
Fast Decoding of Explicit almost Optimal
ε-balanced q-ary Codes and

Fast Approximation of Expanding k-CSPs

Fernando Granha Jeronimo*

November 2023

Good codes over an alphabet of constant size q can approach but not surpass distance
1− 1/q. This makes the use of q-ary codes a necessity in some applications, and much
work has been devoted to the case of constant alphabet q. In the large distance regime,
namely, distance 1− 1/q− ε for small ε > 0, the Gilbert–Varshamov (GV) bound asserts
that rate Ωq(ε2) is achievable whereas the q-ary MRRW bound gives a rate upper bound
of Oq(ε2 log(1/ε)). In this sense, the GV bound is almost optimal in this regime. Prior to
this work there was no known explicit and efficiently decodable q-ary codes near the GV
bound, in this large distance regime, for any constant q ≥ 3.

We design an Õε,q(N) time decoder for explicit (expander based) families of linear
codes CN,q,ε ⊆ FN

q of distance (1− 1/q)(1− ε) and rate Ωq(ε2+o(1)), for any desired ε > 0
and any constant prime q, namely, almost optimal in this regime. These codes are ε-
balanced,i.e., for every non-zero codeword, the frequency of each symbol lies in the in-
terval [1/q− ε, 1/q + ε]. A key ingredient of the q-ary decoder is a new near-linear time
approximation algorithm for linear equations (k-LIN) over Zq on expanding hypergraphs,
in particular, those naturally arising in the decoding of these codes.

We also investigate k-CSPs on expanding hypergraphs in more generality. We show
that special trade-offs available for k-LIN over Zq hold for linear equations over a finite
group. To handle general finite groups, we design a new matrix version of weak regularity
for expanding hypergraphs. We also obtain a near-linear time approximation algorithm for
general expanding k-CSPs over q-ary alphabet. This later algorithm runs in time Õk,q(m +
n), where m is the number of constraints and n is the number of variables. This improves
the previous best running time of O(nΘk,q(1)) by a Sum-of-Squares based algorithm of [AJT,
2019] (in the expanding regular case).

We obtain our results by generalizing the framework of [JST, 2021] based on weak
regularity decomposition for expanding hypergraphs. This framework was originally de-
signed for binary k-XOR with the goal of providing near-linear time decoder for explicit
binary codes, near the GV bound, from the breakthrough work of Ta-Shma [STOC, 2017].
The explicit families of codes over prime Fq are based on suitable instatiations of the Jalan–
Moshkovitz (Abelian) generalization of Ta-Shma’s distance amplification procedure.

*This material is based upon work supported by the NSF grant CCF-1900460.

1

Contents

1 Introduction 1

2 Proof Strategy 5

3 Constraint Types and Alphabets 8

3.1 General CSPs via the Binary Regularity . 9

3.2 Stating the Extended Weak Regularity Framework 11

3.3 Improved Case: k-LIN over Zq . 12

3.4 Improved Case: k-LIN over a Finite Group G 14

4 Some Definitions and Notation 16

4.1 Splittable Tuples . 16

4.2 Factors . 17

4.3 Functions and Measures . 18

5 Weak Regularity 19

5.1 Abstract Weak Regularity Lemma . 20

5.2 Existential Weak Regularity Decomposition 24

5.3 Efficient Weak Regularity Decomposition . 24

5.4 Realizability Brute Force . 31

5.5 Invoking Concrete Matrix Correlation Oracles 32

6 Concrete Correlation Oracles 32

6.1 Grothendieck Problem over Boolean Variables 33

6.2 Grothendieck Problem over Primitive Roots of Unity 34

6.3 Grothendieck Problem over Representations 38

7 Fast Decoding Prime q-ary Codes near the GV Bound 40

7.1 Preliminaries on Codes . 41

7.2 Near-linear Time Prime q-ary Decoding . 41

7.3 Instantiating the Decoder with a Base Code 46

8 Tuple versus Set Constraints 49

A Deferred Proofs 54

A.1 Splittable Mixing Lemmas . 54

A.2 Decoding . 55

i

1 Introduction

Codes over small alphabet sizes have attracted a lot of effort in coding theory [GRS19].
There is now a vast theory about them, but important mysteries remain. One very natural
alphabet is the binary alphabet, which has a myriad of uses and applications. However,
it also comes with an important limitation, namely, a family of good binary codes cannot1

surpass distance 1/2. By using a q-ary alphabet, a family of good codes can approach
distance 1− 1/q but not surpass it. This makes the use of q-ary codes a necessity whenever
larger distances are needed. Working towards explicit and efficiently decodable codes with
optimal trade-offs between rate and distance has been a challenging but fruitful guiding
goal in coding theory.

In the large distance case, namely, distances are of the form 1− 1/q− ε for small values
of ε > 0, the Gilbert–Varshamov (GV) bound [Gil52, Var57] asserts that rate Ωq(ε2) is
achievable whereas the q-ary version of McEliece, Rodemich, Rumsey and Welch (MRRW)
[MRRW77] gives an impossibility upper of Oq(ε2 log(1/ε)). This means that the GV bound
is nearly optimal in this regime of constant alphabet size q and large distance. To the best
of our knowledge, in this regime, (prior to this work) no explicit and efficiently decodable
families of q-ary codes near the GV bound were known for any q ≥ 3.

Two widely used approaches in the construction of q-ary codes for small q are based on
code concatenation [For66] and on algebraic geometry (AG) constructions [Sti08, TVN07].
Using code concatenation, it is possible to obtain explicit constructions achieving the sub-
optimal Zyablov bound trade-off between rate and distance, which gives a rate of Ωq(ε3).
Some explicit families of AG codes are celebrated for beating the GV bound in some spe-
cific parameter regimes, e.g., the seminal work of Tsfasman, Vlădut and Zink2 [TVZ82]
or the (non-linear) construction of Elkies [Elk01]. This surprising phenomenon of explicit
AG codes beating random codes cannot happen in a major way in the large distance and
constant alphabet regime since the GV bound is nearly optimal. Furthermore, known ex-
plicit constructions of linear AG codes are far from the GV bound for large distances and
constant q. Another drawback of several explicit families of good AG codes is that known
decoders can take much longer than linear time in the blocklength [NW19].

On a more combinatorial side, in a breakthrough work using expander graphs, Ta-
Shma [TS17] gave the first explicit construction of binary codes of distance 1/2− ε and
rate Ω(ε2+o(1)), namely, near the Gilbert–Varshamov bound. A polynomial time decoder
for these binary codes was first given in [JQST20] followed by a near-linear time decoder
in [JST21]. Subsequently, Jalan and Moshkovitz [JM21] extended Ta-Shma’s analysis [TS17]
to handle (in particular) codes over larger alphabets3. Suitable instantiations of [JM21]
imply explicit codes over prime Fq of distance 1− 1/q− ε with rate Ωq(ε2+oq(1)), namely,
again near the (q-ary) GV bound for constant q.

Motivated by the above situation, we design a near-linear time decoder for explicit
families of q-ary codes of distance (1− 1/q)(1− ε) and rate Ω(ε2+oq(1)) for any constant
prime q, namely, near the GV bound in the large distance regime. More precisely, our main
result is as follows (answering a question from [JM21]).

1This is a consequence of the Plotkin bound.
2More precisely, the TVZ bound [TVZ82] establishes a rate of r ≥ 1− δ− 1/(

√
q− 1) with respect to the

relative distance δ.
3More precisely, [JM21] analyzed the (scalar) Abelian case of Ta-Shma’s amplification.

1

Theorem 1.1 (Main I - Near-linear Time Unique Decoding over Fq). Let q be a prime. For
every ε > 0 sufficiently small, there are explicit linear Ta-Shma codes CN,q,ε ⊆ FN

q for infinitely
many values N ∈N with

(i) distance at least (1− 1/q)(1− ε) (actually ε-balanced),

(ii) rate Ωq(ε2+α) where α = O(1/(log2(1/ε))1/6), and

(iii) an r(q/ε) · Õ(N) time randomized unique decoding algorithm that decodes within radius
((1− 1/q)(1− ε))/2,

where r(x) = exp(exp(poly(x))).

In fact, we actually prove the following stronger list decoding result.

Theorem 1.2 (Near-linear time List Decoding over Fq). Let q be a prime. For every ε > 0
sufficiently small, there are explicit binary linear Ta-Shma codes CN,q,ε ⊆ FN

q for infinitely many
values N ∈N with

(i) distance at least (1− 1/q)(1− ε) (actually ε-balanced),

(ii) rate Ωq(ε2+α) where α = O(1/(log2(1/ε))1/6), and

(iii) an r(q/ε) · Õ(N) time randomized list decoding algorithm that decodes within radius 1−
1/q− 2−Θq((log2(1/ε))1/6) and works with high probability,

where r(x) = exp(exp(poly(x))).

We obtain our results by building on and extending the binary decoding framework
in [JST21]. This framework is based on a generalization of the weak regularity decompo-
sition to (sparse) expanding hypergraphs that generalizes the seminal work of Frieze and
Kannan [FK96]. The weak regularity decomposition of [JST21] was then used to approx-
imate expanding k-XOR instances naturally arising in the decoding of binary Ta-Shma’s
codes [TS17]. Similarly, constraint satisfaction problems (CSPs) will play a key role in our
decoder. Here, we also take the opportunity to investigate expanding CSPs more broadly.

An instance of a k-CSP is given by a k-uniform (ordered) constraint hypergraph W ⊆
[n]k, where each vertex is associated with a variable taking values in an alphabet of size q
and each edge is associated with a constraint involving the variables of its vertices. While
even approximating a CSP is NP-hard in general, suitable notions of expansion of the con-
straint hypergraph allow for efficient approximation algorithms as in [JST21]. One such
notion is splittability [AJT19] (cf., Definition 4.3). Roughly speaking, a τ-splittable collec-
tion of tuples for some τ ∈ (0, 1] is the higher-order analogue of the second largest singular
value of the normalized adjacency matrix of a graph (the smaller the τ the more expand-
ing is the collection). Approximating expanding k-CSPs is at the core of some decoding
algorithms for expander based constructions of codes [DHK+19, AJQ+20, JQST20, JST21,
BD22].

As mentioned above, approximating expanding k-CSPs will be again at the core of
our extension of [JST21] to more general constraints over larger alphabets. Our new q-ary
decoder will need to handle instances of linear equations over the alphabet Zq, where each
equation involves a sum of k variables. This kind of k-CSP is commonly denoted k-LIN

2

over alphabet Zq. We will see that the special algebraic structure of these linear constraints
will allow to obtain some improved parameter trade-offs, which will be explored in the
decoding application. More precisely, the expansion (splittability) parameter τ will have
no dependence on alphabet size q and only a polynomial dependence on the arity4 k, and
this allows us to obtain better approximation guarantees. Our second result follows.

Theorem 1.3 (Main II). Let I be an instance of MAX k-LINq on n variables with alphabet Zq

and constraints supported on a regular5 collection of tuples W ⊆ [n]k. If W is τ-splittable with
τ ≤ τ0(k, δ) := poly(δ/k), then we can compute an assignment satisfying OPT − δ in time
r(q/τ0) · Õ(|W|+ n), where r(x) = exp(exp(poly(x))).

We show that this phenomenon of no dependence of the expansion on the alphabet
size q and only polynomial dependence on arity k also occurs for linear equations over
a general finite groups G. Similarly, this leads to better approximation guarantees. To
actually implement and obtain this advantage, we will design a new matrix version of the
weak regularity decomposition for expanding hypergraphs. Our third result follows.

Theorem 1.4 (Main III). Let I be an instance of MAX k-LING on n variables with alphabet a finite
group G and constraints supported on a regular collection of tuples W ⊆ [n]k. If W is τ-splittable
with τ ≤ τ0(k, δ) := poly(δ/k), then we can compute an assignment satisfying OPT− δ in time
O|G|,k,δ(1) · poly(|W|+ n).

Remark 1.5. In Theorem 1.4, we did not attempt to make the running time near-linear in the
number of constraints and variables, but it is plausible that it can be done.

We find intriguing this interplay between the type of constraint used in the CSP and
the expansion requirement for a given approximation. A natural question is to investigate
this interplay for more general constraint types.

In this work, we also investigate how fast we can approximate expanding k-CSPs over
q-ary alphabet without making any assumptions on the constraints. We show that k-CSPs
can be approximated in near-linear time in the number of constraints and variables, assum-
ing k and q are constants, and provided the constraint hypergraph is sufficiently expanding
(splittable Definition 4.3). An important caveat of this general case is that the expansion
requirements will now depend on both the alphabet size q and arity k in an exponential
way (of the form q−O(k)).

Theorem 1.6. Let I be an instance of MAX k-CSP on n variables with alphabet [q] and con-
straints supported on a regular collection of tuples W ⊆ [n]k. If W is τ-splittable with τ ≤
τ0(k, q, δ) := poly(δ/(kqk)), then we can compute an assignment satisfying OPT− δ in time
r(kq/δ) · Õ(|W|+ n), where r(x) = exp(exp(exp(poly(x)))).

We obtain the above result via a reduction to the “binary” weak regularity in [JST21] in
a somewhat similar fashion to [FK98]. Even though it is not hard to make this connection,
we think it is worth stating it since this result may be more broadly applicable. Moreover,
for fixed arity k and alphabet size q, this improves the running time in the expanding
regime of the Sum-of-Squares based algorithm in [AJT19] and also the expanding regime6

of earlier results 2-CSPs [BRS11, GS11, GS12, OGT15].
4In the binary case of [JST21], it was also possible to have a polynomial dependence on the arity k.
5See Definition 4.1 for the definition of regular. This is an analog to tuples of a graph being d-vertex regular.
6We point out these approaches also consider when the expansion is defective (low threshold rank case).

Since we are interested in near-linear running time, we need to focus on the expanding case.

3

For comparison, we recall the expanding regime7 of [AJT19] below.

Theorem 1.7 (Sum-of-Squares [AJT19]). Let I be an instance of MAX k-CSP on n variables
with alphabet [q] and constraints supported W ⊆ [n]k. If W is τ-splittable with τ ≤ τ0(k, q, δ) :=
poly(δ/k) · q−k, then we can compute an assignment satisfying OPT− δ in time npoly(1/τ0).

Remark 1.8. In the new theorem above, we do not attempt to optimize the function r(x).

Related Work: As we mentioned above, our work is an extension of the binary framework
of [JST21]. This framework was designed for approximating expanding k-XOR and to give
a near-liner time decoding algorithm for the explicit binary codes of Ta-Shma [TS17], near
the GV bound. The first polynomial time decoder for these codes was given in [JQST20]
using the Sum-of-Squares semi-definite programming hierarchy and its running time, al-
beit polynomial, is very far from near-linear in the blocklength.

AG codes are widely used in the study of explicit constructions over constant q-ary al-
phabets. Some of these constructions achieve very competitive parameter trade-offs (e.g.,
rate versus distance) if not the best known in several cases. However, explicit and effi-
ciently decodable codes near GV bound for large distances,i.e., 1− 1/q− ε, and constant
alphabet size were not known prior to this work. In fact, the first explicit construction only
appeared in the breakthrough work of [TS17] for binary codes using more combinatorial
expander based techniques. This absence of explicit construction near the GV bound in
this regime means that much is yet to be discovered about this case. We view our near-
linear time decoder of prime q-ary codes in this regime as not only reaching previously
unattained parameter regimes with an explicit construction, but also offering a more com-
binatorial perspective among a wealthy of algebraic techniques.

For non-explicit families of codes approaching the GV bound, much more is known.
Random linear codes achieve this bound, but their decoding is believed to be computation-
ally hard. It is possible to construct more structured ensembles of random codes that allow
for efficient decoding in this regime. We have the non-explicit classical Goppa codes. An-
other important technique is based on Thommesen’s [Tho83] technique of concatenation
with random inner codes. These Thommesen based ensembles can sometimes approach
the GV bound and also allow for efficient decoding [GI04, GKO+17, HRW17, KRRZ+21]
and even near-linear time decoding [HRW17, KRRZ+21].

More recently, Blanc and Doron [BD22] used the framework in [JST21] to decode ex-
plicit binary codes near the GV bound with improved parameters, where they obtain a
polynomial improvement on the o(1) error term of the rate Ω(ε2+o(1)) (the α in Theo-
rem 1.1) and also put forward some interesting conjectures towards further improving
the rate. It is plausible that their improvement also applies here for q-ary alphabets.

In the constant alphabet case, a different parameter regime that has received much
attention is the near-capacity regime [GRZ22, GX13, HRW17, KRRZ+21] of list decoding
from radius 1− r− ε with rate r for small values of ε > 0. This regime can only occur when
the alphabet size q is a function of ε. Note that our near GV bound regime is the opposite,
we have a fixed constant q and we can take ε arbitrarily small (smaller than some function
of q).

7Using the improved analysis of swap walks by Dikstein and Dinur [DD19].

4

2 Proof Strategy

We will now describe our contributions in more detail. Our algorithmic results will be
based on extensions of the binary weak regularity framework of [JST21]. Roughly speak-
ing, this framework being a “low level” framework gives fine control over its components
leading to a near-linear time decoder for Ta-Shma’s codes [TS17] over F2. This same low
level structure means that extensions may require suitable generalizations in several of
these components as well technical work to implement them. The extensions to handle
codes over prime q-ary alphabet and a matrix version of weak regularity will be no excep-
tion.

First, we will recall the weak regularity decomposition of Frieze and Kannan [FK98]
in a more analytic form [TTV09]. We will also first consider its existential form and later
discuss its algorithmic form. Our setup will be as follows. Let W ⊆ [n]k be a collection of
tuples endowed with the uniform probability measure µk. Suppose that we have a function
g : W → C that we want to approximate using a simpler approximating function, which
will be made precise below. Further suppose that the quality of approximation will be
measured with respect to correlations with a class of test functions F . Given some desired
approximation error δ > 0, the goal will be to find a “simple” approximator h ≈ g such that

max
f∈F

∣∣∣⟨g− h, f ⟩µk

∣∣∣ ≤ δ .

As an existential result, it is well-known that an h of the form h = ∑
p
ℓ=1 cℓ · fℓ always exists,

where cℓ’s are scalars and the fℓ’s are functions belonging to F . Furthermore, the number
of test functions p is small being at most8 O(1/δ2). This means that h is indeed “simple”
since it is the sum of a small number of test functions, so h is almost as complex as the test
functions it needs to fool.

To motivate the generalizations in the weak regularity framework, we will start the
discussion of the important case of linear equations over Zq as a motivating example.
As mentioned above, approximating k-LIN over Zq will be crucial in the near-linear time
decoding algorithm for prime q-ary alphabets. For us, an instance I of k-LIN is given by a
system of linear equations9

xi1 + · · ·+ xik ≡ rw (mod q) ∀ w = (i1, . . . , ik) ∈W, (1)

where (rw)w∈W ∈ ZW
q are given RHS coefficients. We will need to model this problem in a

way that is amenable to the weak regularity approach. We will also take advantage of the
algebraic structure of the constraints to avoid any dependence of the alphabet size q and
to have only a mild dependence on the arity k in the expansion the framework will require
from W.

“Global” Approximation of Dirac Delta Functions: An elementary property of Fourier
analysis over Zq is that the Dirac delta function x 7→ 1[x=y] admits a simple but extremely
handy Fourier decomposition which we now recall. Let ω = exp(2π

√
−1/q). Using

orthogonality of characters, we have

1[x=y] = E
a∈Zq

[
ωa(x−y)

]
.

8The ℓ1-norm of the coefficients is “small”, i.e., ∑
p
ℓ=1 |cℓ|.

9The coefficients of the variables are always taken to be 1 here.

5

Suppose we have an assignment b ∈ Zn
q to the variables of our system of linear equations

I. Then, the fraction of satisfied constraints, which we denote by val(I, b) and refer as the
value of this assignment, can be expressed as

val(I, b) := E
w=(i1,...,ik)∼µk

[
1[bi1+···+bik

≡rw]

]
= E

w=(i1,...,ik)∼µk

[
E

a∈Zq

[
ωa(bi1+···+bik

−rw)
]]

.

This suggests defining q functions one for each a ∈ Zq of the form ga : W → C as ga(w) :=
ωa·bw , the “harmonic” components. We also endow the space CW with the inner product
defined by the measure µk on W. We will need some additional notation. For b ∈ Zn

q , we
define the function χb,a on [n] as χb,a(i) = ωa·bi . We can now rexpress val(I, b) in terms of
its harmonic components as

val(I, b) = E
w=(i1,...,ik)∼µk

[
E

a∈Zq

[
ωa(bi1+···+bik

−rw)
]]

= E
a∈Zq

[
E

w=(i1,...,ik)∼µk

[
ω−a·rw ·ωa(bi1+···+bik

)
]]

= E
a∈Zq

〈ga, χb,a ⊗ · · · ⊗ χb,a︸ ︷︷ ︸
k

〉
µk


= E

a∈Zq

[〈
ga, (χb,a)

⊗k
〉

µk

]
.

We can now try to further approximate each ga using a simpler function ha that behaves
similarly to ga with respect to functions of the form fb,a = χb,a ⊗ · · · ⊗ χb,a as in the inner
product above. We can view functions of form fb,a as tests with respect to which ga and
its simpler approximator have similar correlations. This means that we can model the
problem in way amenable to the existential weak regularity framework. For each a, we
will consider a (slightly) more general class of test functions CUT⊗k

ω,q,a defined as follows

CUT⊗k
ω,q,a := {χb(1),a ⊗ · · · ⊗ χb(k),a | b(1), . . . , b(k) ⊆ Zn

q} .

