e € R¥MQRY™,

where ¢; € R?" has a one at the ith position and zero everywhere else. Observe that for

our particular C, we have

Tr<C~)~(’> - Tr<C~)~(>.

We now proceed to round X’ according to the rounding scheme of Alon-Naor [AN04]
(cf.,Section 5.1) which was chosen because it is simple enough to easily afford a near-
linear time computation while providing a ~ 0.27 > 1/4 approximation guarantee 12 This
rounding consists in sampling a Gaussian vector g ~ N(0, I ;) and setting ¥; := sgn (u/, g)
and y;,, = sgn <u; o g> for i € [n]. To analyze the approximation guarantee, the
following identity is used.

Fact 5.4.18 (Alon-Naor [ANO04], ¢f.,Eq. 5). Let u,w € R? be unit vectors in Uy-norm. Then

g 1) sgn (0.8)) = (1) + [ ({9) — [T sgm () ) ({wrg) =T ogn )]

where the expectations are taken with respect to a random Gaussian vector g ~ N(0,1;).

NI

12. Alon—-Naor [AN04] have a more sophisticated rounding scheme that achieves 0.56 > 1/2 approxi-
mation. In our applications, it is important to have a constant factor approximation, but the distinction
between 1/2 and the weaker 1/4 factor approximation guarantee is not asymptotically relevant.

312



Using Fact 5.4.18, the expected value of the rounding, i.e.,

E ZAi'j sgn <u§,g> sgn <u;~+n,g> ,
L]

becomes
2 2 7T 7T
2 ) + % D | (0) - Y sen i) () = Fosn (u18) )]

As in Alon-Naor [AN04], we will use the fact that <u;, g) — \/gsgn <u§, g)and <u}+n,g> —
\/g sgn <u; .y g> are themselves vectors on a Hilbert space with norm squared 7r/2 — 1.

Then, in our setting we obtain

E (1—5)-SDP*—(1—72T> . SDP*

) Aijsgn (u;,g) sgn <u}+wg>] >
L]

SN SIS RE N

v

(2—%—5) .SDP*

A\

(i + Q(l)> -SDP* (Since § < 27°)

v

<i+0(1)) .OPT,

as claimed. By standard techniques, this guarantee on the expected value of the rounded
solution can be used to give with high probability a guarantee of 1/4 - OPT (namely, by

repeating this rounding scheme O(poly(1/7) -log(n)) times). n

We now proceed to establish the sparse SDP solver wrapper claimed in Lemma 5.4.17.
For concreteness, we will use the following sparse SDP solver result of Lee-Padmanabhan
[LP20]. The analogous result of Arora—Kale [AK07] with slightly worse parameters also

suffices for our purposes, but the main result of [LP20] is stated in more convenient form.

Theorem 5.4.19 (Adapted from Theorem 1.1 of [LP20]). Given a matrix C € R™ " with m
non-zero entries, parameter vy € (0,1/2], with high probability, in time O((m + n)/~>5), it is
313



possible to find a symmetric matrix Y € R™*" with O(m) non-zero entries and diagonal matrix
ScR"™M"sothat X =S-exp - S satisfies
- X =0,

- )N(i,i <1 foreveryl <i <mn,and

- Tr(C- X) > maxxyqx,,<1 Tr (C-X) — 7 X

Cijl-

Furthermore, we have ||Y||, < O(log(n)/ ) (cf.,.Lemma C.2.3 of [LP20]).

Remark 5.4.20. We observe that Theorem 5.4.19 differs from Theorem 1.1 of [LP20] only by an
additional bound on ||Y ||, This bound is important in analyzing the error when approximating

(matrix) exponential of Y.

We now show how we can approximate the Gram vectors of the SDP solution of The-

orem 5.4.19. We rely on part of the analysis in Arora—Kale [AK07].

Claim 5.4.21. Let C € R"™™" be a matrix with at most m non-zero entries and v € (0,1/2].
Suppose X = S -expY - S satisfy the conclusions of Theorem 5.4.19 given C € R™ " and
accuracy . Then with high probability we can find in O(poly(1/+) - (m + n)) time approximate

Gram vectors uy, . .., uy € R" such that 551{’]. = <ui,u]-> satisfy
S/ _
- Xi,i <1 foreveryl <i <mn,and

- Tr(C-X) > T (C-X) — 7Ky

Cl,] .