A simple yet useful remark is that if we can find a decomposition fooling a larger class of
test functions, this would suffice since, in particular, it fools the initial class of test.

Suppose that for some δ ∈ (0, 1) we can find a δ-approximation ha = ∑
pa
ℓ=1 ca,ℓ ·

χb(a,ℓ,1),a ⊗ · · · ⊗ χb(a,ℓ,k),a to ga with respect to a class of test functions, i.e.,

max
f∈CUT⊗k

ω,q,a

∣∣∣⟨ga − ha, f ⟩µk

∣∣∣ ≤ δ .

By replacing ga with ha in the computation of val(I, b) above, we obtain10

val(I, b) = E
a∈Zq

[〈
ga, (χb,a)

⊗k
〉]

= E
a∈Zq

[〈
ha, (χb,a)

⊗k
〉]
± δ.

We will explain how to algorithmically find ha in near-linear time later. Now, we will
argue why having access to weak regularity decomposition greatly simplifies our task of
approximating val(I, b) and also later while decoding q-ary codes.

10For scalars x, y (real or complex) and real δ ∈ R+, we use the notation x = y± δ if |x− y| ≤ δ.

6

We can simplify the above equation for val(I, b) even further using the assumed ex-
pansion (splittability) of W. A suitable version of the expander mixing lemma allows us
to pass from the measure µk to the product measure µ⊗k

1 , where µ1 is the uniform measure
on [n]. More precisely, we can show that if W is sufficiently expanding (depending on δ),
then

val(I, b) = E
a∈Zq

[〈
ha, (χb,a)

⊗k
〉

µk

]
± δ = E

a∈Zq

[〈
ha, (χb,a)

⊗k
〉

µ⊗k
1

]
± 2δ

= E
a∈Zq

[
pa

∑
ℓ=1

ca,ℓ ·
k

∏
j=1

〈
χb(a,ℓ,1),a, χb,a

〉
µ1

]
± 2δ .

The low complexity of the approximator ha will allow us to simplify the search for an ap-
proximately optimal assignment b ∈ Zn

q . The expression above reveals that we only need
to know the values of {〈

χb(a,ℓ,j),a, χb,a

〉
µ1

}
a∈Zq,ℓ∈[pa],j∈[k]

.

Luckily, algorithmically, there will be only O(qk3/δ2) such numbers (no dependence on n
and only slightly more than the O(qk/δ2) from the existential result). Using brute-force
search, it is possible to find sufficiently fine and (close to valid) approximations for these
numbers.

To make the entire process efficient and near-linear time we still need to say how to
find the functions ha’s in near-linear time. As in [JST21], we will reduce the problem of
finding a weak regularity decomposition with respect to a class of k-tensors, in this case
the class CUT⊗k

ω,q,a, to multiple applications of the 2-tensor case (in a sparse regime). To
execute this process in near-linear, we will again use the expansion of W to conveniently
move to easier to handle product measures (as above). This involves finding a constant
factor approximation for the following expression

max
x,y∈Zn

q

∣∣∣∣∣ n

∑
i,j=1

Ai,j ·ωa·xi ·ωa·yj

∣∣∣∣∣ , (2)

This kind of optimization is known as the Grothendieck problem and, in this case, it is for
roots of unity going beyond the ±1 case of Alon and Naor [AN04]. In [SZY07], So, Zhang
and Ye considered a more restricted version of this problem (with positive semi-definite
matrices) known as the little Grothendieck problem. We will extend their analysis to the
Grothendieck problem building on some ingredients present in their proof. In our applica-
tion, the matrices A will be sparse with m ≈ n non-zero entries and to achieve a near-linear
time we will need to find an (additive) approximation to the Grothendieck problem in time
Õ(m) of Eq. (2). This can be done using the fast SDP solver of Arora and Kale [AK07].

We now explain how the above weak regularity decomposition can be used in decod-
ing of the expander based construction of Ta-Shma’s codes [TS17]. We will see that the
decoding problem can be naturally phrased as a k-LIN instance over Zq, which is a natural
q-ary extension of the k-XOR over Z2 from [AJQ+20, JQST20, JST21]. First, we briefly de-
scribe Ta-Shma’s code construction over alphabet Fq, with q prime, as analyzed11 in [JM21].

11In [JM21], they considered the more general (scalar) Abelian case.

7

The idea is to start with a good base code C0 ⊆ Fn
q and to use a carefully constructed col-

lection of tuples W ⊆ [n]k to amplify its distance via the direct-sum encoding. For any
z ∈ Fn

q , recall that its direct-sum encoding is a new word denoted y = dsumW(z) in FW
q

and defined as

y(i1,...,ik) = zi1 + · · ·+ zik (mod q) ∀ (i1, . . . , ik) ∈W .

The direct-sum code C = dsumW(C0) is defined as C = {dsumW(z) | z ∈ C0}. Note
the similarity of the above equation and the system of linear equations from Eq. (1). In
the decoding task, we are given a (possibly) corrupted version of ỹ of some codeword
y = dsumW(z) ∈ C, with z ∈ C0. We can view ỹ as defining the RHS coefficients of an
instance of k-LIN, namely, rW = ỹw.

Having an instance of k-LIN over Zq, we can now use weak regularity as described
above. For each a ∈ Zq, let ga be the harmonic component associated with RHS vector ỹ (as
above). Similarly, we find a weak regularity approximation ha for each function ga.

If the distance ∆(ỹ, dsumW(z)) ≤ (1− 1/q)(1− β) is not too large, we will be able to
deduce that some harmonic function ha “captures” the structure of the codeword z in the
following sense. Set R = {ωa·a′ | a′ ∈ Zq} and let f1, . . . , fr : [n] → R be the functions
appearing in the decomposition of ha. For each tuple (y1, . . . , yr) ∈ Rr, we can consider
the set

{x ∈ [n] | f1(x) = y1, . . . , fr(x) = yr}.

These sets partition12 the space [n], and we can show that z is approximately constant in
most of these parts. In this sense, the low complexity structure of ha captures the structure
of the codeword z. In this last argument, we use that assumption that q is prime13.

The case of k-LIN over a finite group will also allow for a weak regularity decompo-
sition in a similar spirit as above, where scalar Fourier characters are replaced by larger
dimensional representations and “global” approximation of Dirac delta functions are per-
formed. Extending the weak regularity framework to this case will require considering
matrix valued functions. The way we model this case is done in Section 3.4 and it uses
very elementary properties of representation theory. This case again exhibits an interest-
ing interplay between the type of constraints and the requirement on expansion. (The
reader who is only interested in decoding can safely ignore this extension and focus on the
Zq case.)

3 Constraint Types and Alphabets

We explore the role of different types of constraints and corresponding alphabets going
beyond the binary k-XOR considered in [JST21]. For the special case of linear equations
over Zq or over an arbitrary finite group G, we will explore the special structure of the
constraints and obtain results with improved parameters.

12Possibly with empty parts.
13So that all non-trivial roots of unity are primitive roots. It is plausiable that this restriction is not necessary.

8

3.1 General CSPs via the Binary Regularity

We will prove our first result for approximating a general expanding k-CSPs over a q-ary
alphabet in near-linear time. We obtain this result using the binary near-linear time weak
regularity decomposition from [JST21] in a similar way that Frieze and Kannan modeled
k-CSPs [FK98] using regularity. We formalize this (relatively simple) connection since we
believe this result may be of independent interest and may find applications elsewhere.
Moreover, it also improves the running time of [AJT19] to near-linear time, for fixed k and
q, while offering a different approach to approximating general expanding k-CSPs which
could be simpler than their Sum-of-Squares based algorithm. We now restate and proceed
to prove this result.

Theorem 1.6. Let I be an instance of MAX k-CSP on n variables with alphabet [q] and con-
straints supported on a regular collection of tuples W ⊆ [n]k. If W is τ-splittable with τ ≤
τ0(k, q, δ) := poly(δ/(kqk)), then we can compute an assignment satisfying OPT− δ in time
r(kq/δ) · Õ(|W|+ n), where r(x) = exp(exp(exp(poly(x)))).

We will find a weak regularity decomposition with respect to 0/1 valued test functions
F = CUT⊗k where

CUT⊗k := {±1S1 ⊗ · · · ⊗ 1Sk | S1, . . . , Sk ⊆ [n]} .

The near-linear weak regularity decomposition of [JST21], which we recall below, can
handle this class of functions.

Theorem 3.1 (Efficient Weak Regularity from [JST21]). Let W ⊆ [n]k be a τ-splittable col-
lection of tuples. Suppose F is one of CUT⊗k, CUT⊗k

± . Let R be the domain of the functions
in F , when k = 1. Let g ∈ RW[1]k be supported on W with ∥g∥µk

≤ 1. For every δ > 0, if
τ ≤ δ2/(k3 · 220), then we can find h = ∑

p
ℓ=1 cℓ · fℓ with p = O(k2/δ2), c1, . . . , cp ∈ R and

functions f1, . . . , fp ∈ F , such that ∥h∥µ⊗k
1
≤ 2, ∑

p
ℓ=1 |cℓ| = O(k/δ) and h is a good approxima-

tor to g in the following sense

max
f∈F

∣∣∣∣∣
〈

g−
(

d
n

)k−1

h, f

〉∣∣∣∣∣ ≤ δ · |W| ,

where the inner product is over the counting measure on W[1]k. Furthermore, h can be found in

Õ(22Õ(k2/δ2) · |W|) time.

Having access to a weak regularity decomposition as above makes the task of approxi-
mating the value of a CSP instance relatively simple, as we now describe. This is a common
feature of weak regularity based arguments,e.g., [FK98, OGT15]. Here, we consider both
arbitrary arity k and arbitrary alphabet size q.

We will first need some notation. Let α ∈ [q]k and define Wα = {w ∈ W | Pw(α) = 1}
to be the set of tuples whose predicates Pw are satisfied by on the input α. LetA(I) = {α ∈
[q]k | Wα ̸= ∅} be the set of satisfying inputs of at least one predicate of I.

We will use the following claim which relates the value of an assignment to the struc-
ture of the weak regularity decomposition.

9

Claim 3.2. Suppose that for every α ∈ [q]k, we have a weak regularity decomposition hα, from The-
orem 3.1, of the indicator 1W(α) with error parameter δ > 0 and with respect to the test class
CUT⊗k. Let b ∈ [q]n (viewed as an assignment), which induces a partition T1 ⊔ · · · ⊔ Tq of [n].
Then,

val(I, b) = ∑
α∈A

pα

∑
ℓ=1

cα,ℓ

∣∣∣Sα,ℓ
1 ∩ Tα1

∣∣∣
n

· · ·

∣∣∣Sα,ℓ
k ∩ Tαk

∣∣∣
n

± δ · |A(I)| .

Proof. Let A = A(I). The value of this assignment is

val(I, b) = ∑
α∈A

〈
1Wα

, 1Tα1
⊗ · · · ⊗ 1Tαk

〉
µk

=
1
|W| ∑

α∈A

〈(
d
n

)k−1

hα, 1Tα1
⊗ · · · ⊗ 1Tαk

〉
± δ · |A|

=
1
|W| ∑

α∈A

〈(
d
n

)k−1 pα

∑
ℓ=1

cα,ℓ · 1Sα,ℓ
1
⊗ · · · ⊗ 1Sα,ℓ

k
, 1Tα1

⊗ · · · ⊗ 1Tαk

〉
± δ · |A|

=
1
nk ∑

α∈A

pα

∑
ℓ=1

cα,ℓ ·
〈

1Sα,ℓ
1
⊗ · · · ⊗ 1Sα,ℓ

k
, 1Tα1

⊗ · · · ⊗ 1Tαk

〉
± δ · |A|

= ∑
α∈A

pα

∑
ℓ=1

cα,ℓ ·
〈

1Sα,ℓ
1

, 1Tα1

〉
µ1
· · ·
〈

1Sα,ℓ
k

, 1Tαk

〉
µ1
± δ · |A|

= ∑
α∈A

pα

∑
ℓ=1

cα,ℓ

∣∣∣Sα,ℓ
1 ∩ Tα1

∣∣∣
n

· · ·

∣∣∣Sα,ℓ
k ∩ Tαk

∣∣∣
n

± δ · |A| ,

concluding the proof.

Proof of Theorem 1.6. Let I be an instance of a k-CSP over alphabet [q] supported on a col-
lection of tuples W ⊆ [n]k and with predicates (Pw : [q]k → {0, 1})w∈W .

For each α ∈ A(I), we apply the weak regularity decomposition of Theorem 3.1 to
the function 1Wα

with error parameter δ > 0 and test class F = CUT⊗k. This gives an
approximation hα = ∑

pα

ℓ=1 cα,ℓ · 1Sα,ℓ
1
⊗ · · · ⊗ 1Sα,ℓ

k
.

A crucial property is that instead of having to know an assignment b ∈ [q]n, repre-
sented as a partition T1 ⊔ · · · ⊔ Tq = [n], it is enough to know the values of the following
inner products {〈

1Sα,ℓ
j

, 1Tαj

〉
µ1

}
α∈A(I),ℓ∈[pα],j∈[k]

The decomposition is low complexity, in the sense that there are only a few of these values.
However, we cannot take arbitrary values for these inner products since they may be far
from realizable, i.e., no true assignment b ∈ [q]n can give rise to these values even approxi-
mately. From the inner products above, we can extract the following class of functions

F ′ =
{

1Sα,ℓ
j

}
α∈A(I),ℓ∈[pα],j∈[k]

,

10

whose size r = |F ′| = O(|A(I)| k3/δ2) is independent from n.

Using Claim 3.2, to be able to approximate val(I, b) within error δ′ > 0 we need to
choose the error of the weak regularity decomposition14 to be δ = δ′/(2 |A(I)|) In this
case, we have r = O(|A(I)|2 k3/(δ′)2) = O(q2kk3/(δ′)2) and the τ-splittability parameter
of W needs to satisfy τ ≤ poly(δ′/(kqk)).

For convenience, label the functions of F ′ as f1, . . . , fr. Their range is the (simple) bi-
nary setR = {0, 1}. We will consider the factor (see Section 4.2) B defined by the collection
F ′, which, roughly speaking, is a partition of [n] according to the values of these functions.
More precisely, for every tuple (y1, . . . , yr) ∈ Rr we have a (possibly empty) part (or atom)
of the form

{x ∈ [n] | f1(x) = y1, . . . , fr(x) = yr} .

In this case, we have at mostRr = 2r atoms in the factor. By definition the functions F ′ are
constant in each of them. An assignment b gives rise to a distribution on [q] in each atom
of the factor. Conversely, any approximate distribution on [q] in each atom approximately
corresponds to a realizable assignment b.

Let L = ∑α∈A(I),ℓ∈[pα] |cα,ℓ| ≤ |A(I)|O(k/δ). Set η = δ/(k · L · q). We can η-approximate
these distributions in ℓ1-norm on each atom15. The number of approximate distributions
can be (crudely) bounded as

(1/(ηq))R
r ≤ exp(exp(exp(poly(qk/δ′)))) .

With this fine enough discretization of the distributions on each atom, when computing
the expression

val(I, b) = ∑
α∈A

pα

∑
ℓ=1

cα,ℓ

∣∣∣Sα,ℓ
1 ∩ Tα1

∣∣∣
n

· · ·

∣∣∣Sα,ℓ
k ∩ Tαk

∣∣∣
n

± δ · |A|

we incur an additional error of δ′/2. By our choice of δ, the total approximation error is at
most δ′.

Running Time: By Theorem 5.12, the running time of the weak regularity decomposition

is Õ(22Õ(k2/δ2) · |W|) per each computation of hα. Combining the enumeration running and
the time to compute these decompositions, we conclude the result.

3.2 Stating the Extended Weak Regularity Framework

We now show how to obtain our main results for linear equations k-LIN over Zq in Theo-
rem 1.3 and over a finite group G in Theorem 1.4.

In Section 3.3, we will see that to approximate k-LIN over Zq it suffices to find a good
weak regularity decomposition with respect to the test functions F = CUT⊗k

ω,q,a defined as
follows (see Section 4 for a formal definition)

CUT⊗k
ω,q,a := {χb1,a ⊗ · · · ⊗ χbk ,a | b1, . . . , bk ⊆ Zn

q} .

14We can assume without loss of generality that A(I) ̸= ∅ since otherwise the value of the CSP is always
zero.

15If the atom is too smaller than 1/(ηq), then we can consider all the possible exact distribution.

11

In Section 3.4, we will see that to approximate k-LIN over a finite group, it suffices to
find a good weak regularity decomposition with respect to the matrix valued test functions
F defined as follows

CUT⊗k
ρ := {ρb1 ⊗ · · · ⊗ ρbk | b1, . . . , bk ∈ Gn} .

It will be more convenient to enlarge the test class F to unitary valued functions as follows

CUT⊗k
Us,k,δ

:= { f1 ⊗ · · · ⊗ fk | f1, . . . , fk : [n]→ Us,k,δ} ,

where Us,k,δ will be a fine enough discretization of the matrices16 Ms(C) of operator norm
at most 1.

We will extend the framework to additionally handle the classes of functions CUT⊗k
ω,q,a

and CUT⊗k
Us,k,δ

. This will be proven in Section 5.3. Let K be the underlying field which is
either R or C. Our extended framework gives the following efficient algorithmic result.

Theorem 5.12 (Efficient Weak Regularity (Extension of [JST21])). Let W ⊆ [n]k be a τ-
splittable collection of tuples. Suppose F is one of CUT⊗k, CUT⊗k

± , CUT⊗k
ω,q,a, for q ≥ 3, or

CUT⊗k
Us,k,δ

. Let R be the domain of the functions in F , when k = 1. Let g ∈ RW[1]k be supported
on W with ∥g∥µk

≤ 1. For every δ > 0, if τ ≤ δ2/(k3 · 220), then we can find h = ∑
p
ℓ=1 cℓ · fℓ

with p = O(k2/δ2), scalars c1, . . . , cp ∈ K and functions f1, . . . , fp ∈ F , such that ∥h∥µ⊗k
1
≤ 2,

∑
p
ℓ=1 |cℓ| = O(k/δ) and h is a good approximator to g in the following sense

max
f∈F

∣∣∣∣∣
〈

g−
(

d
n

)k−1

h, f

〉∣∣∣∣∣ ≤ δ · |W| ,

where the inner product is over the counting measure on W[1]k. Furthermore, h can be found in

Õ(2|R|
Õ(k2/δ2)

· |W|) time in the scalar valued case and in time Õs,k,δ(poly(|W|)), otherwise.

3.3 Improved Case: k-LIN over Zq

The goal of this section is to prove Theorem 1.3 (restated below) assuming the new ex-
tended efficient regularity algorithm from Theorem 5.12.

Theorem 1.3 (Main II). Let I be an instance of MAX k-LINq on n variables with alphabet Zq

and constraints supported on a regular17 collection of tuples W ⊆ [n]k. If W is τ-splittable with
τ ≤ τ0(k, δ) := poly(δ/k), then we can compute an assignment satisfying OPT − δ in time
r(q/τ0) · Õ(|W|+ n), where r(x) = exp(exp(poly(x))).

For k-LIN over alphabet Zq, we are given a collection of equations (each variable ap-
pearing with coefficient one) specified as collection of tuples W ⊆ [n]k and we are given
a collection of corresponding RHS (rw)w∈W ∈ ZW

q . The system of linear equations can be
written as follows

xi1 + · · ·+ xik = rw (mod q) ∀ w = (i1, . . . , ik) ∈W.

Orthogonality of Fourier characters will be crucially used here.

16We use Ms(C) for the set of s× s matrices over C.
17See Definition 4.1 for the definition of regular. This is an analog to tuples of a graph being d-vertex regular.

12

Fact 3.3 (Character Orthogonality). Let ω be a non-trivial q-th root of unit. Then,

E
a∈Zq

[ωa] = 0 .

Orthogonality allows for a convenient way of implementing the Dirac delta function
on (the alphabet) Zq.

Fact 3.4. Fix y ∈ Zq. The indicator function x 7→ 1[x=y] on Zq can be expressed as

E
a∈Zq

[
ωa(x−y)

]
.

We now make precise the argument sketched in the proof strategy of Section 2.

Proof of Theorem 1.3. Let I be an instance of k-LIN over Zq with constraints supported on
W ⊆ [n]k and RHS values {rw}w∈W . For every a ∈ Zq, we define ga : W → C as the map
w ∈W 7→ ωa·rw , where ω = exp(2π

√
−1/q).

Apply the efficient weak regularity decomposition of Theorem 5.12 to each ga using
error parameter δ > 0 and test functions F = CUT⊗k

ω,q,a. Note that this requires the
splittability (expansion) parameter τ of W to satisfy τ ≤ O(δ2/k3). We obtain a func-
tion ha = ∑

pa
ℓ=1 ca,ℓ · χb(a,ℓ,1),a ⊗ · · · ⊗ χb(a,ℓ,k),a, where b(a,ℓ,1),. . .,b(a,ℓ,k) ∈ Zn

q , for every a ∈ Zq
and every ℓ ∈ [pa]. Let b ∈ Zn

q be an assignment to the variables of the system of linear
equations. The value of this CSP on input b can be computed as

val(I, b) = E
a∈Zq

[
⟨ga, χb,a ⊗ · · · ⊗ χb,a⟩µk

]
= E

a∈Zq

[
E

w=(i1,...,ik)∼µk

[
ω−a·rw ωa(bi1+···+bik

)
]]

= E
w=(i1,...,ik)∼µk

[
E

a∈Zq

[
ωa(bi1+···+bik

−rw)
]]

= E
w=(i1,...,ik)∼µk

[
1[bi1+···+bik

=rw]

]
.

Using the weak regularity decomposition ha of each ga, we obtain

val(I, b) = E
a∈Zq

[
⟨ga, χb,a ⊗ · · · ⊗ χb,a⟩µk

]
=

1
|W| E

a∈Zq

[〈(
d
n

)k−1

ha, χb,a ⊗ · · · ⊗ χb,a

〉]
± δ

=
1
nk E

a∈Zq

[
pa

∑
ℓ=1

ca,ℓ ·
〈

χb(a,ℓ,1),a ⊗ · · · ⊗ χb(a,ℓ,k),a, χb,a ⊗ · · · ⊗ χb,a

〉]
± δ

= E
a∈Zq

[
pa

∑
ℓ=1

ca,ℓ ·
〈

χb(a,ℓ,1),a, χb,a

〉
µ1
· · ·
〈

χb(a,ℓ,k),a, χb,a

〉
µ1

]
± δ ,

concluding the proof.

Now it suffices to approximate the following values{〈
χb(a,ℓ,j),a, χb,a

〉
µ1

}
a∈Zq,ℓ∈[pa],j∈[k]

,

13

so that there is always a true assignment b ∈ [q]n which gives these values.

To this end, we first define the following collection F ′ of functions

F ′ =
{

χb(a,ℓ,j),a

}
a∈Zq,ℓ∈[pa],j∈[k]

.

Note that r = |F ′| = O(qk3/δ2). The functions above have range R = {ωa′ | a′ ∈ Zq}.
They form a factor (see Section 4.2) B with at most |R|r atoms. By the definition of a factor,
the functions F ′ are constant in each one of them, so to compute

〈
χb(a,ℓ,j),a, χb,a

〉
µ1

it suffices

to know the distribution of symbols of b in each atom.

Let L = ∑a∈Zq,ℓ∈[pa] |ca,ℓ| = O(qk/δ) and set η = δ/(k · L · q). The total number of
η-approximate distributions in ℓ1-norm on each atom can be (crudely) bounded as

(1/ηq)|R|
r
≤ exp(exp(poly(qk/δ))).

Using these distributions, we can approximate

val(I, b) = E
a∈Zq

[
pa

∑
ℓ=1

ca,ℓ ·
〈

χb(a,ℓ,1),a, χb,a

〉
µ1
· · ·
〈

χb(a,ℓ,k),a, χb,a

〉
µ1

]
± δ ,

incurring an additional error of δ.

Running Time: To compute the decomposition ha of ga takes Õ(2|R|
Õ(k2/δ2)

· |W|) time
(see Theorem 5.12). Combining the running time to find all ha and the running time of
enumerating over all η-approximate distributions, we obtain the claimed bound on the
running time.

3.4 Improved Case: k-LIN over a Finite Group G

The goal of this section is to prove Theorem 1.4 (restated below) assuming the new ex-
tended efficient regularity algorithm Theorem 5.12.

Theorem 1.4 (Main III). Let I be an instance of MAX k-LING on n variables with alphabet a finite
group G and constraints supported on a regular collection of tuples W ⊆ [n]k. If W is τ-splittable
with τ ≤ τ0(k, δ) := poly(δ/k), then we can compute an assignment satisfying OPT− δ in time
O|G|,k,δ(1) · poly(|W|+ n).

We will need to work with matrix valued functions now in the weak regularity frame-
work. We first establish some notation. Let X be a set endowed with a measure µ. Let
f , g : X → Ms(C). We define an inner product on Ms(C)X as

⟨ f , g⟩ := E
x∼µ

[
Tr(f (x)†g(x))

s

]
.

Let G be a finite group not necessarily Abelian. For k-LIN over alphabet G, we are
given a collection of LHS sum of variables (each appearing with coefficient one) speci-
fied as collection of tuples W ⊆ [n]k and we are given a collection of corresponding RHS
(rw)w∈W ∈ GW . The system of linear equations can be written as follows

xi1 · · · xik = rw ∀w = (i1, . . . , ik) ∈W.

14

Let Irrep(G) be a set of non-isomorphic irreducible representations. We define a distri-
bution on this set by assigning probability dim(ρ)2/ |G| to an irreducible ρ. We will need
the following simple fact about the sum of characters. This is the generalization of the
orthogonality of Fourier characters on Abelian groups.

Fact 3.5 ([SS96]). Let g ∈ G. Then

E
ρ∼Irrep(G)

[
Tr(ρ(g))
dim(ρ)

]
= 1[g=1] ,

where 1 is the identity element in G.

Let b ∈ Gn be an assignment. Let Us be the unitary group acting on Cs. For a represen-
tation18 ρ : G → Us of G, we define ρb : [n] → Us as ρ(i) := ρ(bi). We define gρ : W → Us
as gρ(w) = ρ(rw). The value of the CSP can be expressed as

E
ρ∼Irrep(G)

[〈
gρ, ρb ⊗ · · · ⊗ ρb

〉
µk

]
= E

ρ∼Irrep(G)

[
E

w=(i1,...,ik)∼µk

[
Tr(ρ(rw)†ρ(bi1) · · · ρ(bik))

dim(ρ)

]]

= E
w=(i1,...,ik)∼µk

[
E

ρ∼Irrep(G)

[
Tr(ρ(r−1

w bi1 · · · bik))

dim(ρ)

]]
= E

w=(i1,...,ik)∼µk

[
1[bi1 ···bik

=rw]

]
= val(I, b) .

Proof of Theorem 1.4. Suppose we can find a weak regularity decomposition for each gρ of
the form

pρ

∑
ℓ=1

cρ,ℓ · ρbℓ,1 ⊗ · · · ⊗ ρbℓ,k ,

where bℓ,1, . . . , bℓ,k ∈ Gn for every ℓ ∈ [pρ]. Using these decompositions, the value becomes

val(I, b) = E
ρ∼Irrep(G)

[〈
gρ, ρb ⊗ · · · ⊗ ρb

〉
µk

]
=

1
|W| E

ρ∼Irrep(G)

[〈(
d
n

)k−1

hρ, ρb ⊗ · · · ⊗ ρb

〉]
± δ

=
1
nk E

ρ∼Irrep(G)

[
pρ

∑
ℓ=1

cρ,ℓ · ⟨ρbℓ,1 ⊗ · · · ⊗ ρbℓ,k , ρb ⊗ · · · ⊗ ρb⟩
]
± δ

= E
ρ∼Irrep(G)

 pρ

∑
ℓ=1

cρ,ℓ · E
µ⊗k

1

Tr
(
(ρbℓ,1 ⊗ · · · ⊗ ρbℓ,k)

† (ρb ⊗ · · · ⊗ ρb)
)

dim(ρ)

 ± δ .

The collection of functions {ρbℓ,j}ρ∈Irrep(G),ℓ∈[pρ],j∈[k] gives rise to a factor B correspond-
ing to a partition of [n]. The product factor B⊗k = ∏k

j=1 B defines a partition of [n]k. Note
that each function ρbℓ,1 ⊗ · · · ⊗ ρbi,k is B⊗k-measurable since each ρbℓ,j is constant in B.

18A unitary representation of a finite group G is a homomorphism from ρ : G → Us. See [SS96, Sag13].

15

Instead of having to specify ρb with b ∈ Gn, we can brute force over all approximate
distributions of values of G on each part of the factor B. We claim that this brute-force
can be done in time Õ|G|,δ,k(n). The number of parts of B is at most |G|O(k|G|/δ2) and can
be computed in time Õ|G|,δ,k(n). For each part, enumerating over all approximate distri-
butions can be done in OG,δ(1) time. Let ρb ∈ Mdim(ρ)(C)[n] be an approximate function
arising from this enumeration. Naively, using each ρb, we can approximate the value (last
line of equation above) in time Õ|G|,δ,k(nk) by considering the expectation µ⊗k

1 . More care-
fully, we can exploit the fact that we have a product distribution µ1 ⊗ µ⊗k−1

1 to take the
expectation with the first copy of µ1 and then repeat this process to µ⊗k−1

1 . This leads to
Õ|G|,δ,k(n) time.

We actually compute the decomposition using functions in CUT⊗k
Us,k,δ

. Instead of |G| in
the computations above, we will have |Us,k,δ| = Os,k,δ(1).

4 Some Definitions and Notation

We now introduce some notation. The asymptotic notation Õ(r(n)) hides polylogarithmic
factors in r(n). We borrow some notation and definitions from [JST21].

4.1 Splittable Tuples

We now formally define the notion of (ordered) hypergraph expansion that we use. The
splittability property for a collection of tuples

W ⊆ [n]k. For 1 ≤ a ≤ b ≤ k, we define W[a, b] ⊆ [n](b−a+1) as

W[a, b] := {(ia, ia+1, . . . , ib) | (i1, i2, . . . , ik) ∈W},

and use W[a] to stand for W[a, a]. We will work with d-regular tuples in the following
sense.

Definition 4.1 (Regular tuple collection). We say that W ⊆ [n]k is d-regular if for every 1 ≤
a ≤ b ≤ k, we have

- |W[a, b]| = db−a · n,

- W[a] = [n].

A collection W being d-regular is analogous to a graph being d-regular.

Example 4.2. The collection W of all length-(k− 1) walks on a d-regular connected graph G =
([n], E) is a d-regular collection of tuples.

Let K be a field that is either R or C. The space of functions KW[a,b] is endowed with
an inner product associated to the uniform measure µ[a,b] on W[a, b]. We use the shorthand
µb for µ[1,b].

Definition 4.3 (Splitable tuple collection). Let τ > 0. We say that a collection W ⊆ [n]k is
τ-splittable if it is d-regular and either k = 1 or for every 1 ≤ a ≤ t < b ≤ k we have

16

- the split operator SW[a,t],W[t+1,b] ∈ KW[a,t]×W[t+1,b] defined as(
SW[a,t],W[t+1,b]

)
(ia,...,it),(it+1,...,ib)

:=
1 [(ia, . . . , it, it+1, . . . ib) ∈W[a, b]]

dk−t

satisfy σ2(SW[a,t],W[t+1,b]) ≤ τ, where σ2 denotes the second largest singular value.

Example 4.4. The collection W of all length-(k− 1) walks on a d-regular a graph G = ([n], E)
whose normalized adjacency matrix has second largest singular value at most τ is a collection of
τ-splittable tuples as shown in [AJQ+20].

Example 4.5. The collection W of tuples arising (from a slight modification) of the direct sum
construction of Ta-Shma [TS17] is a τ-splittable as shown in [JQST20].

4.2 Factors

It will be convenient to use the language of factors, to search the decompositions identified
by regularity lemmas, for relevant codewords. This concept (from ergodic theory) takes
a rather simple form in our finite settings: it is just a partition of base set X , with an
associated operation of averaging functions defined on X , separately over each piece.

Definition 4.6 (Factors and measurable functions). Let X be a finite set. Let Y be a Hilbert
space over K endowed with an inner product ⟨·, ·⟩Y . We further assume that Y is a ring19 so that
in particular we can multiply the elements of Y . Let R ⊆ Y be a (possibly discrete) subset. A
factor B is a partition of the set X , and the subsets of the partition are referred to as atoms of the
factor. A function f : X → Y is said to measurable with respect to B (B-measurable) if f is
constant on each atom of B.

Definition 4.7 (Conditional averages). If f : X → Y is a function, µ is a measure on the space
X , and B is a factor, then we define the conditional average function E[f |B] as

E [f |B] (x) := E
y∼µ|B(x)

[f (y)] ,

where B(x) denotes the atom containing x. Note that the function E[f |B] is measurable with
respect to B.

We will need the following simple observation regarding conditional averages.

Proposition 4.8. Let h : X → Y be a B-measurable function, and let f : X → Y be any function.
Then, for any measure µ over X , we have

⟨h, f ⟩µ = ⟨h, E [f |B]⟩µ .

Proof. By definition of the B-measurability, h is constant on each atom, and thus we can
write h(x) as h(B(x)).

⟨h, f ⟩µ = E
x∼µ

[h(x) · f (x)] = E
x∼µ

E
y∼µ|B(x)

[h(y) · f (y)]

= E
x∼µ

[
h(B(x)) · E

y∼µ|B(x)
[f (y)]

]
= E

x∼µ
[h(x) ·E [f |B] (x)] = ⟨h, E [f |B]⟩µ .

19Under our assumptions Y is an algebra over K.

17

The factors we will consider will be defined by a finite collection of functions appearing
in a regularity decomposition.

Definition 4.9 (Function factors). LetX andR be finite sets, and letF0 = { f1, . . . , fr : X → R}
be a finite collection of functions. We consider the factor BF0 defined by the functions in F0, as the
factor with atoms {x | f1(x) = a1, . . . , fr(x) = ar} for all (a1, . . . , ar) ∈ Rr.

Remark 4.10. Note that when the above functions are indicators for sets i.e., each f j = 1Sj for
some Sj ⊆ X , then the function factor BF0 is the same as the σ-algebra generated by these sets20.
Also, given the functions f1, . . . , fr as above, the function factor BF0 can be computed in time
O(|X | · |R|r).

4.3 Functions and Measures

We describe below some classes of functions, and spaces with associated measures, arising
in our proof. The measures we consider are either uniform on the relevant space, or are
products of measures on its component spaces.

Function classes. Let S ⊆ [n]. We define χS : [n] → {±1} as χS(i) := (−1)1i∈S (we
observe that as defined χS is not a character21).

Let q be a positive integer and let ω = exp(2π
√
−1/q) be a primitive qth root of the

unity. We define S1
q = {ωa | a ∈ Zq}. Given a ∈ Zq and b ∈ Zn

q , we define χb,a : [n] → S1
q

as χb,a(i) := ωa·bi . Let Us be the unitary group acting on Cs.

We will need the following collections of functions.

Definition 4.11 (Generalized CUT functions). We define the set of 0/1 CUT cut functions as

CUT⊗k := {±1S1 ⊗ · · · ⊗ 1Sk | S1, . . . , Sk ⊆ [n]} .

We define the set of ±1 CUT functions as

CUT⊗k
± := {±χS1 ⊗ · · · ⊗ χSk | S1, . . . , Sk ⊆ [n]} .

For a ∈ Zq, we define the set of roots of unity CUT functions as

CUT⊗k
ω,q,a := {χb(1),a ⊗ · · · ⊗ χb(k),a | b(1), . . . , b(k) ⊆ Zn

q} .

We define the set of unitary CUT functions as

CUT⊗k
Us

:= { f1 ⊗ · · · ⊗ fk | f1, . . . , fk : [n]→ Us} .

Let G be a group and ρ : G → Us be a unitary representation. Let b ∈ Gn. We defined ρb : [n] →
im(ρ) as ρb(i) := ρ(bi). We define the set of ρ CUT functions as

CUT⊗k
ρ := {ρb(1) ⊗ · · · ⊗ ρb(k) | b(1), . . . , b(k) ∈ Gn} .

20For a finite X , the σ-algebra generated by S1, . . . , Sp ⊆ X is the smallest subset of the power set of X
containing X , S1, . . . , Sp that is closed under union, intersection and complement. This finite version will be
enough for us in this work (see [Bil95] for the general definition).

21Strictly speaking χS is not a character but by identifying the elements of [n] with those of a canonical basis
of Fn

2 it becomes a character for Fn
2 .

18

Let f : X → Y . If Y the set of matrices Ms(K), then we will use the operator norm
∥ f ∥∞ = maxx∈X ∥ f (x)∥op. Note that If Y = K (equivalently s = 1), then we have the
usual definition ∥ f ∥∞ := maxx∈X | f (x)|.

Some of our results hold for more general classes of functions.

Definition 4.12 (t-split functions). Suppose W is a regular collection of k-tuples. For t ∈
{0, . . . , k− 1}, we define a generic class of tensor product functions Ft as

Ft ⊆
{
± f1 ⊗ · · · ⊗ ft ⊗ ft+1 | f j ∈ RW[1] for j ≤ t, ft+1 ∈ RW[t+1,k],

∥∥ f j
∥∥

∞ ≤ 1 for j ≤ t + 1
}

.

To avoid technical issues, we assume that each Ft is finite.

Fixing some F ⊆ RX , we define the set of functions that are linear combinations
of function from F with coefficients of bounded support size and bounded ℓ1-norm as
follows

H(R0, R1,F) :=

{
p

∑
ℓ=1

cℓ · fℓ | p ≤ R0, ∑ |cℓ| ≤ R1, fℓ ∈ F
}

.

Measures and inner products. Recall that µ1 := µ[1,1] is the uniform measure on W[1]
(equivalently uniform measure on W[i] since W is regular) and µ[t+1,k] is the uniform mea-
sure on W[t + 1, k]. We define the following measure νt as

νt := (µ1)
⊗t ⊗

(
µ[t+1,k]

)
.

Note that ν0 is the equal to µk and νk−1 is equal to µ⊗k
1 . We will need to consider inner

products of functions according to various measures defined above, which we will denote
as ⟨·, ·⟩µ for the measure µ. When a measure is not indicated, we take the inner product
⟨ f , g⟩ to be according to the counting measure on the domains of the functions f and g.

Constraint Satisfaction Problems

An instance I of a k-CSP on n variables over alphabet [q] is given by a collection of tuples
W ⊆ [n]k endowed with a probability measure µk together with a collection of predicates
(Pw : [q]k → {0, 1})w∈W on these tuples. For an assignment b ∈ [q]n, its values val(I, b) are
defined as

val(I, b) := E
w=(i1,··· ,ik)∼µk W

[Pw(bi1 , . . . , bik)] .

The optimum value OPT(I) of I is given by OPT(I) = maxb∈[q]n val(I, b).

5 Weak Regularity

We will generalize the weak regularity framework [JST21] for more general classes of func-
tions. For the existential weak regularity, most results extend quite naturally to accommo-
date some general classes except for a new version of their splittable mixing lemma for

19

matrix valued functions. We make the algorithmic component more modular to accom-
modate these new classes and we will also need to implement specific correlation oracles
for them. We will need to generalize and extend the framework in several directions, but
when this is not necessary we will borrow from [JST21].

5.1 Abstract Weak Regularity Lemma

We now show a weak regularity decomposition lemma for functions that works in some
generality and does not require splittability. This will be a simple extension of the abstract
decomposition of [JST21] to also handle the field of complex numbers. We now fix some
notation for this section. Let X be a finite set endowed with a probability measure µ. Let
K be a field that is either R or C. Let Y be a Hilbert space over K endowed with an inner
product ⟨·, ·⟩Y . Let R ⊆ Y be a finite set, and let YX be a Hilbert space endowed with

inner product ⟨ f , g⟩µ = Ex∼µ

[
⟨ f (x), g(x)⟩Y

]
and associated norm ∥·∥µ =

√
⟨·, ·⟩µ. Let

F ⊆ { f : X → Y | ∥ f ∥µ ≤ 1} be a finite collection of functions.

In a nutshell, given any g ∈ RX , the abstract weak regularity lemma will allow us
to find an approximator h, with respect to the semi-norm22 g− h 7→ max f∈F |⟨g− h, f ⟩|,
which is a linear combinations of a certain small number of functions from F (where this
number depends only on the approximation accuracy and the norm ∥g∥µ). This means
that g and h have approximately the same correlations with functions from F . We will
produce h in an iterative procedure, where at each step an oracle of the following kind
(cf., Definition 5.1) is invoked.

Definition 5.1 (Correlation Oracle). Let 1 ≥ δ ≥ δ′ > 0 be accuracy parameters and B > 0.
We say that Oµ,B is a (δ, δ′)-correlation oracle for F if given h ∈ RX with ∥h∥2

µ = O(B) if there
exists f ∈ F with |⟨h, f ⟩| ≥ δ, then Oµ,B returns some f ′ ∈ F with |⟨h, f ′⟩| ≥ δ′.

More precisely, our abstract weak regularity decomposition is as follows.

Lemma 5.2 (Abstract Weak Regularity (Extension of [JST21])). LetOµ,B be a (δ, δ′)-correlation
oracle for F with δ ≥ δ′ > 0. Let g : X → R satisfy ∥g∥2

µ ≤ B. Then, we can find h =

∑
p
ℓ=1 cℓ · fℓ ∈ H(B/(δ′)2, B/δ′,F) with fℓ ∈ F , cℓ ∈ [δ′/(1 + δ′/

√
B)p, δ′] and ∥h∥2

µ ≤ B
such that

max
f∈F

∣∣∣⟨g− h, f ⟩µ
∣∣∣ ≤ δ.

Furthermore, if Oµ,B runs in time TOµ,B , then h can be computed in

Õ
(

poly(B, 1/δ′) · (TOµ,B + |Supp(µ)|)
)

time, where Supp(µ) is the support of µ. The function h is constructed in Algorithm 5.3 as the
final function in a sequence of approximating functions h(ℓ) ∈ H(B/(δ′)2, B/δ′,F).

The proof is based on the following algorithm.

22See [Rud91, Chapter 1] for a definition of semi-norm.

20

Algorithm 5.3 (Regularity Decomposition Algorithm).
Input g : X → R

Output h = ∑
p
ℓ=1 cℓ · fℓ

- Let Π be the projector onto the convex ball {g′ ∈ RX | ∥g′∥2
µ ≤ B}.

- Let ℓ = 0 and h(ℓ) = 0

- While max f∈F

∣∣∣∣〈g− h(ℓ), f
〉

µ

∣∣∣∣ ≥ δ:

– ℓ = ℓ+ 1

– Let fℓ ∈ F be such that
∣∣∣∣〈g− h(ℓ−1), fℓ

〉
µ

∣∣∣∣ ≥ δ′ (Correlation OracleOµ,B Step)

– Let ρ · exp(iθ) =
〈

g− h(ℓ−1), fℓ
〉

µ
be its polar form

– Let cℓ = δ′ · exp(−iθ)

– h(ℓ) = Π(h(ℓ−1) + cℓ · fℓ)

- Let p = ℓ

- return h = ∑
p
ℓ=1 cℓ · fℓ

We will need the following general fact about projections23 onto a convex body.