Proof. Since X = (S - exp(Y/2))(S - exp(Y/2))!, the rows of S - exp(Y/2) can be taken as
Gram vectors uy,...,uy € R" of X. If we knew the rows of exp(Y/2), we could read-
ily recover these Gram vectors since S is diagonal. As observed in Arora-Kale [AK07],
computing exp(Y/2) may be computationally expensive, so instead one can approximate

the matrix-vector product exp(Y/2)u using d = O(log(n)/~?) random Gaussian vectors
314



u ~ N(0,I;). By the Johnson-Lindenstrauss Lemma and scaling by /n/d, with high

probability we obtain vectors i, . . ., il satisfying for every i, € [n] say

(i) ()| < &

In particular, whp ||i;[|5 < 1 + /6. Thus, by normalizing the vectors 7i; with ||i;]|, > 1

to have /-norm one the preceding approximation deteriorates to

() — ()| < 92

To compute each the matrix-vector product exp(Y /2)uin O(poly(1/7) - (m +n)), we rely

on the following lemma.

Lemma 5.4.22 (Arora—Kale [AKO07], cf.,Lemma 6). Let Ty be the time needed to compute the
matrix-vector product Yu. Then the vector v = Zf:o Yiu/(i!) can be computed in O(k - Ty)
time and if k > max{e? - ||Y||Op,ln(1/(5)}, then |lexp(Y)u —v|, < 6.

By noting that [|Y[|,, < O(log(n)/7v) and the time 7y (cf., Lemma 5.4.22) Yu is
O((m +mn)/7), applying Lemma 5.4.22 with say § < poly(y/n) we can approximate each
exp(Y/2)u in time O((m + 1) /7). Therefore, the total running is O(poly(1/7) - (m + n))

as claimed. Then the actual Gram vectors still satisfy

(i) = (T )| <

Hence, we get

4

Tr(C-X') > Tr (c>~<) —r¥|c;
1j
concluding the proof. n

We are ready to prove Lemma 5.4.17 which is restated below for convenience.
315



Lemma 5.4.17. [Sparse SDP Solver Wrapper based on [LP20] and partially on [AKO7]] Let
C € R™™" be a matrix with at most m non-zero entries. For every accuracy v > 0, with high
probability we can find in time O((m 4 n)/poly(7y)) vectors uy, ..., uy € R™ in the unit ball

(ie., ||u;|| < 1) such that that the matrix Xi,j = <ul~, uj> satisfies

Tr(C-)~<) >  max Tr(C-X)
T X=0,X;,<1 72

i

Proof of Lemma 5.4.17. Follows by combining the SDP solution X of Theorem 5.4.19 with
the fast approximate Gram vector computation of Claim 5.4.21, the latter yielding another
approximated SDP solution X’. In both of these computations, we use accuracy parame-
ter /2 so that

Tr(C-X') > Tr (c x) Z Cij
-

7,

0
> XE}?§Z<C1TT C XA z: ij Cﬁj'
Moreover, each step takes O(poly(1/+) - (m + 1)) which concludes the proof. n

5.5 Regularity Based Decoding for Direct-Sum Codes

We now develop list-decoding algorithms for direct-sum codes, using the regularity lem-

mas obtained in the previous section. We will prove the following theorem.

Theorem 5.5.1. Let Cy C TF} be a code with bias(Cy) < &g, which is unique-decodable to
distance (1—¢9)/4 in time Ty Let W C [n]X be a d-reqular, T-splittable collection of tuples, and let
C = dsumyy (Cy) be the corresponding direct-sum lifting of Co with bias(C) < e. Let B be such
that

1/2 k/2
B > max{\/E, <220-T-k3> , 2 (%+2€0> }

316



Then, there exists a randomized algorithm, which given § € Y, recovers the list Lg(y) =
{y e C| A, y) <1/2— B} with probability 1 — o(1), in time O(Cﬁlk,go -(|W| 4+ Tp)), where
20(E/82)
Ck,lB,SQ = (6/80) ‘
To obtain the decoding algorithm, we first define a function g : [n]¥ — {—1,1} sup-

ported on W as

- (—1)io) if (iy,... Q) € W
iy, ..., i) ==
0 otherwise

For each z € FY, we also consider the similar function x; : [n] — {—1,1} defined as

Xz (i) = (—1)%. We first re-state the decoding problem in terms of the functions g and x.

Claim 5.5.2. Let z € F, and let the functions ¢ and ) be as above. Then,

A(7, dsumyy(z)) < %— p & <g,x£®k>yk = (Z)k_l : <g,x?k>ﬂi®k > 2.

Proof. We have

A(y/ dsumW(Z)) = (iln--/IE,c)NW |:]l{y(i1,...,ik) # Zl'1+“.+zik mod 2}:|
B 1_8(i11---rik)'Hte[k]XZ(it) - 1_1< X®k>
(i1,-/0k ) ~HE 2 2 2 s Hi .

Finally, using the fact that g is only supported on W, and |W| = d*~1 . n by d-regularity,

we have <g,f>yk = (n/a)k-1. <g’f>y?k for any function f : [nk — R. u

Note that each element of the list £5(7) must be equal to dsumyy (z) for some z € Cy.

Thus, to search for all such z, we will consider the decomposition / of the function g,

317



given by Theorem 5.4.11 with respect to the class of functions F = CUT?k. Since the
functions Xz®k belong to F, it will suffice to only consider the inner product <h, X§k>y i@k.

Also, since the approximating function / is determined by a small number of func-
tions, say {f1,..., fr : [n] — {—1,1}}, it will suffice to (essentially) consider only the func-
tions measurable in the factor B determined by fy, ..., fr. Recall that the factor B is sim-
ply a partition of [n] in 2" pieces according to the values of f1,..., fr. Also, since any
B-measurable function is constant on each piece, it is completely specified by |B| real
values. We will only consider functions taking values in [—1, 1], and discretize this space

to an appropriate accuracy 7, to identify all relevant B-measurable functions with the set

{0, xn,£2y,...,£1} 1Bl The decoding procedure is described in the following algorithm.

318



Algorithm 5.5.3 (List Decoding).
Input 7 € IF;N
Output List L CC

- Obtain the approximator h given by Theorem 5.4.11 for F = CUT%k, 0 = B, and the
function g : [n]* — {—1,1} defined as

, | (=1)Yio)if (iy,... i) €W
g(ll,...,lk) =
0 otherwise

- Let h be of the form h = Zle ¢j fi, ® @ fj, witheach fj, : [n] — {—1,1}. Let B be

the factor determined by the functions {f jt} ic[p) telk]’
JEPl,

- Let L=Q@andlet =1/[(2/¢g)]. For each B-measurable function f given by a value
in Dy := {0, £n, %2y, ..., £1} for every atom of B:

— Sample a random function x : [n] — {—1,1} by independently sampling x (i) €

{—1,1} for each i, such that E[x(i)] = f(i). Take Z € IF} to be such that x = xs.

— If there exists z € Cq such that

A(Z,z) < (1_480) and  A(f,dsumpy(z)) < %—[B,

then L < LU {dsumyy(z)}.

- Return L.
Note that by our choice of the B in Theorem 5.5.1, we have that T < p2/(220k3).

Thus, we can indeed apply Theorem 5.4.11 to obtain the function & as required by the
algorithm. To show that the algorithm can recover the list, we will need to show that
for each z such that dsumyy(z) € £ p, the sampling procedure finds a Z close to z with

319



significant probability. To analyze this probability, we first prove the following claim.
Claim 5.5.4. Let z € IF§ and let f : [n] — Dy be a minimizer of ||E[xz|B] — flleo among all
B-measurable functions in D,’78|. Then, over the random choice of x such that E[x] = f, we have

Eloxeh] = (Frz), = IELIBIE, 1.