Fact 5.4 (Implicit in Lemma 3.1 of [Bub15]). Let Y be a compact convex body in a finite dimen-
sional Hilbert space V equipped with inner product ⟨·, ·⟩ν and associated norm ∥·∥ν. Let ΠY be
projector onto Y . Then, for y ∈ Y and x ∈ V , we have

∥y− x∥2
ν ≥ ∥y−ΠY (x)∥2

ν + ∥ΠY (x)− x∥2
ν .

Proof of Lemma 5.2. We will show that the norm of
∥∥∥g− h(ℓ)

∥∥∥
µ

strictly decreases as the al-

gorithm progresses. Computing we obtain∥∥∥g− h(ℓ)
∥∥∥2

µ
=
∥∥∥g−Π(h(ℓ−1) + cℓ · fℓ)

∥∥∥2

µ

≤
∥∥∥g− (h(ℓ−1) + cℓ · fℓ)

∥∥∥2

µ
−
∥∥∥(h(ℓ−1) + cℓ · fℓ)−Π(h(ℓ−1) + cℓ · fℓ)

∥∥∥2

µ
(By Fact 5.4)

≤
∥∥∥g− (h(ℓ−1) + cℓ · fℓ)

∥∥∥2

µ

=
∥∥∥g− h(ℓ−1)

∥∥∥2

µ
+ |cℓ|2 · ∥ fℓ∥2

µ − 2ℜ
(

cℓ ·
〈

g− h(ℓ−1), fℓ
〉

µ

)
=
∥∥∥g− h(ℓ−1)

∥∥∥2

µ
+ |cℓ|2 · ∥ fℓ∥2

µ − 2δ

∣∣∣∣〈g− h(ℓ−1), fℓ
〉

µ

∣∣∣∣
≤
∥∥∥g− h(ℓ−1)

∥∥∥2

µ
− (δ′)2

23See [Bub15, Chapter 3] for a defintion of projector.

21

where the inequality follows from cℓ = δ′ · exp(−iθ) with
〈

g− h(ℓ−1), fℓ
〉

µ
= ρ · exp(iθ)

its polar form, the bound ∥ fℓ∥µ ≤ 1 and∣∣∣∣〈g− h(ℓ−1), fℓ
〉

µ

∣∣∣∣ ≥ δ′.

Since ∥g∥2
µ ≤ B and

∥∥∥g− h(ℓ)
∥∥∥2

µ
decreases by at least (δ′)2 in each iteration, we conclude

that the algorithm halts in at most p ≤ B/(δ′)2 steps.

From this point, the proof continues as in [JST21]. By construction each cℓ is initial-
ized to δ′ and can not increase (it can only decrease due to projections). Thus, we ob-
tain ∑

p
ℓ=1 |cℓ| ≤ p · δ′ ≤ B/δ′. Also by construction at termination ∥h∥2

µ ≤ B. It re-

mains to show that cℓ ≥ δ′/(1 + δ′/
√

B)p. Note that the projection Π(h(ℓ−1) + cℓ · fℓ)
at each iteration either does nothing to the coefficients cℓ’s or scales them by a factor
of at most (1 + δ′/

√
B) since

∥∥∥h(ℓ−1)
∥∥∥

µ
+ ∥cℓ · fℓ∥µ ≤

√
B(1 + δ′/

√
B). This readily im-

plies the claimed lower bound on the coefficients cℓ’s at termination. Moreover, we have
h(ℓ) ∈ H(B/(δ′)2, B/δ′,F) also by construction.

Running Time: The decomposition algorithm calls the correlation oracle at most p + 1
times. Since the coefficients cℓ always lie in [δ′/(1 + δ′/

√
B)p, δ′] ⊆ [δ′/ exp(pδ′/

√
B), δ′],

the bit complexity is C = O(pδ′/
√

B) and computing the projection (which amounts to

computing h(ℓ)/
∥∥∥h(ℓ)

∥∥∥
µ

if
∥∥∥h(ℓ)

∥∥∥2

µ
> B) takes at most Õ(p2 · poly(C) · |Supp(µ)|). Then

the total running time is at most

Õ(p(TOµ,B + p2 · poly(C) · |Supp(µ)|)) = Õ
(

poly(B, 1/δ′) · (TOµ,B + |Supp(µ)|)
)

,

concluding the proof.

Remark 5.5. If we are only interested in an existential version of Lemma 5.2, we can always use
a trivial existential (δ, δ)-correlation oracle. However, to obtain weak regularity decompositions
efficiently in our settings, we will later use efficient (δ, δ′)-correlation oracle with δ′ = Ω(δ).

Splittable Matrix Mixing Lemma

A splittable collection of tuples gives rise to several expanding split operators (see Defi-
nition 4.3). This allows us to show that a splittable collection satisfies some higher-order
analogues of the well known expander mixing lemmas for graphs (cf.,[HLW06][Section
2.4]) as we make precise next. The extension to complex numbers from [JST21] is immedi-
ate.

We now prove a new matrix version of the splittable mixing lemma which is a high-
order generalization of the matrix mixing lemma [CMR13]. The non-commutativity will
require some extra care in this higher-dimensional version.

Lemma 5.6 (Splittable Matrix Mixing Lemma). Let Y = Mℓ(K), i.e., the images of our func-
tions are ℓ× ℓ matrices over K. Suppose W ⊆ [n]k is a τ-splittable collection of tuples. For every
t ∈ {0, . . . , k− 2} and every f , f ′ ∈ Ft+1, we have∣∣∣〈 f , f ′

〉
νt+1
−
〈

f , f ′
〉

νt

∣∣∣ ≤ τ.

22

Proof. Recall that by our assumption on Ft+1, the functions map to matrices of operator
norm at most 1 (see definition in Section 4).

Let f = f1 ⊗ · · · ⊗ ft ⊗ ft+1 ⊗ ft+2 and f ′ = f ′1 ⊗ · · · ⊗ f ′t ⊗ f ′t+1 ⊗ f ′t+2. To simplify
the notation we can write f = fa ⊗ fb and f ′ = f ′a ⊗ f ′b, where fa = f1 ⊗ · · · ⊗ ft, fb =
ft+1 ⊗ ft+2, f ′a = f ′1 ⊗ · · · ⊗ f ′t and f ′b = f ′t+1 ⊗ f ′t+2. For fixed s ∈ W[1]t, t ∈ W[1] and
u ∈W[1]k−t−1, using the cyclic property of the trace, we have24

Tr(f (stu)† f ′(stu)) = Tr(fb(tu)
† fa(s)

† f ′a(s) f ′b(tu))

= Tr(fa(s)
† f ′a(s) f ′b(tu) fb(tu)

†)

= Tr(fa(s)
† f ′a(s) f ′t+1(t) f ′t+2(u) ft+2(u)

† ft+1(t)
†)

= Tr(ft+1(t)
† fa(s)

† f ′a(s) f ′t+1(t) f ′t+2(u) ft+2(u)
†) .

Let f0 = Es∼µ⊗t
1

fa(s)† f ′a(s). Note that

ℓ ·
〈

f , f ′
〉

νt+1
= E

s∼µ⊗t
1

E
(t,u)∼µ1⊗µ[t+2,k]

Tr(f (stu)† f ′(stu))

= E
s∼µ⊗t

1

E
(t,u)∼µ1⊗µ[t+2,k]

Tr(ft+1(t)
† fa(s)

† f ′a(s) f ′t+1(t) f ′t+2(u) ft+2(u)
†)

= E
(t,u)∼µ1⊗µ[t+2,k]

Tr

(
ft+1(t)

† E
s∼µ⊗t

1

[
fa(s)

† f ′a(s)
]

f ′t+1(t) f ′t+2(u) ft+2(u)
†

)
= E

(t,u)∼µ1⊗µ[t+2,k]

Tr
(

ft+1(t)
† f0 f ′t+1(t) f ′t+2(u) ft+2(u)

†
)

,

and similarly ℓ · ⟨ f , f ′⟩νt
= E(t,u)∼µ[t+1,k]

Tr
(

ft+1(t)
† f0 f ′t+1(t) f ′t+2(u) ft+2(u)†).

Let f ′′t+1 = f †
t+1 f0 f ′t+1 and f ′′t+2 = ft+2 f †

t+2. Now to bound
∣∣∣⟨ f , f ′⟩νt+1

− ⟨ f , f ′⟩νt

∣∣∣, it
suffices to bound the following operator norm∥∥∥∥ E

µ1⊗µ[t+2,k]
f ′′t+1 ⊗ f ′′t+2 − E

µ[t+1,k]
f ′′t+1 ⊗ f ′′t+2

∥∥∥∥
op

.

Note that

E
µ1⊗µ[t+2,k]

f ′′t+1⊗ f ′′t+2− E
µ[t+1,k]

f ′′t+1⊗ f ′′t+2 =

〈
f ′′t+1,

((
Jrec

|W[t + 2, k]| − SW[t+1],W[t+2,k]

)
⊗ Iℓ

)
f ′′t+2

〉
µ1

,

where Jrec is the (rectangular) |W[t + 1]|× |W[t + 2, k]| all ones matrix. Using the τ-splittability
assumption, we have the following bound on the largest singular value

σ

(
Jrec

|W[t + 2, k]| − SW[t+1],W[t+2,k]

)
≤ σ2

(
SW[t+1],W[t+2,k]

)
≤ τ.

Then, we have ∥∥∥∥ E
µ1⊗µ[t+2,k]

f ′′t+1 ⊗ f ′′t+2 − E
µ[t+1,k]

f ′′t+1 ⊗ f ′′t+2

∥∥∥∥
op
≤ τ, .

concluding the proof.
24To clarify the notation, stu and tu are used to denote tuple concatenation.

23

Remark 5.7. When ℓ = 1, the above lemma (naturally) becomes the original scalar case from [JST21].

We can iterate the preceding lemma to obtain the following.

Lemma 5.8 (Splittable Mixing Lemma Iterated [JST21]). Suppose W ⊆ [n]k is a τ-splittable
collection of tuples. For every f = f1 ⊗ · · · ⊗ fk ∈ Fk−1, we have∣∣∣∣Eν0

f − E
νk−1

f
∣∣∣∣ ≤ (k− 1) · τ.

In Section 5.3, we will need two corollaries of the splittable mixing lemma.

Claim 5.9 ([JST21]). Let W ⊆ [n]k be a τ-splittable collection of tuples. Let t ∈ {0, . . . , k− 2}
and ht+1 ∈ H(R0, R1,Ft+1). For every f ∈ Ft+1, we have∣∣∣⟨ht+1, f ⟩νt+1

− ⟨ht+1, f ⟩νt

∣∣∣ ≤ τ · R1.

Claim 5.10 ([JST21]). Let W ⊆ [n]k be a τ-splittable collection of tuples. Let t ∈ {0, . . . , k− 2}
and ht+1 ∈ H(R0, R1,Ft+1). Then∣∣∣∥ht+1∥2

νt+1
− ∥ht+1∥2

νt

∣∣∣ ≤ τ · R2
1.

5.2 Existential Weak Regularity Decomposition

Using the abstract weak regularity lemma, Lemma 5.2, together splittable mixing lemmas
of Section 5.1, we can obtain (non-constructive) existential weak regularity decompositions
for splittable structures.

Lemma 5.11 (Existential Weak Regularity for Splittable Tuples). Let W ⊆ [n]k be a τ-
splittable structure. Let g ∈ RW[1]k be supported on W with ∥g∥µk

≤ 1. Let F = Fk−1 (cf., Def-

inition 4.12) be arbitrary. For every δ > 0, if τ ≤ O(δ2/(k− 1)), then there exists h ∈ RW[1]k

supported on O(1/δ2) functions in F such that

max
f∈F

|⟨g− h, f ⟩| ≤ δ · |W| ,

where the inner product is over the counting measure on W[1]k.

5.3 Efficient Weak Regularity Decomposition

The goal of this section is to provide an efficient version of weak regularity that is suffi-
ciently general to accommodate a decomposition with respect to F as one of the function
classes: CUT⊗k, CUT⊗k

± , CUT⊗k
ω,q,a and CUT⊗k

Us,δ,k
, where the last two classes are new to this

work and the former two classes were present in [JST21]. The main result of this section is
the following efficient version of the weak regularity decomposition.

24

Theorem 5.12 (Efficient Weak Regularity (Extension of [JST21])). Let W ⊆ [n]k be a τ-
splittable collection of tuples. Suppose F is one of CUT⊗k, CUT⊗k

± , CUT⊗k
ω,q,a, for q ≥ 3, or

CUT⊗k
Us,k,δ

. Let R be the domain of the functions in F , when k = 1. Let g ∈ RW[1]k be supported
on W with ∥g∥µk

≤ 1. For every δ > 0, if τ ≤ δ2/(k3 · 220), then we can find h = ∑
p
ℓ=1 cℓ · fℓ

with p = O(k2/δ2), scalars c1, . . . , cp ∈ K and functions f1, . . . , fp ∈ F , such that ∥h∥µ⊗k
1
≤ 2,

∑
p
ℓ=1 |cℓ| = O(k/δ) and h is a good approximator to g in the following sense

max
f∈F

∣∣∣∣∣
〈

g−
(

d
n

)k−1

h, f

〉∣∣∣∣∣ ≤ δ · |W| ,

where the inner product is over the counting measure on W[1]k. Furthermore, h can be found in

Õ(2|R|
Õ(k2/δ2)

· |W|) time in the scalar valued case and in time Õs,k,δ(poly(|W|)), otherwise.

We now proceed to prove our main result in this section, namely Theorem 5.12. First,
we establish some extra notation now. Let W be a d-regular collection of tuples. Most
of our derivations, which are existential, hold for a generic Ft (cf., Definition 4.12). The
work [JST21] only derives near-linear time algorithmic results when Ft is either the CUT
functions

F 0/1
t :=

{
±1S1 ⊗ · · · ⊗ 1St ⊗ 1T | Sj ⊆W[1], T ⊆W[t + 1, k]

}
,

or “signed” CUT functions

F±1
t :=

{
±χS1 ⊗ · · · ⊗ χSt ⊗ χT | Sj ⊆W[1], T ⊆W[t + 1, k]

}
,

where above we recall that for S ⊆ [n], we have χS(i) = (−1)1i∈S for i ∈ [n]. Observe that
the condition Sj ⊆ W[1] is equivalent to Sj ⊆ W[i] since W is d-regular. In this work, we
obtain new near-linear time weak regularity decomposition result for

Fω,q,a
t :=

{
χS1,a ⊗ · · · ⊗ χSt,a ⊗ χT,a | bj ∈ Z

W[1]
q , T ∈ Z

W[t+1,k]
q

}
,

and polynomial time algorithmic results for

FUs,δ,k
t :=

{
fS1 ⊗ · · · ⊗ fSt ⊗ fT | fSj ∈ U

W[1]
s,δ,k , fT ∈ U

W[t+1,k]
s,δ,k

}
,

where Us,δ,k will be a suitable net over matrices in Ms(C) of operator norm at most 1
depending on s, δ and k.

For quick reference, we collect the notation needed in our algorithmic weak regularity
decomposition in the following table.

Ft :=
{
± f1 ⊗ · · · ⊗ ft ⊗ ft+1 | f j ⊆ RW[1] for i ≤ t, ft+1 ⊆ RW[t+1,k],

∥∥ f j
∥∥

∞ ≤ 1
}

H(R0, R1,F) :=
{

∑
p
ℓ=1 cℓ · fℓ | p ≤ R0, ∑ |cℓ| ≤ R1, fℓ ∈ F

}
µ1 is the uniform distribution on W[1] and µ[t+1,k] is the uniform distribution on W[t + 1, k]

νt := (µ1)
⊗t ⊗

(
µ[t+1,k]

)
25

Our main result of this section, namely, the near-linear time weak regularity decompo-
sition Theorem 5.12, can be readily deduced from Lemma 5.13 below.

Lemma 5.13 (Efficient Weak Regularity Induction (Extension of [JST21])). Let W ⊆ [n]k be
a τ-splittable d-regular collection of tuples. Let g ∈ F0 and t ∈ {0, . . . , k− 1} with ∥g∥µk

≤ 1.
For every δ > 0, if τ ≤ δ2/(k · 218), then there exists ht ∈ H(O(1/δ2), 28(1+ 1/k)t/δ,Ft) with
∥ht∥2

νt
≤ (1 + 1/k)t such that

max
f∈Ft

∣∣∣∣∣
〈

g−
(

d
n

)t

ht, f

〉
νt

∣∣∣∣∣ ≤ 2 ·
(

d
n

)t

· t · δ.

Furthermore, the function ht can be found in Õ((2t)t|R|O(1/δ2)
· |W|) time in the scalar valued case,

and in time Õs,k,δ(poly(|W|)) in the matrix valued case.

We restate Theorem 5.12 below and then prove it assuming Lemma 5.13.

Theorem 5.12 (Efficient Weak Regularity (Extension of [JST21])). Let W ⊆ [n]k be a τ-
splittable collection of tuples. Suppose F is one of CUT⊗k, CUT⊗k

± , CUT⊗k
ω,q,a, for q ≥ 3, or

CUT⊗k
Us,k,δ

. Let R be the domain of the functions in F , when k = 1. Let g ∈ RW[1]k be supported
on W with ∥g∥µk

≤ 1. For every δ > 0, if τ ≤ δ2/(k3 · 220), then we can find h = ∑
p
ℓ=1 cℓ · fℓ

with p = O(k2/δ2), scalars c1, . . . , cp ∈ K and functions f1, . . . , fp ∈ F , such that ∥h∥µ⊗k
1
≤ 2,

∑
p
ℓ=1 |cℓ| = O(k/δ) and h is a good approximator to g in the following sense

max
f∈F

∣∣∣∣∣
〈

g−
(

d
n

)k−1

h, f

〉∣∣∣∣∣ ≤ δ · |W| ,

where the inner product is over the counting measure on W[1]k. Furthermore, h can be found in

Õ(2|R|
Õ(k2/δ2)

· |W|) time in the scalar valued case and in time Õs,k,δ(poly(|W|)), otherwise.

Proof. Set Ft according to the choice of F . We apply Lemma 5.13 with t = k− 1, accuracy
δ as δ/(2k) and input function g. This gives ht = ∑

p
ℓ=1 c′ℓ · fℓ ∈ H(O(k2/δ2), O(k/δ),Ft)

such that

max
f∈Ft

∣∣∣∣∣
〈

g−
(

d
n

)t

ht, f

〉
νt

∣∣∣∣∣ ≤ 2 ·
(

d
n

)t

· t · δ. (3)

Note that νt = νk−1 = µ⊗k
1 is the uniform measure on W[1]k. Since W is d-regular, |W| =

|W[1]|k · (d/n)k−1. Set h = ·ht. Then the guarantee in Eq. (3) becomes

max
f∈F

∣∣∣∣∣
〈

g−
(

d
n

)k−1

h, f

〉∣∣∣∣∣ ≤ δ · |W| ,

where the inner product is under the counting measure. By Lemma 5.13, we have ∥ht∥2
νt
≤

(1+ 1/k)t ≤ e, so ∥ht∥νt
≤ 2. Then ∥h∥µ⊗k

1
≤ 2. The running time follows from Lemma 5.13

completing the proof.

26

We now prove Lemma 5.13 above assuming the following algorithmic result which
we prove later. The proof of Lemma 5.13 is almost the same as the corresponding one
in [JST21] with the exception that we will need to use some absolute values to handle the
case when the underlying field is C.

Lemma 5.14 (Algorithmic Weak Regularity Step (Extension of [JST21])). Let δ > 0 and
t ∈ {0, . . . , k − 2}. Let ht ∈ H(O(B/δ2), O(B/δ),Ft) with ∥ht∥2

νt
≤ B. Then there exists

ht+1 ∈ H(O(B/δ2), 28B/δ,Ft+1) with ∥ht+1∥2
νt
≤ B such that

max
f∈Ft+1

∣∣∣⟨ht − ht+1, f ⟩νt

∣∣∣ ≤ δ.

Furthermore, each ht+1 can be found in time Õ((2t)t|R|O(1/δ2)
· |W|) in the scalar valued case, and

in time Õs,k,δ(poly(|W|)) in the matrix valued case.

Proof of Lemma 5.13. We will prove the lemma with the following simple equivalent con-
clusion∣∣∣∣∣
〈

g−
(

d
n

)t

ht, f

〉
νt

∣∣∣∣∣ ≤ 2 ·
(

d
n

)t

· t · δ ⇔
∣∣∣∣∣
〈(n

d

)t
g− ht, f

〉
νt

∣∣∣∣∣ ≤ 2 · t · δ,

which we will prove holds for every f ∈ Ft. The base case t = 0 follows immediately
by setting h0 = g. Let t ∈ {0, . . . , k − 2}. Since ht ∈ H(O(1/δ2), 28(1 + 1/k)t/δ,Ft),
invoking Lemma 5.14 with accuracy parameter δ and input function ht, we obtain ht+1 ∈
H(O(1/δ2), 28(1 + 1/k)t+1/δ,Ft+1) satisfying

max
f∈Ft+1

∣∣∣⟨ht − ht+1, f ⟩νt

∣∣∣ ≤ δ. (4)

Let f ∈ Ft+1. We will show that ht+1 satisfies the conclusion of the lemma. Expanding we
have〈(n

d

)t+1
g− ht+1, f

〉
νt+1

=

〈(n
d

)t
g− ht, f

〉
νt︸ ︷︷ ︸

(i)

+
(n

d

)t
·
(n

d
⟨g, f ⟩νt+1

− ⟨g, f ⟩νt

)
︸ ︷︷ ︸

(ii)

+ ⟨ht − ht+1, f ⟩νt︸ ︷︷ ︸
(iii)

+ ⟨ht+1, f ⟩νt
− ⟨ht+1, f ⟩νt+1︸ ︷︷ ︸
(iv)

.