Proof. By linearity of the inner product, we have

E|(uxehn) = €RLxy, = (Frz), = (FEXIB])

M1 M1

where the last equality used Proposition 5.3.14 and the fact that f is B-measurable. Since
IE[x,|B] takes values in [—~1,1] and f is the minimizer over all functions in D,|78|, we must

have ||E[xz|B] — f|lec < 7. Using this pointwise bound, we get

(FEX:IB) = E [f(i)-E[x:IB] ()]

M1 I~

> B [(E[:lBl ()~ BB ()] = |E[:IB|} -7

I~

We next show that when z € [F} is such that < < X§k> is large, then the norm of the
conditional expectation EE[x|B] is also large, and hence the sampling procedure finds a Z
close to z. When we have a z € Cy with such a property, we can use Z to recover z using

the unique decoding algorithm for Cy.

Lemma 5.5.5. Let z € IFg be such that

(@) = (M (82E%) = 26

Then, we have ||]E[)(Z|E>’]||;241 > (B/2)%/k.

320



Proof. Let h be the approximating function obtained by applying Theorem 5.4.11 to g with

approximation error 6 = B. Note that we have Hh||y®k <2,and forany f € CUT%K,
1

~—
Ul
~—
»
L
/\
oQ
|
YR
S
~—
T
—_
=
~
\/
X
2
IA
>

Using f = x¥*and 6 = B, we get

<h'76.%®k>y®k > 2866 > B.

1

Using Proposition 5.3.14, and the fact that B is defined so that all functions in the decom-

position of h are (by definition) 3-measurable, we have

k 4 k

4
<h/X§k>ﬁ§k = chjn<ﬁt/XZ>Hl = ZCjH<JCjt'IE[Xz‘B]>H1 = <h1(]E [XZIB])®k>

@k
t=1 =1 t=1 i

Combining the above with Cauchy-Schwarz, we get

< ®k < _ ®k _ , k
p< (haf®) oo < Wloe [ LB oo = Il o0 NE LesIBII

Using ||h]|yl®k < 2 then gives ||]E[)(Z|B’]||;241 > (B/2)%/k. u
Using the above results, we can now complete the analysis of the algorithm.

Proof of Theorem 5.5.1. We first argue that for any codeword z € Cj such that dsumyy (z) €

Lg, sampling a random function x (with E [x] = f for an appropriate f) finds a Z close to z

with significant probability. Let f € D,lf be the minimizer of ||xz — f||e, for sucha z € Cy.

We have by Claim 5.5.4 that ]EX[<XfXZ>y1] > ||E[xz|B] ||%,1 —171. Since A(fj, dsumypy (z)) <

1/2 — B, we have by Claim 5.5.2 that < g X?k > > 2B. Thus, by Lemma 5.5.5, we have
103

that || E[xz| 5] ||}241 > (B/2)%/k. Combining these, and using the lower bound on B, we get

321



that
38 0

+57

N =

é 2/k_ 1 -
lg[<x,7cz>y1] > (2 N2 5t20-1 2

Since (x, Xz>ﬂ1 is the average of n independent (not necessarily identical) random vari-
ables {x(7) - xz(i) };[n) in the range [—1,1], we get by Hoeffding’s inequality that

> 8—0} < 2-exp (—s%-n/S) :

X 2

P {QW(ZM < %‘f‘s()] <P HO@XZM - E [<X/Xz>y1]

Thus, given a good sample y satisfying (x, xz) ” > 1/2 4 ¢(, we can recover the above
z € Cp such that dsumyy(z) € Lg, via the unique decoding algorithm for Cp. Also, given
the right f, we sample a good x with probability at least 1 — 2 - exp(—e(z) -n/8). A union

bound then gives
PlL=Ly] >1- ‘ﬁlg‘Q-eXp(—s%-n/S).

Using B > /¢, we get that ‘[,5‘ < (1/e) by the Johnson bound, which yields the desired
probability bound!3.

Running time. Using Theorem 5.4.11, the regularity decomposition / can be computed
in time O(C Bkeo - IW|). Given the functions fj, ..., fr forming the decomposition h, the
factor BB can be computed in time O(2” - n). For a chosen f in the sampling step, a sample
X can be computed in time O(n), and the decoding problem for the corresponding Z can
be solved in time 7. Also, the distance A(#j, dsumyy(z)) can be computed in time O(|W|).
Since the total number of sampling steps is at most (3/1) Bl and the number of functions

in the decomposition % is O(k’/g?) from Theorem 5.4.11, we get that the total number of

13. We thank the announymous reviewer for pointing out that this last part of the proof works whenever
the choice of B ensures that |£3| = Oge(1). Thus, Theorem 5.5.1 can be adpated to this more general
condition, the original Johnson bound regime condition (i.e., B > +/¢) providing just a sufficient condition.