We will bound each of the terms in RHS above.

Term (i): Suppose f = f1 ⊗ · · · ⊗ ft+1 ⊗ ft+2 ∈ Ft+1. Let f ′ = f1 ⊗ · · · ⊗ ft ⊗ f ′t+1, where
f ′t+1 = (ft+1 ⊗ ft+2)|W[t+2,k], so that f ′ ∈ Ft. Using the induction hypothesis, we have∣∣∣∣∣

〈(n
d

)t
g− ht, f

〉
νt

∣∣∣∣∣ =

∣∣∣∣∣
〈(n

d

)t
g− ht, f ′

〉
νt

∣∣∣∣∣ ≤ 2 · t · δ.

Term (ii): Since g ∈ F0, it is supported on W and so we have

⟨g, f ⟩νt
=

1

|W[1]|t |W[t + 1, k]| ∑
s∈W
⟨g(s), f (s)⟩Y

=
n
d
· 1

|W[1]|t+1 |W[t + 2, k]| ∑
s∈W
⟨g(s), f (s)⟩Y =

n
d
· ⟨g, f ⟩νt+1

.

27

where the second equality follows from |W[t + 1, k]| = d · |W[t + 2, k]| by the d-regular
assumption.

Term (iii): By Eq. (4), we have
∣∣∣⟨ht − ht+1, f ⟩νt

∣∣∣ ≤ δ.

Term (iv): For notional convenience, set R1 = 28(1+ 1/k)t+1/δ. Since ht+1 ∈ H(∞, R1,Ft+1)
and the splittability parameter τ satisfies τ ≤ δ2/(k · 218), from Claim 5.9 we obtain∣∣∣⟨ht+1, f ⟩νt

− ⟨ht+1, f ⟩νt+1

∣∣∣ ≤ τ · R1 ≤ δ.

Putting everything together yields∣∣∣∣∣
〈(n

d

)t+1
g− ht, f

〉
νt+1

∣∣∣∣∣ ≤ 2 · t · δ︸ ︷︷ ︸
(i)

+
(n

d

)t
· 0︸︷︷︸

(ii)

+ δ︸︷︷︸
(iii)

+ δ︸︷︷︸
(iv)

≤ 2 · (t + 1) · δ,

concluding the claimed inequality.

Now we use the bound ∥ht+1∥2
νt
≤ ∥ht∥2

νt
from Lemma 5.14 together with the splitta-

bility assumption τ ≤ δ2/(k · 218) to bound the norm ∥ht+1∥2
νt+1

under the new measure
νt+1. Under these assumptions and using Claim 5.10 we get∣∣∣∥ht+1∥2

νt+1
− ∥ht+1∥2

νt

∣∣∣ ≤ τ · R2
1 ≤

δ2

k · 218 ·
216(1 + 1/k)2(t+1)

δ2

≤ (1 + 1/k)t

k
.

where we used the bounds on τ, R1 and (1 + 1/k)(t+2) ≤ 4 for 0 ≤ t ≤ k − 2. From
the previous inequality and the induction hypothesis ∥ht∥2

νt
≤ (1 + 1/k)t, we finally get

∥ht+1∥2
νt+1
≤ (1 + 1/k)t+1 as desired.

We now show a near-linear time weak regularity decomposition for special functions
of the form ht ∈ H(O(1/δ2), O(1/δ),Ft) that admit a tensor product structure. The goal
is to design a correlation oracle that exploits the special tensor product structure of the
function (ht− h(ℓ)t+1), where h(ℓ)t+1 is the ℓth approximator of ht in the abstract weak regularity
algorithm (cf., Algorithm 5.3).

Lemma 5.14 (Algorithmic Weak Regularity Step (Extension of [JST21])). Let δ > 0 and
t ∈ {0, . . . , k − 2}. Let ht ∈ H(O(B/δ2), O(B/δ),Ft) with ∥ht∥2

νt
≤ B. Then there exists

ht+1 ∈ H(O(B/δ2), 28B/δ,Ft+1) with ∥ht+1∥2
νt
≤ B such that

max
f∈Ft+1

∣∣∣⟨ht − ht+1, f ⟩νt

∣∣∣ ≤ δ.

Furthermore, each ht+1 can be found in time Õ((2t)t|R|O(1/δ2)
· |W|) in the scalar valued case, and

in time Õs,k,δ(poly(|W|)) in the matrix valued case.

Similarly to [JST21], our correlation oracle for higher-order tensors will make calls to
a correlation oracle for matrices (i.e., 2-tensors). The matrix oracles are presented in Sec-
tion 6.1. We now provide the statement of each concrete oracle the framework can now
handle. The first one for binary valued functions was given in [JST21].

28

Theorem 6.1 (Alon–Naor Correlation Oracle [JST21]). Let F be either CUT⊗2 or CUT⊗2
± and

µ be the uniform measure supported on at most m elements of [n′] × [n′]. There exists an algo-
rithmic (δ, αAN · δ)-correlation oracle Oµ,B running in time TOµ,B = Õ (poly(B/δ) · (m + n′)),
where αAN ≥ 1/24 is an approximation ratio constant.

We now present two new correlation oracles for the framework. The first new correla-
tion oracle is designed to handle the case involving roots of unity. It will be a near-linear
time algorithm.

Theorem 6.4 (So–Zhang–Ye Correlation Oracle). Let F be CUT⊗2
ω,q,a for some integer q ≥ 3

and µ be the uniform measure supported on at most m elements of [n′]× [n′]. There exists an algo-
rithmic (δ, αSZY · δ)-correlation oracle Oµ,B running in time TOµ,B = Õ (poly(B/δ) · (m + n′)),
where αSZY ≥ 1/10 is an approximation ratio constant.

The second new correlation oracle is designed to handle the case involving represen-
tations. To make the analysis simpler in this more technical case, we only design a polyno-
mial time oracle.

Theorem 6.13 (Naor–Regev–Vidick Correlation Oracle). Let F be CUT⊗2
Us,δ,k

and µ be the uni-
form measure supported on at most m elements of [n′]× [n′]. There exists an algorithmic (δ, αNRV ·
δ)-correlation oracle Oµ,B running in time TOµ,B = Õδ,s,B (poly(m + n′)), where αNRV ≥ 1/4 is
the approximation ratio constant.

Proof. We will apply the abstract weak regularity lemma, cf.,Lemma 5.2, with F = Ft+1, δ,
δ′ = δ/28 and µ = νt. This will result in a function fromH(O(B/δ2), 28B/δ,Ft+1).

Correlation oracle task: To make this application take near-linear time, we need to spec-
ify a correlation oracle Oνt = Oνt,O(1) and now we take advantage of the special tensor
structure in our setting as done in [JST21]. We want an oracle that given

ht =
p

∑
ℓ=1

cℓ · gℓ, gℓ ∈ Ft, gℓ = gℓ,1 ⊗ · · · ⊗ gℓ,t ⊗ gℓ,t+1︸ ︷︷ ︸
∈RW[t+1,k]

and

ht+1 =
p

∑
ℓ=1

c′ℓ · g′ℓ, g′ℓ ∈ Ft+1, g′ℓ = g′ℓ,1 ⊗ · · · ⊗ g′ℓ,t ⊗ g′ℓ,t+1︸ ︷︷ ︸
∈RW[1]

⊗ g′ℓ,t+2︸ ︷︷ ︸
∈RW[t+2,k]

,

if there exists
f = f1 ⊗ · · · ⊗ ft ⊗ ft+1︸︷︷︸

∈RW[1]

⊗ ft+2︸︷︷︸
∈RW[t+2,k]

∈ Ft+1

satisfying ∣∣∣⟨ht − ht+1, f ⟩νt

∣∣∣ ≥ δ,

for some f ∈ Ft+1, finds f ′ ∈ Ft+1 in near-linear time such that∣∣∣〈ht − ht+1, f ′
〉

νt

∣∣∣ ≥ δ′ =
δ

28 .

Here, ht+1 is the current approximator of ht in the abstract weak regularity algorithm and,
by Lemma 5.2, ht+1 ∈ H(O(1/δ2), 28(1 + 1/k)t+1/δ,Ft+1).

29

For scalar valued functions, expanding ⟨ht − ht+1, f ⟩νt
we get

⟨ht − ht+1, f ⟩νt
=

p

∑
ℓ=1

cℓ
t

∏
j=1

〈
gℓ,j, f j

〉
µ1︸ ︷︷ ︸

γℓ

· ⟨gℓ,t+1, ft+1 ⊗ ft+2⟩µ[t+1,k]
−

p

∑
ℓ=1

c′ℓ
t

∏
j=1

〈
g′ℓ,j, f j

〉
µ1︸ ︷︷ ︸

γ′ℓ

·
〈

g′ℓ,t+1 ⊗ g′ℓ,t+2, ft+1 ⊗ ft+2
〉

µ[t+1,k]
,

where we define γℓ and γ′ℓ as above.

For matrix valued functions, when expanding ⟨ht − ht+1, f ⟩νt
, we need to consider

non-commutativity. Using the cyclic property of the trace (similarly to the proof of Lemma 5.6),
we deduce that

⟨ht − ht+1, f ⟩νt
=

p

∑
ℓ=1

cℓ ·
〈

E
µ⊗k

1

[(
⊗t

j=1 f j

)† (
⊗t

j=1gℓ,j

)]
︸ ︷︷ ︸

γℓ

gℓ,t+1, ft+1 ⊗ ft+2

〉
µ[t+1,k]

−

p

∑
ℓ=1

c′ℓ ·
〈

E
µ⊗k

1

[(
⊗t

j=1 f j

)† (
⊗t

j=1g′ℓ,j

)]
︸ ︷︷ ︸

γ′ℓ

g′ℓ,t+1 ⊗ g′ℓ,t+2, ft+1 ⊗ ft+2

〉

µ[t+1,k]

,

where we define γℓ and γ′ℓ as above.

Net Construction: Define Γ as the collection of sets {(γℓ, γ′ℓ)}ℓ∈[p] as we consider all valid
choices for f1, . . . , ft. In the scalar case, we apply Lemma 5.15 (below) with parameter η to
obtain an (t · η)-net Γ̃ for Γ. In the matrix valued case, we generate a sufficiently fine net
for Γ so that we only incur an error proportional to δ. This can be done in time Õs,δ,k(n)
in an analogous ways as described in Section 3.4. Since we are not interested in the exact
parameter trade-offs in this case, we omit the details.

Invoking the matrix correlation oracle: For each {(γℓ, γ′ℓ)}ℓ∈[p] ∈ Γ̃, let

A := ∑
ℓ

(
cℓ · γℓ · gℓ,t+1 + c′ℓ · γ′ℓ · g′ℓ,t+1 ⊗ g′ℓ,t+2

)
.

We conveniently view A as a sparse matrix of dimension |W[t + 1]| × |W[t + 2, k]| with at
most |W[t + 1, k]| non-zeros entries. Define φA(ft+1, ft+2) :=

∣∣∣⟨A, ft+1 ⊗ ft+2⟩µ[t+1,k]

∣∣∣. Define

OPT(A) := max
ft+1, ft+2

φA(ft+1, ft+2), (5)

where ft+1, ft+2 range over valid functions (again according to the kind of Ft+1 we have).

Using the appropriate concrete correlation oracle, we can find functions f̃t+1, f̃t+2 such
that φÃ(f̃t+1, f̃t+2) ≥ α · δ/4 since we are under the assumption that OPT(A) ≥ δ. We defer
its details to Section 5.5.

Running Time: First, observe that with our choices of parameters the total number of
configurations

∣∣∣Γ̃∣∣∣ is at most∣∣∣Γ̃∣∣∣ ≤ (1/η)t|R|O(p)) ≤ (O(t/δ2))t|R|O(p)) ≤ (2t)t|R|O(1/δ2)
,

30

so that the correlation oracle Oνt takes time at most∣∣∣Γ̃∣∣∣ · TA ≤ (2t)t|R|O(1/δ2)
· Õ(poly(1/δ) · |W[t + 1, k]|) = Õ((2t)t|R|O(1/δ2)

· |W[t + 1, k]|).

Using the running time of the oracle Oνt , the total running time of the weak regularity
decomposition follows from Lemma 5.2 which concludes the proof.

5.4 Realizability Brute Force

We now describe how to generate approximately valid values of inner products in the
following setting. We need to keep track of functions taking values in a more general finite
rangeR.

Lemma 5.15. Let {gℓ,1 ⊗ · · · ⊗ gℓ,t}ℓ∈[p] and {g′ℓ,1 ⊗ · · · ⊗ g′ℓ,t}ℓ∈[p], where each gℓ,j, g′ℓ,j ∈
RW[1]. Define

Γ :=


{(

t

∏
j=1

〈
gℓ,j, f j

〉
µ1

,
t

∏
j=1

〈
g′ℓ,j, f j

〉
µ1

)}
ℓ∈[p]

| f1, . . . , ft ∈ RW[1]

 ,

to be the set of realizable pairs of inner products. SupposeR is finite. For any η ∈ (0, 1/2), we can
find an (t · η)-net Γ̃ for Γ in ℓ∞-norm with

∣∣∣Γ̃∣∣∣ ≤ (1/η)t|R|O(p)).

Proof. Let Bj be the factor generated by {gℓ,j, g′ℓ,j}ℓ∈[p]. By Proposition 4.8, we have that〈
gℓ,j, f j

〉
µ1

=
〈

gℓ,j, E[f j|Bj]
〉

µ1
and

〈
g′ℓ,j, f j

〉
µ1

=
〈

g′ℓ,j, E[f j|Bj]
〉

µ1
. Note that for each atom

σ in Bj, the values taken by f j on σ give rise to a distribution on R. Suppose we have an
η-approximation in ℓ1-norm to each such distribution on each atom σ of Bj. We denote by
DBj(x) this η-approximate distribution on atom of containing x. Let f j(x) = E[f j|Bj]µ1(x)

and f̃ j(x) = Ex′∼DBj(x)
[f j(x′)]. By Hölder’s inequality, we have

∥∥∥ f j − f̃ j

∥∥∥
∞
≤ η. Applying

Hölder’s inequality once more, we obtain∣∣∣∣〈gℓ,j, f j

〉
µ1
−
〈

gℓ,j, f̃ j

〉
µ1

∣∣∣∣ ,
∣∣∣∣〈g′ℓ,j, f j

〉
µ1
−
〈

g′ℓ,j, f̃ j

〉
µ1

∣∣∣∣ ≤ η.

There are at most (1/(η |R|))O(|R|) η-approximate (in ℓ1-norm) distribution on each atom25.
Thus, we have at most (1/(η |R|))O(|R||Bj|) choices for each j ∈ [t]. Therefore, we can
bound

∣∣∣Γ̃∣∣∣ as ∣∣∣Γ̃∣∣∣ ≤ (1/(η |R|))O(∑t
j=1|R||Bj|) ≤ (1/η)t|R|O(p)).

By triangle inequality, we have∣∣∣∣∣ t

∏
j=1

〈
gℓ,j, f j

〉
µ1
−

t

∏
j=1

〈
gℓ,j, f̃ j

〉
µ1

∣∣∣∣∣ ,

∣∣∣∣∣ t

∏
j=1

〈
g′ℓ,j, f j

〉
µ1
−

t

∏
j=1

〈
g′ℓ,j, f̃ j

〉
µ1

∣∣∣∣∣ ≤ t · η,

concluding the proof.
25If the atom is smaller than (1/(η |R|)), then we consider all exact distributions to make sure that they are

realizable.

31

5.5 Invoking Concrete Matrix Correlation Oracles

In this section, we show how to invoke the concrete correlation oracle.

Invoking the matrix correlation oracle:

We start by considering the scalar valued case. The specific concrete correlation oracle
will vary according to the class of functions and will need include the oracle Theorem 6.4
for roots of unity. The fine error computations will be essentially the same as in [JST21]. In
the computation of OPT(A), we have incurred so far an additive error of at most

4 · t · η ·∑
ℓ

(|cℓ|+
∣∣c′ℓ∣∣).

Let Ã be obtained from A by zeroing out all entries of absolute value smaller than
δ/8. Note that OPT(Ã) ≥ OPT(A) − δ/8 and the absolute value of the entries of Ã lie
[δ/8, O(1/δ)]. For each entry of A, we compute a rational approximation ±P/Q where
Q = Θ(1/δ) and P ∈ [1, O(1/δ)] (to the real and imaginary parts if K = C) obtaining Ã′

such that
OPT(Ã′) ≥ OPT(Ã)− δ/8 ≥ OPT(Ã) ≥ OPT(A)− δ/4.

Let α be approximation guarantee of the correlation oracle for F , namely, from ei-
ther Theorem 6.1 or Theorem 6.4 depending on F . Using this concrete correlation ora-
cle with accuracy parameter δ/4 and input matrix Ã′, we obtain in TA := Õ(poly(1/δ) ·
|W[t + 1, k]|) time in the scalar case and time TA := Õδ,s(poly(|W[t + 1, k]|)) otherwise,
with an extra additive error of δ/4 and a multiplicative guarantee of α, a 2-tensor f̃t+1 ⊗
f̃t+2 satisfying

φÃ(f̃t+1, f̃t+2) ≥ α ·
(
OPT(A) − 2 · δ

4
− 4 · t · η ·∑

ℓ

(|cℓ|+
∣∣c′ℓ∣∣)

)
.

Since ht ∈ H(O(1/δ2), 28 · (1+ 1/k)t/δ,Ft) and ht+1 ∈ H(O(1/δ2), 28 · (1+ 1/k)t+1/δ,Ft+1),
we have ∑ℓ(|cℓ|+

∣∣c′ℓ∣∣) ≤ 210/δ and p = O(1/δ2). By choosing η ≤ O(δ2/t) appropriately,
we can bound

4 · t · η ·∑
ℓ

(|cℓ|+
∣∣c′ℓ∣∣) ≤ 4 · t · 210

δ
· η ≤ δ

4
.

Hence, φÃ(f̃t+1, f̃t+2) ≥ α · δ/4 since we are under the assumption that OPT(A) ≥ δ.

For the matrix valued case, since we are only interested in polynomial running time.
We can invoke Theorem 6.13 and again find suitable (now matrix valued) f̃t+1 and f̃t+2.
φÃ(f̃t+1, f̃t+2) ≥ α · δ/4 since we are under the assumption that OPT(A) ≥ δ.

6 Concrete Correlation Oracles

We now describe the concrete correlation oracles for matrices (2-tensors). We start by re-
calling the near-linear time correlation oracles for CUT⊗2 and CUT⊗2

± of [JST21] in Sec-
tion 6.1. Suitable generalizations of these oracles will be useful in the near-linear time
oracle CUT⊗2

ω,q,a in Section 6.2. Next, in Section 6.3, we describe a (relaxed) polynomial
time oracle for representations.

32

6.1 Grothendieck Problem over Boolean Variables

We now recall the near-linear time correlation oracle, Theorem 6.1 below, for CUT⊗2 and
CUT⊗2

± from [JST21]. They combine the constant factor approximation algorithms of Alon–
Naor [AN04] for ∥A∥∞→1 and ∥A∥□ based on semi-definite programming (SDP) with the
faster SDP solvers for sparse matrices such as those by Arora and Kale [AK07].

Theorem 6.1 (Alon–Naor Correlation Oracle [JST21]). Let F be either CUT⊗2 or CUT⊗2
± and

µ be the uniform measure supported on at most m elements of [n′] × [n′]. There exists an algo-
rithmic (δ, αAN · δ)-correlation oracle Oµ,B running in time TOµ,B = Õ (poly(B/δ) · (m + n′)),
where αAN ≥ 1/24 is an approximation ratio constant.

Theorem 6.1 is a simple consequence of the following theorem.

Theorem 6.2 ([JST21]). Let A ∈ Rn×n be a matrix of integers with at most m non-zero entries.
Let δ ∈ (0, 2−5] be an accuracy parameter. Suppose that

OPT := max
xi ,yi∈{±1}

n

∑
i,j=1

Ai,jxiyj ≥ δ ·m.

Then, with high probability,i.e., on(1), we can find, in Õ (poly(∥A∥∞ /δ) · (m + n)) time, vectors
x̃, ỹ ∈ {±1}n such that

n

∑
i,j=1

Ai,j x̃iỹj ≥
1
4
·OPT,

and find sets S̃, T̃ ⊆ [n] such that ∣∣∣∣∣∣ ∑
i∈S̃,j∈T̃

Ai,j

∣∣∣∣∣∣ ≥ 1
24 · ∥A∥□ ,

where ∥A∥□ is the cut norm of A.

We will need a sparse SDP solver capable of working over the real or the complex field
(the latter for CUT⊗2

ω,q,a in Section 6.2). We will use the sparse solver from [AK07] due to its
simple structure and ready generalization to the complex field (see [Kal07] for comments
about the complex setting). It will be convenient to have the SDP solver wrapper below.
Since the way of obtaining this wrapper from [AK07] is analogous to [JST21], we omit the
details.

Lemma 6.3 (Sparse SDP Solver Wrapper based on [AK07] with similar statement to [LP20]).
Let K be either R or C. Let C ∈ Kn×n be a matrix with at most m non-zero entries that is symmet-
ric if K = R and Hermitian if K = C. For every accuracy γ > 0, with high probability we can
find in time Õ((m + n)/poly(γ)) vectors u1, . . . , un ∈ Kn in the unit ball (i.e., ∥ui∥ ≤ 1) such
that the matrix X̃i,j :=

〈
ui, uj

〉
satisfies

Tr
(
C · X̃

)
≥ max

X⪰0,Xi,i≤1
Tr (C · X)− γ ∑

i,j

∣∣Ci,j
∣∣ ,

where the maximum is over real PSD matrices if K = R or complex PSD matrices if K = C

33

6.2 Grothendieck Problem over Primitive Roots of Unity

To obtain the savings from the alphabet reduction for k-LIN over q-ary alphabet Zq (as dis-
cussed in Section 3.3), we will need a version of the Grothendieck problem in which vari-
ables taking values in±1 are replaced by variables taking roots of unity values. Recall that
the original Grothendieck problem over ±1 variables can be equivalently phrased as

max
u,v∈Zn

2
∑
i,j

Ai,j · χ(ui) · χ(vj) ,

where A is a real matrix and χ is the (unique) non-trivial character of Z2.The Grothendieck
problem for roots is defined as follows

max
u,v∈Zn

q

∣∣∣∣∣∑i,j Ai,j · χ(ui) · χ(vj)

∣∣∣∣∣ , (6)

where A is a complex matrix and χ is any non-trivial character of Zq (we will need to
consider all non-trivial characters).

In [SZY07], So, Zhang and Ye consider the Grothendieck problem for Hermitian pos-
itive semidefinite (PSD) matrix A (also known as the little Grothendieck problem). We
will need to consider general Hermitian matrices not necessarily PSD. Using similar con-
sideration from Alon and Naor [AN04] and borrowing from part of the analysis present
in [SZY07], we will be able to accomplish this (simple) extension. Then, it will allows us
to obtain a similar identity to Fact 6.12 from Alon and Naor [AN04]. With this identity
and similar considerations to those in Section 6.1, we will deduce the following near-linear
time correlation oracle for roots of unity.

Theorem 6.4 (So–Zhang–Ye Correlation Oracle). Let F be CUT⊗2
ω,q,a for some integer q ≥ 3

and µ be the uniform measure supported on at most m elements of [n′]× [n′]. There exists an algo-
rithmic (δ, αSZY · δ)-correlation oracle Oµ,B running in time TOµ,B = Õ (poly(B/δ) · (m + n′)),
where αSZY ≥ 1/10 is an approximation ratio constant.

From the (Rietz) rounding method of So, Zhang and Ye [SZY07], we will need the
following functions. For u, r ∈ Cd, (we tweak their choice using some real η > 0)

ru(g) := ⟨u, g⟩ − η · 2
√

π

q sin(π/q)
round(⟨u, g⟩) , (7)

where the rounding function round: C→ C is defined as

round(z) :=


1 if arg(z) ∈ [−π/q, π/q)
ω if arg(z) ∈ [π/q, 3π/q)
...

...
ωq−1 if arg(z) ∈ [(2q− 3)π/q, (2q− 1)π/q)

. (8)

They show the following identity when g is a complex Gaussian random vector.

Lemma 6.5 (Implicit in [SZY07]).

Eg [ru(g)∗rv(g)] = (1− 2η) ⟨u, v⟩+ η2 4π

(q sin(π/q))2 Eg [round(⟨u, g⟩)∗round(⟨v, g⟩)] .

34

Corollary 6.6. For a unit vector u, we have

Eg [ru(g)∗ru(g)] = (1− 2η) + η2 4π

(q sin(π/q))2 .

Lemma 6.7 (Equivalent form of Lemma 6.5).

Eg [round(⟨u, g⟩)∗round(⟨v, g⟩)] = (q sin(π/q))2

4π

(2η − 1)
η2

(
⟨u, v⟩+ η2

(2η − 1)
Eg [ru(g)∗rv(g)]

)
.

For a similar strategy of Alon–Naor to work for the full roots of unity Grothendieck
problem, we need

η2/(2η − 1)
[
(1− 2η) + η2 4π

(q sin(π/q))2

]
< 1 ,

or equivalently

γη,q := −η2 +
η4

(2η − 1)
4π

(q sin(π/q))2 < 1 .

For simplicity, choosing η = 1/
√

2 makes the value above strictly smaller than 1 for every
q ≥ 3 and this will be enough for a constant factor approximation. We proceed to formalize
this claim.

Analogously to the real case of Section 6.1 where we defined a symmetric matrix C
from the real A. To approximate Eq. (6) we will define two Hermitian matrices Cℜ and Cℑ
from the complex A (to capture the real and the imaginary part) as follows

Cℜ =
1
2

(
0 A

A† 0

)
and Cℑ =

1
2

(
0 −iA

iA† 0

)
.

To make this precise, we will need the following observations.

(
x† y†) (0 A

A† 0

)(
x
y

)
= x† Ay + y† A†x = 2ℜ(x† Ay)

(
x† y†) (0 −iA

iA† 0

)(
x
y

)
= x†(−iA)y + y†(iA†)x = 2ℜ(x†(−iA)y) = 2ℑ(x† Ay) .

Note that
∣∣∣∑i,j Ai,j · xi · yj

∣∣∣2 = ℜ(x† Ay)2 +ℑ(x† Ay)2. Thus, we have

max
{∣∣∣ℜ(x† Ay)

∣∣∣ ,
∣∣∣ℑ(x† Ay)

∣∣∣} ≥ 1√
2

∣∣∣∣∣∑i,j Ai,j · xi · xj

∣∣∣∣∣ .

Then, we optimize using C = Cℜ and C = Cℑ and taking the maximum, we still get a
constant 1/

√
2 factor approximation, which is enough for our applications.

It will be convenient to phrase the rounding schemes for Grothendieck problems based
on the Rietz method using the following terminology of a rounding scheme. This language
also accommodate the Alon–Naor rounding scheme [AN04].

35

Scheme 6.8 (Rietz Rounding Scheme). Suppose there exist constants α, β, γ > 0, a Rietz func-
tion r : Kd ×Kd → K and a rounding function round: K → K such that for every unit vectors
in ℓ2-norm u, w ∈ Kd, we have

E
[
round⟨u, g⟩∗round⟨w, g⟩

]
= α (⟨u, w⟩ + β ·E [ru(g)∗rw(g)]) , (9)

and β ·E
[
|ru(g)|2

]
≤ γ < 1, where the expectations are taken with respect to a random Gaussian

vector g ∼ N(0, Id) in Kd.

Lemma 6.9 (SZY as a Rietz Rounding Scheme). Let q ≥ 3 be an integer. Let η > 1/2 and
define

α =
(q sin(π/q))2

4π

(2η − 1)
η2 , β =

η2

(2η − 1)
and γ = −η2 +

η4

(2η − 1)
4π

(q sin(π/q))2 .

The Rietz function Eq. (7) and the rounding function Eq. (8) form an Rietz rounding scheme with
Σ = S1

q parameters α, β and γ as above provided γ < 1.

We can now provide the fast algorithm for Rietz schemes in the sparse regime as fol-
lows.

Theorem 6.10 (Rietz Scheme Fast Algorithm). Suppose that we have a Rietz scheme with pa-
rameters α, β, γ > 0 and alphabet Σ. Let A ∈ Kn×n be a matrix with at most m non-zero entries.
Let δ ∈ (0, 2−5] be an accuracy parameter. Suppose that

OPT := max
xi ,yi∈Σ

∣∣∣∣∣ n

∑
i,j=1

Ai,jxiyj

∣∣∣∣∣ ≥ δ ·m.

Then, with high probability,i.e., on(1), we can find, in Õ (poly(∥A∥∞ /δ) · (m + n)) time, vectors
x̃, ỹ ∈ Σn such that ∣∣∣∣∣ n

∑
i,j=1

Ai,j x̃iỹj

∣∣∣∣∣ ≥ 1√
2
· α · (1− γ− δ) ·OPT .

Furthermore, if K = R, then the above factor 1/
√

2 can be replaced by 1.

Proof of Theorem 6.10. We now combine the approximation algorithms for scalar Grothendieck
problems satisfying the assumptions of Rietz rounding scheme with a near-linear time
sparse SDP solver. We need to argue that this indeed leads to the claimed approximation
guarantees while being computable in near-linear time overall. Using the input matrix A,
we will consider

C = Cℜ =
1
2

(
0 A
A† 0

)
.

The case of C = Cℑ will be analogous. The SDP relaxation for the scalar Grothendieck
problem becomes

max Tr(C · X) =: SDP∗

s.t. Xi,i ≤ 1 ∀i ∈ [2n]
X ⪰ 0,

36

except for the constraints Xi,i ≤ 1 which they instead take to be Xi,i = 1. This technical dif-
ference will play a (small) role in the rounding of this SDP since the Rietz method analysis
relies on Gram vectors of X being on the unit sphere. Moreover, we will be solving this
SDP within only a weak additive approximation guarantee26. Although these technical
differences need to be handled, this will be simple to do.

Applying the solver of Lemma 6.3 with accuracy parameter γ = δ2/ ∥A∥∞ to the above
SDP, we obtain in Õ(poly(∥A∥∞ /δ) · (m + n)) time vectors u1, . . . , u2n ∈ K2n in the unit
ball so that the matrix X̃i,j :=

〈
ui, uj

〉
satisfy

Tr
(
C · X̃

)
≥ max

X⪰0,Xi,i≤1
Tr (C · X) − δ2 ·m.

By assumption, we have SDP∗ := maxX⪰0,Xi,i≤1 Tr (C · X) ≥ OPT ≥ δ ·m, in which case the
above guarantee becomes

Tr
(
C · X̃

)
≥ (1− δ) · SDP∗.

To obtain diagonal entries equal to 1 in our SDP solution we simply consider the new
SDP solution X̃′ = X̃ + Λ, where Λ is the diagonal matrix defined as Λi,i := 1 − X̃i,i.
Gram vectors u′1, . . . , u′2n of X̃′ can be obtained in near-linear time from u1, . . . , u2n and Λ
by setting

u′i := ui ⊕
√

Λi,i · ei ∈ K2m ⊕K2m,

where ei ∈ K2m has a one at the ith position and zero everywhere else. Observe that for
our particular C, we have

Tr
(
C · X̃′

)
= Tr

(
C · X̃

)
.

This rounding consists in sampling a Gaussian vector g ∼ N(0, Id) and setting x̃i :=
round⟨u′i, g⟩ and ỹi+n := round

〈
u′i+n, g

〉
for i ∈ [n]. To analyze the approximation guaran-

tee, the following identity is used.

Using Eq. (9) of the Rietz rounding scheme, the expected value of the rounding, i.e.,

E

[
∑
i,j

Ai,jround
〈
u′i, g

〉∗round
〈

u′j+n, g
〉]

,

can be expressed as

α ·
(

∑
i,j

Ai,j

〈
u′i, u′j+n

〉
+ β ·∑

i,j
Ai,jE

[
ru′i

(g)∗ru′j+n
(g)
])

.

Note that β ·E
[
|ru(g)|2

]
≤ γ < 1 by the Rietz scheme property. Then, in our setting we

obtain

E

[
∑
i,j

Ai,jround
〈
u′i, g

〉∗round
〈

u′j+n, g
〉]
≥ α · ((1− δ) · SDP∗ − γ · SDP∗)

≥ α · (1− δ− γ) · SDP∗ ,

26This may not be sufficient to obtain Xi,i ≈ 1 by an extremality argument

37

as claimed. By considering the largest between the real and imginary programs (related to
Cℜ and Cℑ, resp.), we lose an addition 1/

√
2 factor in the objective value.

Using standard techniques, this guarantee on the expected value of the rounded solu-
tion can be used to give with high probability a final guarantee of (1/

√
2)α · (1− 2δ− γ) ·

OPT (namely, by repeating this rounding scheme Oα(log(1/δ) · log(n)) times).

We now recall and prove the correlation oracle for roots of unity.

Theorem 6.4 (So–Zhang–Ye Correlation Oracle). Let F be CUT⊗2
ω,q,a for some integer q ≥ 3

and µ be the uniform measure supported on at most m elements of [n′]× [n′]. There exists an algo-
rithmic (δ, αSZY · δ)-correlation oracle Oµ,B running in time TOµ,B = Õ (poly(B/δ) · (m + n′)),
where αSZY ≥ 1/10 is an approximation ratio constant.

Proof. We invoke the algorithm Theorem 6.10 with δ = 25 using the Rietz rounding scheme
of Lemma 6.9 with η = 1/

√
2. Note that q sin(π/q) is a growing function for q ≥ 2

and its values lie in the interval [2.598, π] for q ≥ 3. With our choice for η, we obtain
(1− γη,q) ≥ 0.376 (indeed we have γη,q < 1 as needed) and α ≥ 0.44. Using these bounds
and the choice of δ, the approximation factor guarantee of Theorem 6.10 is at least 1/10.

Alon–Naor in the Language of a Rietz Rounding Scheme

We note that the Alon–Naor correlation oracle from [JST21] (recalled in Section 6.1) can be
stated as in the above language and solved using Theorem 6.10 above yielding Lemma 6.11.

Lemma 6.11 (Alon–Naor as a Rietz Rounding Scheme). Let

α =
2
π

, β = 1 and γ =
π

2
− 1 .

The Rietz function

ru(g) := ⟨u, g⟩ −
√
(π/2) sgn ⟨u, g⟩ ,

and the rounding function
round(⟨u, g⟩) := sgn(⟨u, g⟩) ,

form an Rietz rounding scheme with Σ = {±1} and parameters α, β and γ.

The above lemma readily follows from the follows fact of Alon and Naor [AN04].

Fact 6.12 (Alon–Naor [AN04], cf.,Eq. 5). Let u, w ∈ Rd be unit vectors in ℓ2-norm. Then

π

2
·E [sgn ⟨u, g⟩ sgn ⟨w, g⟩] = ⟨u, w⟩+ E

[(
⟨u, g⟩ −

√
π

2
sgn ⟨u, g⟩

)(
⟨w, g⟩ −

√
π

2
sgn ⟨w, g⟩

)]
,

where the expectations are taken with respect to a random Gaussian vector g ∼ N(0, Id).

6.3 Grothendieck Problem over Representations

We will now describe a correlation oracle for representations of a finite group G. First,
we give some definitions. Let ρ : G → U be an s-dimensional representation. Let W ⊆
[n]× [n′] and let f : W → Ms(C). This function f will play a similar role to the matrix A

38

from Section 6.1. Ideally, we would like to find a polynomial time constant factor approxi-
mation to the following problem

max
b,b′∈Gn

∣∣∣∣ E
(i1,i2)∈W

[
Tr(f (w)†ρ(bi1)ρ(b

′
i2))
]∣∣∣∣ . (10)

This means that ideally we would like to solve this version of the Grothendieck problem
for CUT⊗2

ρ . Note that in the weak regularity framework if we want to find a decomposition
with respect to a class of functions F , we can instead find a decomposition larger class of
function F ′ s containing F . Instead of finding a decomposition with respect to CUT⊗2

ρ ,
we will find a decomposition with respect to CUT⊗2

Us
. This will make the Grothendieck

problem simpler since we are relaxing the maximization in Eq. (10) to

sup
U,V : [n]→Us

∣∣∣∣ E
(i1,i2)∈W

[
Tr(f (w)†U(i1)V(i2))

]∣∣∣∣ . (11)

While the image of ρ is a discrete subgroup of Us, the unitary group Us is continuous.
Since the weak regularity framework relies on functions taking values in a finite codomain,
we will need to discretize.

We will use the following correlation oracle.

Theorem 6.13 (Naor–Regev–Vidick Correlation Oracle). Let F be CUT⊗2
Us,δ,k

and µ be the uni-
form measure supported on at most m elements of [n′]× [n′]. There exists an algorithmic (δ, αNRV ·
δ)-correlation oracle Oµ,B running in time TOµ,B = Õδ,s,B (poly(m + n′)), where αNRV ≥ 1/4 is
the approximation ratio constant.

We can now reduce our problem to [NRV13].

Corollary 6.14 (Corollary from [NRV13]). There is an algorithm running in time poly(|W| , s, δ, k)
that given f : W → Ms(C) with ∥ f ∥∞ = Os,k,δ(1) finds Ũ, Ṽ : [n]→ Us,k,δ such that∣∣∣∣ E

(i1,i2)∈W

[
Tr(f (w)†Ũ(i1)Ṽ(i2))

]∣∣∣∣ ≥ 1
4

sup
U,V : [n]→Us

∣∣∣∣ E
(i1,i2)∈W

[
Tr(f (w)†U(i1)V(i2))

]∣∣∣∣+ E
where E = Os,k,δ(1) ·∑(i1,i2)∈W Tr(f (i1, i2)† f (i1, i2)).

We now recall their setting where a 4-tensor T ∈ C[n]⊗4
is given as input and the object

function is

OPT = sup
U,V∈Un

∣∣∣∣∣ ∑
i,j,k,ℓ

Ti,j,ℓ,kUi,jVk,ℓ

∣∣∣∣∣ .

They give a poly(n, ∥T∥∞) bound approximation algorithm that finds unitaries Ũ, Ṽ ∈ Un
such that

sup
U,V∈Un

∣∣∣∣∣ ∑
i,j,k,ℓ

Ti,j,ℓ,kŨi,jṼk,ℓ

∣∣∣∣∣ ≥ 1
4
OPT .

The precise constant is not important for our application so we just take it to be 1/4 for
simplicity.

39

Proof. We show how to reduce our problem to the more general 4-tensor setting of [NRV13].

First, define the following 4-tensor

T(i1,j1),(i1,j2),(i2,k1),(i2,k2) =

{
f (i1, i2)†

k2,j1
if (i1, i2) ∈W and j2 = k1

0 otherwise
,

and undefined entries are set to 0. We have that

∑
i,j,k,ℓ

Ti,j,ℓ,kUi,jVk,ℓ

= ∑
i=(i1,j1),j=(i1,j2),k=(i2,k1),ℓ=(i2,k2)

1 [(i1, i2) ∈W] 1 [j2 = k1]V(i2,k1),(i2,k2) f (i1, i2)†
k2,j1U(i1,j1),(i1,j2)

= ∑
(i1,i2)∈W

Tr
(

V(i2) f (i1, i2)†U(i1)
)

,

U(i1) indexes the i1th main s × s block of U and similarly V(i2) indexes the i2th main
s× s block of V. Note that the maximization over U and V ranges over all unitaries and,
in particular, those that have at least n disjoint main diagonal s × s blocks (off-diagonal
blocks are zero). This means that U(i1), V(i2) can range over a set of matrices containing
Us and have operator norm at most 1. We now discretize the space of matrices Ms(C) of
operator norm at most 1 a fine enough net Us,k,δ depending on s, δ and k, so that when
we replaced U(i1), V(i2) by their closest elements in the net Ũ(i1), Ṽ(i2) we still have an
additive approximation as needed to conclude this corollary.

Remark 6.15. Bandeira et al. [BKS16] have an approximation algorithm for a similar looking
optimization of Eq. (11). However, they only analyze the little Grothendieck version of the problem,
so we cannot directly use their result here. It is plausible that it can be generalized to Hermitian
matrices.

7 Fast Decoding Prime q-ary Codes near the GV Bound

We show how to decode explicit codes over Fq for any prime q close to GV bound in the
large distance regime,i.e., 1− 1/q− ε for small ε > 0. We now proceed towards proving
our main result (restated below).

Theorem 1.1 (Main I - Near-linear Time Unique Decoding over Fq). Let q be a prime. For
every ε > 0 sufficiently small, there are explicit linear Ta-Shma codes CN,q,ε ⊆ FN

q for infinitely
many values N ∈N with

(i) distance at least (1− 1/q)(1− ε) (actually ε-balanced),

(ii) rate Ωq(ε2+α) where α = O(1/(log2(1/ε))1/6), and

(iii) an r(q/ε) · Õ(N) time randomized unique decoding algorithm that decodes within radius
((1− 1/q)(1− ε))/2,

where r(x) = exp(exp(poly(x))).

We first recall some coding theory terminology in Section 7.1. In Section 7.2, we present
the near-linear time decoding algorithm modulo a suitable base code. In Section 7.3, we
put everything together with a suitable base code to obtain Theorem 1.1.

40

7.1 Preliminaries on Codes

We briefly recall some standard code terminology. Let q be a prime. Given z, z′ ∈ Fn
q , recall

that the relative Hamming distance between z and z′ is ∆(z, z′) := |{i | zi ̸= z′i}| /n. A
linear code is any subspace C ⊆ Fn

q . The distance of C is defined as ∆(C) := minz ̸=z′ ∆(z, z′)
where z, z′ ∈ C. The rate of C is logq(|C|)/n, or equivalently dim(C)/n (if C is linear).

We will need the following standard notion of bias for q-ary alphabet (using its (Zq,+)
algebraic structure).

Definition 7.1 (Bias). The bias of a word z ∈ Fn
q is defined as bias(z) := maxa∈Fn

q\{0}

∣∣∣Ei∈[n]χa(zi)
∣∣∣.

The bias of a code C is the maximum bias of any non-zero codeword in C.

Definition 7.2 (ε-balanced Code). A code C is ε-balanced if bias(z + z′) ≤ ε for every pair of
distinct z, z′ ∈ C.

Direct Sum Lifts

Starting from a base code C ⊆ Fn
q , we amplify its distance by considering the direct sum lift-

ing operation based on a collection W ⊆ [n]k. The direct sum lifting maps each codeword
of C to a new word in F

|W|
q by taking sum in Fq of its entries on each element of W.