322



k3,2 ~
e Thus, the total running time is bounded by O(C Bkeo

K382
(|[W|+ Ty)), where Cﬁ,k,eo _ (6/€0)20( /B ). _

sampling steps is (6/ So)zo

5.6 Near-linear Time Decoding of Ta-Shma’s Codes

We now proceed to prove our main result, namely Theorem 5.1.1, which establishes a
near-linear time unique decoding algorithm for Ta-Shma’s codes [TS17]. It will follow
from the regularity based list decoding algorithm for direct sum codes, Theorem 5.5.1,
applied to the decoding of a slight modification of Ta-Shma’s construction from [JQST20]

that yields a splittable collection of tuples for the direct sum.

Theorem 5.1.1 (Near-linear Time Unique Decoding). For every € > 0 sufficiently small, there

are explicit binary linear Ta-Shma codes Cy ¢ o C lFé\] for infinitely many values N € IN with

(i) distance at least 1/2 — €/2 (actually e-balanced),
(ii) rate Q(e2+%) where a = O(1/ (logy(1/¢))1/®), and

(iii) an r(e) - O(N) time unique decoding algorithm that that decodes within radius 1/4 — e/4

and works with high probability,

where r(e) = exp(exp(polylog(1/¢))).

We now state the properties and guarantees needed in our work of this slightly mod-
ified version of Ta-Shma’s direct sum construction of near optimal e-balanced codes. To
make the decoding task more transparent, we will additionally require the base code in

Ta-Shma’s construction have the following technical property.

Definition 5.6.1. We say that a code has symbol multiplicity m € IN if it can be obtained from

another code by repeating each symbol of its codeword m times.

323



Theorem D.1.1. [Ta-Shma’s Codes (implicit in [TS17])] Let ¢ > 0 be an universal constant.
For every ¢ > O sufficiently small, there exists k = k(e) satisfying Q(log(1/¢)1/3) < k <
O(log(1/¢)), €9 = €o(€) > 0, and positive integer m = m(e) < (1/€)°) such that Ta-Shma’s

construction yields a collection of T-splittable tuples W = W (k) C [n]K satisfying:

(i) For every linear eg-balanced code Cy C IF5 with symbol multiplicity m, the direct sum code

dsumyy (Cp) is:

(i.1) e-balanced (parity sampling).

(i.2) if Cy has rate Q) (e /m), then dsumyy (Co) has rate Q(21°)) (near optimal rate)
(i) T < exp(—O(log(1/¢)1/0)) (splittability).
(iii) W is constructible in poly(|W|) time (explicit construction).

Ta-Shma’s construction is based on a generalization of the zig-zag product of Rein-
gold, Vadhan and Wigderson [RVWO00]. To make the exposition more self-contained, we
recall the slight modification from [JQST20] in Appendix D.1, but it is not exhaustive ex-
position. The interested reader is referred to Ta-Shma [TS17] for the original construction

for aspects not covered here.

Ta-Shma'’s code construction requires an £p-balanced base code Cy C FJ whose dis-
tance will be amplified by taking the direct sum with a carefully chosen collection of
tuples W yielding an e-balanced code C = dsumyy (Cp). Since our goal is to achieve near-
linear time encoding and decoding of C, we take an “off-the-shelf” base code Cj that is
linear time encodable and decodable (near-linear time also suffices). A convenient choice
is the linear binary code family of Guruswami-Indyk [GIO5] that can be encoded and de-
coded in linear time. The rate versus distance trade-off is at the so-called Zyablov bound.
In particular, it yields codes of distance 1/2 — ¢y with rate 0(8(3)), but for our applica-

tions rate poly(¢g) suffices (or with some extra steps even any rate depending only on ¢

324



suffices, see Remark 5.6.5). We will use Corollary 5.6.2 impl