Definition 7.3 (Direct Sum Lifting). Let W ⊆ [n]k. For z ∈ Fn
q , we define the direct sum

lifting as dsumW(z) = y such that y(i1,...,ik) = ∑k
j=1 zij for all (i1, . . . , ik) ∈ W. The direct sum

lifting of a code C ⊆ Fn
q is

dsumW(C) = {dsumW(z) | z ∈ C}.

We will omit W from this notation when it is clear from context.

We will use terminology of bias reducer (generalizing the notion of parity samplers from
[TS17] to larger alphabets).

Definition 7.4 (Bias Reducer). A collection W ⊆ [n]k is called an (ε0, ε)-bias reducer if for all
z ∈ Fn

q with bias(z) ≤ ε0, we have bias(dsumW(z)) ≤ ε.

7.2 Near-linear Time Prime q-ary Decoding

We now develop list-decoding algorithms for direct-sum codes, using the regularity lem-
mas obtained in the Section 5. We will prove the following theorem which will be the
q-ary generalization, with q prime, of the binary decoder in [JST21]. Having access to reg-
ular decomposition (currently requiring randomness to compute), the remaining steps of
the decoder will now be deterministic. We currently require q to be prime and the reason
for this will be clearer as we develop the algorithm. In a few words, when q is prime all
the non-trivial characters of Zq are of the form a 7→ ωa, where ω is a primitive qth root of
unity and this will be important to us27. It would be interesting to remove this restriction.

27It will allow us to control the distribution of symbols inside atoms in a factor (for most of them) so that
that the majority occurs with overwhelming probability.

41

Theorem 7.5. Let C0 ⊂ Fn
q , with q prime, be a code with bias(C0) ≤ ε0, which is unique-

decodable to distance δ0 in time T0. Let W ⊆ [n]k be a d-regular, τ-splittable collection of tuples,
and let C = dsumW(C0) be the corresponding direct-sum lifting of C0 with bias(C) ≤ ε. Let β be
such that

β ≥ max
{(

220 · τ · k3)1/2
, 4(1− (Cq · δ0/2)2)k/2

}
,

where Cq := 1− cos(π/q). Then, there exists a randomized algorithm, which given ỹ ∈ FW
q ,

with high probability recovers the list Lβ(ỹ) := {y ∈ C | ∆(ỹ, y) ≤ (1− 1/q)(1− β)}, in time

Õ(Cβ,k,ε0,q · (|W|+ T0)), where Ck,β,ε0,q = 2qO(k3/β2)
.

To obtain the decoding algorithm, we first define a function ga : [n]k → S1
q, for each

a ∈ F×q , supported on W as

ga(i1, . . . , ik) :=

{
ωa·ỹ(i1,...,ik) if (i1, . . . , ik) ∈W
0 otherwise

For each z ∈ Fn
q and a ∈ Fq, recall that the function χz,a : [n] → {ωa·b|b ∈ Fq} is

defined as χz,a(i) = ωa·zi . We now relate distance with average bias as follows.

Claim 7.6. Let z ∈ Fn
q , and let the functions ga and χz,a be as above. Then,

∆(ỹ, dsumW(z)) ≤
(

1− 1
q

)
(1− β) ⇔

E
a∈F×q

[〈
ga, χ⊗k

z,a

〉
µk

]
=
(n

d

)k−1
· E

a∈F×q

[〈
ga, χ⊗k

z,a

〉
µ⊗k

1

]
≥ β .

Proof. We have

∆(ỹ, dsumW(z)) = E
(i1,...,ik)∼W

[
1[ỹ(i1,...,ik)

̸= zi1+···+zik]

]
= E

(i1,...,ik)∼µk

[
1− E

a∈Fq

[
ga(i1, . . . , ik) · ∏

t∈[k]
χz,a(it)

]]

= 1− 1
q
− q− 1

q
· E

a∈F×q

[〈
ga, χ⊗k

z,a

〉
µk

]

=

(
1− 1

q

)(
1− E

a∈F×q

[〈
ga, χ⊗k

z,a

〉
µk

])
.

Finally, using the fact that ga is only supported on W, and |W| = dk−1 · n by d-regularity,
we have ⟨ga, f ⟩µk

= (n/d)k−1 · ⟨ga, f ⟩µ⊗k
1

for any function f : [n]k → K.

Note that each element of the list Lβ(ỹ) must be equal to dsumW(z) for some z ∈ C0.
Thus, to search for all such z, we will consider the decomposition ha of the function ga,
given by Theorem 5.12 with respect to the class of functions F = CUT⊗k

ω,q,a. Since the
functions χ⊗k

z,a belong to F , it will suffice to only consider the inner product
〈

ha, χ⊗k
z,a
〉

µ⊗k
1

.

42

Also, since the approximating function ha is determined by a small number of func-
tions, say

{
fa,1, . . . , fa,r : [n]→ S1

q

}
, it will suffice to (essentially) consider only the func-

tions measurable in the factor Ba determined by fa,1, . . . , fa,r. Recall that the factor Ba is
simply a partition of [n] in qr pieces according to the values of fa,1, . . . , fa,r. Also, since any
Ba-measurable function is constant on each piece, it is completely specified by |Ba| values
in K. We will only consider Ba-measurable functions taking values in Fq. The decoding
procedure is described in the following algorithm.

Algorithm 7.7 (List Decoding Algorithm).
Input ỹ ∈ FW

q
Output List L ⊆ C

- Obtain the approximator ha given by Theorem 5.12 for F = CUT⊗k
ω,q,a, δ = β, and the

function ga : [n]k → S1
q defined as

ga(i1, . . . , ik) :=

{
ωa·ỹ(i1,...,ik) if (i1, . . . , ik) ∈W
0 otherwise

- Let ha be of the form ha = ∑
p
j=1 ca,j · fa,j1 ⊗ · · · ⊗ fa,jk , with each fa,jt : [n] → S1

q. Let Ba

be the factor determined by the functions
{

fa,jt
}

j∈[p],t∈[k].

- Let L = ∅. For each a ∈ F×q and Ba-measurable function z̃ given by a value in Fq for
every atom of Ba:

– If there exists z ∈ C0 such that

∆(z̃, z) ≤ δ0 and ∆(ỹ, dsumW(z)) ≤
(

1− 1
q

)
(1− β) ,

then L ← L∪ {dsumW(z)}.

- Return L.

Note that by our choice of the β in Theorem 7.5, we have that τ ≤ β2/(220k3). Thus,
we can indeed apply Theorem 5.12 to obtain the functions ha as required by the algorithm.
To show that the algorithm can recover the list, we will show that for each z such that
dsumW(z) ∈ Lβ, the distribution of symbols of z on each of the parts of the factor Ba is
approximately a delta distribution on a single element in Fq.

Next we show that when z ∈ Fn
q is such that Ea∈F×q

[
〈

ga, χ⊗k
z,a
〉
] is large, then the norm

of the conditional expectation E[χz,a|Ba] is also large for some a ∈ F×q . The procedure will
find a z̃ close to z now in a deterministic way. When we have a z ∈ C0 with such a property,
we can use z̃ to recover z using the unique decoding algorithm for C0.

We show that average bias in the “lifted” space becomes a much stronger bias in the
“base” space with respect to some a ∈ F×q . More precisely, we have the following.

Lemma 7.8. Let z ∈ Fn
q be such that

E
a∈F×q

[〈
ga, χ⊗k

z,a

〉
µk

]
=
(n

d

)k−1
· E

a∈F×q

[〈
ga, χ⊗k

z,a

〉
µ⊗k

1

]
≥ β .

43

Then, we have maxa∈F×q
∥E[χz,a|Ba]∥2

µ1
≥ (β/4)2/k.

Proof. Let ha be the approximating function obtained by applying Theorem 5.12 to ga with
approximation error δ = β. Note that we have ∥ha∥µ⊗k

1
≤ 2, and for any f ∈ CUT⊗k

ω,q,a,∣∣∣∣∣∣
(n

d

)k−1
·
〈

ga −
(

d
n

)k−1

· ha , f

〉
µ⊗k

1

∣∣∣∣∣∣ ≤ δ .

Using f = χ⊗k
z,a and δ = β/2, we get∣∣∣∣∣ E

a∈F×q

[〈
ha, χ⊗k

z,a

〉
µ⊗k

1

]∣∣∣∣∣ ≥ β− δ ≥ β

2
.

Using Proposition 4.8, and the fact that Ba is defined so that all functions in the decompo-
sition of ha are (by definition) Ba-measurable, we have

〈
ha, χ⊗k

z,a

〉
µ⊗k

1

=
p

∑
j=1

cj

k

∏
t=1

〈
fa,jt , χz,a

〉
µ1

=
p

∑
j=1

cj

k

∏
t=1

〈
fa,jt , E [χz,a|Ba]

〉
µ1

=
〈

ha, (E [χz,a|Ba])
⊗k
〉

µ⊗k
1

.

Combining the above with Cauchy-Schwarz, we get

β

2
≤
∣∣∣∣∣ E

a∈F×q

[〈
ha, χ⊗k

z,a

〉
µ⊗k

1

]∣∣∣∣∣ ≤ E
a∈F×q

[
∥ha∥µ⊗k

1
·
∥∥∥(E [χz,a|Ba])

⊗k
∥∥∥

µ⊗k
1

]
= E

a∈F×q

[
∥ha∥µ⊗k

1
· ∥E [χz,a|Ba]∥k

µ1

]
.

Using ∥ha∥µ⊗k
1
≤ 2 then gives maxa∈F×q

∥E[χz,a|Ba]∥2
µ1
≥ (β/4)2/k.

Contrary to the binary case, having strong bias with a single a ∈ F×q is not necessarily
enough to have a majority symbol occurring with sufficiently high frequency in each atom
of Ba in general. By assuming that q is prime, this will be possible as we now show by
establishing some claims.

A distribution with large bias with respect to a primitive root (which is the case for non-
trivial character of Zq with q prime) also has a majority occurring with high probability.

Claim 7.9. Let (pa)a∈Fq be a probability distribution on Fq with q prime. Let ω be a primitive qth
root of unity. Then, ∣∣∣∣∣ ∑

a∈Fq

ωa pa

∣∣∣∣∣
2

≤ 1− Cq(1− ∑
a∈Fq

p2
a),

where Cq := 1− cos(π/q).

44

Proof. Let va = (cos(2πa/q), sin(2πa/q)). Observe that for a ̸= a′, we have

|⟨va, va′⟩| =
∣∣cos(2πa/q) cos(2πa′/q) + sin(2πa/q) cos(2πa′/q)

∣∣
=
∣∣cos(2π(a− a′)/q)

∣∣ ≤ max
a′′∈F×q

∣∣cos(2πa′′/q)
∣∣ ≤ |cos(π/q)| .

Computing, we obtain∣∣∣∣∣ ∑
a∈Fq

va pa

∣∣∣∣∣
2

≤ ∑
a,a′∈Fq

pa pa′ |⟨va, va′⟩| ≤
(

∑
a∈Fq

pa

)2

− Cq ∑
a ̸=a′

pa pa′ ≤ 1− Cq + Cq ∑
a

p2
a .

The quantity ∑a∈Fq
p2

a (collision probability) if large, readily implies that the distribu-
tion is close to a delta distribution.

Claim 7.10. Let (pa)a∈[q] be a probability distribution. If ∑
q
a=1 p2

a ≥ 1 − ν, then there exists
a ∈ [q] with pa ≥ 1− ν.

Proof. Let p∗ = maxa∈[q] pa. We have 1− ν ≤ ∑
q
a=1 p2

a ≤ p∗ ∑
q
a=1 pa = p∗.

Combining the two preceding observations, we deduce the following.

Corollary 7.11. Let (pa)a∈Fq be a probability distribution on Fq. Let ω be a primitive qth root of

the unit. If
∣∣∣∑a∈Fq

ωa pa

∣∣∣2 ≥ 1− Cq · ν for some ν ∈ (0, 1), then pa ≥ 1− ν.

Proof. Combining our assumption with the bound of Claim 7.9 we obtain

1− Cq · ν ≤
∣∣∣∣∣ ∑

a∈Fq

ωa pa

∣∣∣∣∣
2

≤ 1− Cq(1− ∑
a∈Fq

p2
a),

from which we deduce that ∑a∈Fq
p2

a ≥ 1− ν. Using Claim 7.10, we conclude the proof.

From the large bias assumption in the base space, we deduce closeness in Hamming
distance as follows.

Lemma 7.12. If ∥E[χz,a|Ba]∥2
µ1
≥ 1 − (Cq · ν)2 for some ν ∈ (0, 1), then there exists a Ba-

measurable function z̃ ∈ Fn
q such that ∆(z̃, z) ≤ (1 + Cq) · ν.

Proof. Let i1, . . . , ir ∈ [n] be a set of representatives of the factor Ba. Each part Ba(i) has
measure Pµ1 [Ba(i)] = |Ba(i)| /n and the multiset of elements {zj | j ∈ Ba(i)} gives rise to
a probability distribution on Fq. By assumption, we have

1−
(
Cq · ν

)2 ≤ ∥E [χz,a|Ba]∥2
µ1

= ∑
i∈{i1,...,ir}

∣∣∣Ej∈Ba(i)ω
a·zj

∣∣∣2 ·P
µ1
[Ba(i)].

Since
∣∣∣Ej∈Ba(i)ω

a·zj

∣∣∣2 ≤ 1, the above guarantee implies that with probability at least 1−Cq ·

ν over the choice of factor Ba(i) we have
∣∣∣Ej∈Ba(i)ω

a·zj

∣∣∣2 ≥ 1− Cq · ν. Using Corollary 7.11,
we deduce that the distribution on Fq induced by each such Ba(i) has an element which
we denote by z̃i occurring with probability at least 1− ν. The values z̃i can be seeing as
defining a partial function from [n] to Fq. By extending it to a Ba-measurable function z̃ in
an arbitrary way, we conclude the claim.

45

Using the above results, we can now complete the analysis of the algorithm.

Proof of Theorem 7.5. Using Lemma 7.8, there exists a ∈ F×q such that ∥E[χz,a|Ba]∥2
µ1
≥

(β/4)2/k. By our choice of β, we have β ≥ 4(1− (Cq · δ0/2)2)k/2 implying that

∥E [χz,a|Ba]∥2
µ1
≥ 1− (Cq · δ0/2)2 .

By Lemma 7.12, for each codeword z ∈ C0 such that dsumW(z) ∈ Lβ, there exists a Ba-
measurable word z̃ such that ∆(z, z̃) ≤ δ0. When the algorithm invokes the decoder of C0
on z̃ (each Ba-measurable function on Fq is considered), by assumption we are guaranteed
to retrieve z. Therefore, we can indeed recover each codeword dsumW(z) ∈ Lβ.

Running time. Using Theorem 5.12, the regularity decomposition of each ha can be com-
puted in time Õ(Cβ,k,ε0,q · |W|). Given the functions fa,1, . . . , fa,r forming the decomposition
of ha, the factor Ba can be computed in time O(qkr · n). Also, the distance ∆(ỹ, dsumW(z))
can be computed in time O(|W|). Since the total number of decoding steps is at most q|Ba|

and the number of functions in the decomposition of ha is O(k3/β2) from Theorem 5.12, we

get that the number of decoding steps is qqO(k3/β2)
for the factor Ba. Thus, the total running

time is bounded by Õ(Cβ,k,ε0,q · (|W|+ T0)), where Cβ,k,ε0,q = 2qO(k3/β2)
.

7.3 Instantiating the Decoder with a Base Code

We now combine all the pieces in order to obtain our main result establishing a near-linear
time unique decoding algorithm for Ta-Shma’s codes [TS17] over any constant sized prime
fields Fq. It will follow from the new generalized regularity based list decoding algo-
rithm for direct sum codes over prime Fq, Theorem 7.5, applied to the decoding of a slight
modification of Ta-Shma’s construction from [JQST20] that yields a splittable collection of
tuples28.

Theorem 1.1 (Main I - Near-linear Time Unique Decoding over Fq). Let q be a prime. For
every ε > 0 sufficiently small, there are explicit linear Ta-Shma codes CN,q,ε ⊆ FN

q for infinitely
many values N ∈N with

(i) distance at least (1− 1/q)(1− ε) (actually ε-balanced),

(ii) rate Ωq(ε2+α) where α = O(1/(log2(1/ε))1/6), and

(iii) an r(q/ε) · Õ(N) time randomized unique decoding algorithm that decodes within radius
((1− 1/q)(1− ε))/2,

where r(x) = exp(exp(poly(x))).

We now state the properties and guarantees needed in our work of this slightly mod-
ified version of Ta-Shma’s direct sum construction of near optimal ε-balanced codes. To
make the decoding task more transparent, we will additionally require the base code in
Ta-Shma’s construction to have the following technical property.

28Recently, Blanc and Doron [BD22] use a weaker expansion condition. In fact, our framework only relies
on the splittable mixing lemma.

46

Definition 7.13. We say that a code has symbol multiplicity m ∈ N if it can be obtained from
another code by repeating each symbol of its codeword m times.

The parameter trade-offs in Ta-Shma’s construction [TS17] over F2 are (essentially) the
same as those over Fq as analyzed by Jalan and Moshkovitz in [JM21]. In particular, the
decay in bias is the same. For this reason, we can almost reuse the following theorem
from [TS17] which provides an interface to Ta-Shma’s parameters except that we will need
to be more careful with the rate of the base code which now depends on the alphabet size
q.

Theorem 7.14 (Ta-Shma’s Codes (implicit in [TS17] following q-ary analysis of [JM21])).
Let c > 0 be any constant. For every ε > 0 sufficiently small, there exists k = k(ε) satisfying
Ω(log(1/ε)1/3) ≤ k ≤ O(log(1/ε)), ε0 = ε0(ε) > 0, and positive integer m = m(ε) ≤
(1/ε)o(1) such that Ta-Shma’s construction yields a collection of τ-splittable tuples W = W ⊆ [n]k

satisfying:

(i) For every linear ε0-balanced code C0 ⊆ Fn
q with symbol multiplicity m, the direct sum code

dsumW(C0) is:

(i.1) ε-balanced (parity sampling).

(i.2) if C0 has rate Ω(εc
0/m), then dsumW(C0) has rate Ω(ε2+oc(1)) (near optimal rate)

(ii) τ ≤ exp(−Θ(log(1/ε)1/6)) (splittability).

(iii) W is constructible in poly(|W|) time (explicit construction).

Theorem 7.15. There exists a constant ε0 > 0 such that for every ε > 0 sufficiently small and
constant size prime field Fq, there is an explicit family of codes over this field such that every
member C0 ⊆ Fn

q in the family has bias(C0) ≤ ε, rate Ωq(εO(1)) and is unique decodable in time
Õ(exp(exp(poly(q/ε))) · n).

We will prove the (gentle) list decoding result of Ta-Shma’s codes over prime Fq of
which our main result Theorem 1.1 is a particular case.

Theorem 1.2 (Near-linear time List Decoding over Fq). Let q be a prime. For every ε > 0
sufficiently small, there are explicit binary linear Ta-Shma codes CN,q,ε ⊆ FN

q for infinitely many
values N ∈N with

(i) distance at least (1− 1/q)(1− ε) (actually ε-balanced),

(ii) rate Ωq(ε2+α) where α = O(1/(log2(1/ε))1/6), and

(iii) an r(q/ε) · Õ(N) time randomized list decoding algorithm that decodes within radius 1−
1/q− 2−Θq((log2(1/ε))1/6) and works with high probability,

where r(x) = exp(exp(poly(x))).

Proof. We start by dealing with a simple technical issue of making the base code in Ta-
Shma’s construction have the required symbol multiplicity. Let C ′0 ⊆ Fn′

q be an ε0-balanced

47

code from Theorem 7.15 which we will use to obtain a base code in Ta-Shma’s construction
where ε0 > 0 is a suitable value prescribed by this construction.

Ta-Shma’s construction then takes C ′0 ⊆ Fn′
q and forms a new code C0 ⊆ Fn

q by re-
peating each codeword symbol m ≤ (1/ε)o(1) times. By Claim A.1, C0 is an ε0-balanced
code that can be unique decoded within the same (fractional) radius of C ′0 in time T0(n) =
r · T0(n′) + Õ(r2 · n′), where T0(n′) is the running time of an unique decoder for C ′0. Since
by Theorem 7.15 T0(n′) = O(exp(exp(poly(q/ε0))) · n′), the decoding time of C0 can be
(crudely) bounded as T0(n) = O(exp(exp(poly(q/ε))) · n).

Let W = W be a collection of tuples from Ta-Shma’s construction Theorem 7.14 so that
C = dsumW(C0) is ε-balanced, τ ≤ exp(−Θq(log(1/ε)1/6)) and k = Ωq(log(1/ε)1/3). We
will invoke our list decoding algorithm Theorem 7.5 whose list decoding radius 1− 1/q−
β has to satisfy

β ≥ max
{ (

220 · τ · k3)1/2
, 4(1− (Cq · ε0/2)2)k/2

}
.

Using our values of τ and k together with the fact that (Cq · ε0)2 > 0 is bounded away from
0 by a constant amount (depending on q) gives

β ≥ max
{

exp(−Θ((log(1/ε))1/6)), exp(−Θq((log(1/ε))1/3))
}

.

Hence, we can take β = exp(−Θq(log(1/ε)1/6)). Now, we compute the list decoding
running time proving a (crude) upper bound on its dependence on ε and q. By Theorem 7.5,
the list decoding time

Õ(Cβ,k,ε0,q · (|W|+ T0(n))),

where Ck,β,ε0,q = 2qO(k3/β2)
. For our choices of parameters, this decoding time can be (crudely)

bounded by Õ(exp(exp(poly(q/ε))) · N).

Choosing the Base Code

We will now describe the family of base codes used in the amplification. To obtain a code
C0 in this family, we will take a code C ′0 from another expander based family (with constant
rate, distance and near-linear time decoding) amplify its bias using expander walks to ob-
tain C0 which will be near-linear time decodable with our decoder Theorem 7.5. In [JST21],
they found a suitable “off-the-shelf” family of base codes [GI05].

More precisely, the bias amplified family of base codes will be the following.

Theorem 7.15. There exists a constant ε0 > 0 such that for every ε > 0 sufficiently small and
constant size prime field Fq, there is an explicit family of codes over this field such that every
member C0 ⊆ Fn

q in the family has bias(C0) ≤ ε, rate Ωq(εO(1)) and is unique decodable in time
Õ(exp(exp(poly(q/ε))) · n).

For the base code C ′0 over Fq, we will use Zemor’s Tanner code construction [Zem01]
whose rate, distance and decoding analysis is independent of the field size except for the
cost of field operations in decoding (see Rao’s notes [Rao19]). The local codes in the Tanner
construction are of constant size and can be found by brute-force search and the family of
expander graphs can be taken to be bipartite Ramanujan graphs from [LPS88]. In sum-
mary, we have the following corollary from their results.

48

Theorem 7.16 (Corollary of [Zem01] and [LPS88]). There are universal constants r0 > 0 and
δ0 > 0 such that for any finite field Fq, there is an explicit family of codes over this field and each
member C ′0 ⊆ Fn

q in the family has rate r0 and can be uniquely decoded from ε0 fraction of errors in
Õ(poly(q) · n) time.

Proof. Starting Code: Let Fq be a field with q prime. Use Theorem 7.16 to obtain a good
family of codes. Each member in C ′0 ⊆ Fn′

q has constant relative distance at least 2ε0. We
will slightly modify this code to ensure that its bias is a constant bounded away from
1. By zeroing out the last ε0/2 symbols of each codeword in C ′0, we obtain a new linear
code C ′′0 such that each non-zero codeword has at least 3ε0/2 non-zero symbols and ε0
zero symbols. Since q is prime, using Claim 7.9, this implies that bias(C ′′0) ≤ 1− η, where
η = η(q, ε0) > 0. Note that the code C ′′0 is still unique decodable from ε0/2 fraction of
errors.

Direct-sum Amplification: We will use the simpler expander walk construction of Rozen-
man and Wigderson (as analyzed by Ta-Shma [TS17] and we use the q-ary version from
[JM21]) to amplify this bias to ε using k = Oθ(log2(1/ε)). Let W be the collection of walks
and C0 = dsumW(C ′′0). With this choice of k, we have that dsumW is (1− θ, ε)-bias reducer.
By choosing an expander with constant but sufficiently small spectral expansion, we ob-
tain W having arbitrarily small splittbility parameter τ as show in [AJQ+20]. By assuming
that ε is sufficiently small we can make k arbitrarily large. This implies that we can choose
the decoding parameter β, in Theorem 7.5, a fixed constant as small as we want. Hence,
we can list decode from radius (1− 1/q)(1− β).

Rate: Since we can take the expander in this amplification to be of constant degree d0, we
obtain a rate of r0 · d−k

0 = Ω(εOq(1)).

Running Time: We now compute the running time. By Theorem 7.5, the list decoding
time is

Õ(Cβ,k,ε0/2,q · (|W|+ T0(n))),

where Ck,β,ε0,q = 2qO(k3/β2)
. For our choices of parameters, this decoding time can be (crudely)

bounded by Õ(exp(exp(poly(q/ε))) · n).
To construct a code of rate Ωq(εO(1)) (without the dependence of q in the exponent),

we can apply the above construction twice as follows. First, to construct a code of constant
bias ε′ independent of q and rate Ωq(1). From this code, we apply the construction again
to obtain a final code with bias ε but this time using k = O(log(1/ε)) independent of q.
This final code has rate Ωq(εO(1)) as desired.

8 Tuple versus Set Constraints

We now show how to obtain a splittable collection of tuples from the hyperedges of a spec-
tral high-dimensional expanders (HDXs) [DK17]. This shows that splittable collections of
sets can be seen as a particular case of splittable collections of tuples. This allows us to
handle CSPs supported on the edges of high-dimensional expanders as CSPs supported
on tuples.

Lemma 8.1. Let X = X(≤ d) be a τ-splittable HDX with uniform measure on each X(i) for
i ∈ [d].Then, each X⃗(i) := {(i1, . . . , ij) | {i1, . . . , ij} ∈ X(i)} is τ-splittable.

49

Proof. We show that if the swap walk Sk,k is τ-splittable, then we can find an ordered
collection of tuples that is also splittable. We define the corresponding swap walk S⃗k,k

from X⃗(k) to X⃗(k) as the normalized (to have largest eigenvalue 1) version of the following
operator (

S⃗k,k

)
(i1,...,ik),(ik+1,...,i2k)

∝ 1
[
(i1, . . . , i2k) ∈ X⃗(2k)

]
.

We claim S⃗k,k is also τ-splittable. Note that we can (simultaneously) reorder the rows and
columns of S⃗k,k such that all orientations of a set appear contiguously using a permutation
matrix Π in which case we have the following block form

ΠS⃗k,kΠt = Sk,k ⊗ Jk!×k!/k! ,

implying that the second largest singular value of S⃗k,k is the same as the one of Sk,k.

Remark 8.2. Note that the higher-order treshold rank (cf., [AJT19]) is preserved in this translation
from sets to tuples.

References

[AJQ+20] Vedat Levi Alev, Fernando Granha Jeronimo, Dylan Quintana, Shashank Sri-
vastava, and Madhur Tulsiani. List decoding of direct sum codes. In Proceed-
ings of the 31st ACM-SIAM Symposium on Discrete Algorithms, pages 1412–1425.
SIAM, 2020. 2, 7, 17, 49

[AJT19] Vedat Levi Alev, Fernando Granha Jeronimo, and Madhur Tulsiani. Approxi-
mating constraint satisfaction problems on high-dimensional expanders. In
Proceedings of the 60th IEEE Symposium on Foundations of Computer Science,
pages 180–201, 2019. 2, 3, 4, 9, 50

[AK07] Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach to
semidefinite programs. In Proceedings of the 39th ACM Symposium on Theory of
Computing, STOC ’07, pages 227–236, 2007. 7, 33

[AN04] Noga Alon and Assaf Naor. Approximating the cut-norm via grothendieck’s
inequality. In Proceedings of the 36th ACM Symposium on Theory of Computing,
pages 72–80, 2004. 7, 33, 34, 35, 38

[BD22] Guy Blanc and Dean Doron. New near-linear time decodable codes closer to
the GV bound. Technical Report TR22-027, Electronic Colloquium on Com-
putational Complexity, 2022. 2, 4, 46

[Bil95] Patrick Billingsley. Probability and Measure. J. Wiley and Sons, 1995. 18

[BKS16] Afonso S. Bandeira, Christopher Kennedy, and Amit Singer. Approximating
the little grothendieck problem over the orthogonal and unitary groups. Math.
Program., 160(1-2), 2016. 40

50

[BRS11] Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding semidefinite
programming hierarchies via global correlation. In Proceedings of the 52nd IEEE
Symposium on Foundations of Computer Science, pages 472–481, 2011. 3

[Bub15] Sébastien Bubeck. Convex optimization: Algorithms and complexity. Found.
Trends Mach. Learn., 8(3-4):231–357, November 2015. 21

[CMR13] Sixia Chen, Cristopher Moore, and Alexander Russell. Small-bias sets for
nonabelian groups - derandomizations of the Alon–Roichman theorem. In
APPROX-RANDOM, volume 8096 of Lecture Notes in Computer Science, pages
436–451, 2013. 22

[DD19] Yotam Dikstein and Irit Dinur. Agreement testing theorems on layered set
systems. In Proceedings of the 60th IEEE Symposium on Foundations of Computer
Science, 2019. 4

[DHK+19] Irit Dinur, Prahladh Harsha, Tali Kaufman, Inbal Livni Navon, and Amnon
Ta-Shma. List decoding with double samplers. In Proceedings of the 30th ACM-
SIAM Symposium on Discrete Algorithms, pages 2134–2153, 2019. 2

[DK17] Irit Dinur and Tali Kaufman. High dimensional expanders imply agreement
expanders. In Proceedings of the 58th IEEE Symposium on Foundations of Com-
puter Science, pages 974–985, 2017. 49

[Elk01] Noam D. Elkies. Excellent codes from modular curves. In Proceedings of the
33rd ACM Symposium on Theory of Computing, 2001. 1

[FK96] A. Frieze and R. Kannan. The regularity lemma and approximation schemes
for dense problems. In Proceedings of the 37th IEEE Symposium on Foundations
of Computer Science, 1996. 2

[FK98] Uriel Feige and Joe Kilian. Zero knowledge and the chromatic number. Journal
of Computer and System Sciences, 57(2):187–199, 1998. 3, 5, 9

[For66] David Forney. Concatenated Codes. PhD thesis, MIT, 1966. 1

[GI04] Venkatesan Guruswami and Piotr Indyk. Efficiently decodable codes meeting
Gilbert-Varshamov bound for low rates. In Proceedings of the 15th ACM-SIAM
Symposium on Discrete Algorithms, SODA ’04, pages 756–757, 2004. 4

[GI05] V. Guruswami and P. Indyk. Linear-time encodable/decodable codes with
near-optimal rate. IEEE Transactions on Information Theory, 51(10):3393–3400,
2005. 48

[Gil52] E.N. Gilbert. A comparison of signalling alphabets. Bell System Technical Jour-
nal, 31:504–522, 1952. 1

[GKO+17] Sivakanth Gopi, Swastik Kopparty, Rafael Oliveira, Noga Ron-Zewi, and
Shubhangi Saraf. Locally testable and locally correctable codes approaching
the Gilbert-Varshamov bound. In Proceedings of the 28th ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA ’17, pages 2073–2091, 2017. 4

51

[GRS19] Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. Essential cod-
ing theory. Available at https://cse.buffalo.edu/faculty/atri/courses/
coding-theory/book/index.html, 2019. 1

[GRZ22] Zeyu Guo and Noga Ron-Zewi. Efficient list-decoding with constant alphabet
and list sizes. IEEE Transactions on Information Theory, 68(3):1663–1682, 2022. 4

[GS11] Venkatesan Guruswami and Ali Kemal Sinop. Lasserre hierarchy, higher
eigenvalues, and approximation schemes for graph partitioning and
quadratic integer programming with psd objectives. In FOCS, pages 482–491,
2011. 3

[GS12] Venkatesan Guruswami and Ali Kemal Sinop. Faster SDP hierarchy solvers
for local rounding algorithms. In Proceedings of the 53rd IEEE Symposium on
Foundations of Computer Science, pages 197–206. IEEE, 2012. 3

[GX13] Venkatesan Guruswami and Chaoping Xing. List decoding reed-solomon,
algebraic-geometric, and gabidulin subcodes up to the singleton bound. In
Proceedings of the 45th ACM Symposium on Theory of Computing, 2013. 4

[HLW06] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their
applications. Bull. Amer. Math. Soc., 43(04):439–562, August 2006. 22

[HRW17] B. Hemenway, N. Ron-Zewi, and M. Wootters. Local list recovery of high-
rate tensor codes applications. In Proceedings of the 58th IEEE Symposium on
Foundations of Computer Science, pages 204–215, Oct 2017. 4

[JM21] Akhil Jalan and Dana Moshkovitz. Near-optimal Cayley expanders for
Abelian groups, 2021. arXiv:2105.01149. 1, 7, 47, 49

[JQST20] Fernando Granha Jeronimo, Dylan Quintana, Shashank Srivastava, and Mad-
hur Tulsiani. Unique decoding of explicit ε-balanced codes near the Gilbert–
Varshamov bound. In Proceedings of the 61st IEEE Symposium on Foundations of
Computer Science, 2020. 1, 2, 4, 7, 17, 46

[JST21] Fernando Granha Jeronimo, Shashank Srivastava, and Madhur Tulsiani.
Near-linear time decoding of Ta-Shma’s codes via splittable regularity. 2021.
1, 2, 3, 4, 5, 7, 8, 9, 12, 16, 19, 20, 22, 24, 25, 26, 27, 28, 29, 32, 33, 38, 41, 48, 54,
55

[Kal07] Satyen Kale. Efficient Algorithms Using The Multiplicative Weights Update
Method. PhD thesis, Princeton, 2007. 33

[KRRZ+21] Swastik Kopparty, Nicolas Resch, Noga Ron-Zewi, Shubhangi Saraf, and
Shashwat Silas. On list recovery of high-rate tensor codes. IEEE Transactions
on Information Theory, 67(1):296–316, 2021. doi:10.1109/TIT.2020.3023962. 4

[LP20] Yin Tat Lee and Swati Padmanabhan. An Õ(m/ε3.5)-cost algorithm for
semidefinite programs with diagonal constraints. In COLT 2020, volume 125,
pages 3069–3119, 2020. 33

[LPS88] Alexander Lubotzky, R. Phillips, and Peter Sarnak. Ramanujan graphs. Com-
binatorica, 8:261–277, 1988. 48, 49

52

https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/index.html
https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/index.html
http://arxiv.org/abs/2105.01149
https://doi.org/10.1109/TIT.2020.3023962

[MRRW77] R. McEliece, E. Rodemich, H. Rumsey, and L. Welch. New upper bounds on
the rate of a code via the Delsarte-MacWilliams inequalities. IEEE Transactions
on Information Theory, 23(2):157–166, 1977. 1

[NRV13] Assaf Naor, Oded Regev, and Thomas Vidick. Efficient rounding for the non-
commutative Grothendieck inequality. In Proceedings of the 45th ACM Sympo-
sium on Theory of Computing, page 71–80, 2013. 39, 40

[NW19] Anand Kumar Narayanan and Matthew Weidner. Subquadratic time encod-
able codes beating the gilbert–varshamov bound. IEEE Transactions on Infor-
mation Theory, 65(10), 2019. 1

[OGT15] Shayan Oveis Gharan and Luca Trevisan. A new regularity lemma and faster
approximation algorithms for low threshold rank graphs. Theory of Computing,
11(9):241–256, 2015. URL: http://www.theoryofcomputing.org/articles/
v011a009, doi:10.4086/toc.2015.v011a009. 3, 9

[Rao19] Anup Rao. Expander codes: Tanner codes. Lecture notes, Oc-
tober 2019. URL: https://homes.cs.washington.edu/~anuprao/pubs/
codingtheory/lecture6.pdf. 48

[Rud91] W. Rudin. Functional Analysis. International series in pure and applied math-
ematics. McGraw-Hill, 1991. 20

[Sag13] B.E. Sagan. The Symmetric Group: Representations, Combinatorial Algorithms,
and Symmetric Functions. Graduate Texts in Mathematics. Springer New York,
2013. 15, 54

[SS96] L. L. Scott and J. P. Serre. Linear Representations of Finite Groups. Graduate Texts
in Mathematics. Springer New York, 1996. 15, 54

[Sti08] Henning Stichtenoth. Algebraic Function Fields and Codes. Springer Publishing
Company, Incorporated, 2nd edition, 2008. 1

[SZY07] Anthony Man-Cho So, Jiawei Zhang, and Yinyu Ye. On approximating com-
plex quadratic optimization problems via semidefinite programming relax-
ations. Math. Program., 110(1):93–110, jun 2007. 7, 34

[Tho83] C. Thommesen. The existence of binary linear concatenated codes with Reed-
Solomon outer codes which asymptotically meet the Gilbert-Varshamov
bound. IEEE Transactions on Information Theory, 29(6):850–853, November
1983. 4

[TS17] Amnon Ta-Shma. Explicit, almost optimal, epsilon-balanced codes. In Pro-
ceedings of the 49th ACM Symposium on Theory of Computing, STOC 2017, pages
238–251, New York, NY, USA, 2017. ACM. 1, 2, 4, 5, 7, 17, 41, 46, 47, 49

[TTV09] L. Trevisan, M. Tulsiani, and S. Vadhan. Boosting, regularity and efficiently
simulating every high-entropy distribution. In Proceedings of the 24th IEEE
Conference on Computational Complexity, 2009. 5

[TVN07] Michael Tsfasman, Serge Vladut, and Dmitry Nogin. Algebraic Geometric
Codes: Basic Notions. American Mathematical Society, 2007. 1

53

http://www.theoryofcomputing.org/articles/v011a009
http://www.theoryofcomputing.org/articles/v011a009
https://doi.org/10.4086/toc.2015.v011a009
https://homes.cs.washington.edu/~anuprao/pubs/codingtheory/lecture6.pdf
https://homes.cs.washington.edu/~anuprao/pubs/codingtheory/lecture6.pdf

[TVZ82] Michael A. Tsfasman, S. G. Vlădut, and Thomas Zink. Modular curves,
shimura curves, and goppa codes, better than varshamov-gilbert bound.
Mathematische Nachrichten, 109:21–28, 1982. 1

[Var57] R.R. Varshamov. Estimate of the number of signals in error correcting codes.
Doklady Akademii Nauk SSSR, 117:739–741, 1957. 1

[Zem01] G. Zemor. On expander codes. IEEE Transactions on Information Theory,
47(2):835–837, 2001. 48, 49

A Deferred Proofs

For convenience, we include the proof of the following simple fact (assuming some basic
facts from representation theory [SS96, Sag13]).

Fact 3.5 ([SS96]). Let g ∈ G. Then

E
ρ∼Irrep(G)

[
Tr(ρ(g))
dim(ρ)

]
= 1[g=1] ,

where 1 is the identity element in G.

Proof. Let ρreg : G → CG×G be matrix representation of the regular action of G on C[G]. If
g = 1, then Tr(ρreg(g)) = |G|, otherwise, the action of g has no fixed points so Tr(ρreg(g)) =
0. Equivalently, we have Tr(ρreg(g))/ |G| = 1[g=1]. It is well-known that ρreg is unitarily
equivalent to ⊕

ρ∈Irrep(G)

dim(ρ) · ρ .

This implies that Eρ∼Irrep(G)[Tr(ρ(g))/ dim(ρ)] = Tr(ρreg(g))/ |G| = 1[g=1].

To make this presentation self-contained, we recall some omitted proofs from [JST21]
restated in the splittable mixing lemma section Section 5.1.

A.1 Splittable Mixing Lemmas

We can iterate Lemma 5.6 to obtain the following.

Lemma 5.8 (Splittable Mixing Lemma Iterated [JST21]). Suppose W ⊆ [n]k is a τ-splittable
collection of tuples. For every f = f1 ⊗ · · · ⊗ fk ∈ Fk−1, we have∣∣∣∣Eν0

f − E
νk−1

f
∣∣∣∣ ≤ (k− 1) · τ.

Proof. Let 1 ∈ Fk−1 be the constant 1 function. Note that for any t ∈ {0, . . . , k − 1} the
restriction of any f ′ ∈ Fk−1 to the support of νt which we denote by f ′|t belongs to Ft. It

54

is immediate that ⟨ f , 1⟩νt
= ⟨ f |t, 1⟩νt

. Computing we obtain∣∣∣∣Eν0
f − E

νk−1
f
∣∣∣∣ =

∣∣∣⟨ f , 1⟩ν0
− ⟨ f , 1⟩νk−1

∣∣∣ ≤ k−2

∑
i=0

∣∣∣⟨ f , 1⟩νi
− ⟨ f , 1⟩νi+1

∣∣∣
=

k−2

∑
i=0

∣∣∣⟨ f |t, 1|t⟩νi
− ⟨ f |t+1, 1|t+1⟩νi+1

∣∣∣
≤

k−2

∑
i=0

τ, (By Lemma 5.6)

finishing the proof.

In Section 5.3, we used two corollaries of the splittable mixing lemma which we prove
now.

Claim 5.9 ([JST21]). Let W ⊆ [n]k be a τ-splittable collection of tuples. Let t ∈ {0, . . . , k− 2}
and ht+1 ∈ H(R0, R1,Ft+1). For every f ∈ Ft+1, we have∣∣∣⟨ht+1, f ⟩νt+1

− ⟨ht+1, f ⟩νt

∣∣∣ ≤ τ · R1.

Proof. Since ht+1 ∈ H(R0, R1,Ft+1), we can write ht+1 = ∑ℓ cℓ · fℓ, where fℓ ∈ Ft+1 and
∑ℓ |cℓ| ≤ R1. By the splittable mixing lemma, cf., Lemma 5.6, we have∣∣∣⟨ht+1, f ⟩νt+1

− ⟨ht+1, f ⟩νt

∣∣∣ ≤ ∑
ℓ

|cℓ| ·
∣∣∣⟨ fℓ, f ⟩νt+1

− ⟨ fℓ, f ⟩νt

∣∣∣ ≤ τ · R1.

Claim 5.10 ([JST21]). Let W ⊆ [n]k be a τ-splittable collection of tuples. Let t ∈ {0, . . . , k− 2}
and ht+1 ∈ H(R0, R1,Ft+1). Then∣∣∣∥ht+1∥2

νt+1
− ∥ht+1∥2

νt

∣∣∣ ≤ τ · R2
1.

Proof. Since ht+1 ∈ H(R0, R1,Ft+1), we can write ht+1 = ∑ℓ cℓ · fℓ, where fℓ ∈ Ft+1 and
∑ℓ |cℓ| ≤ R1. By the splittable mixing lemma, cf., Lemma 5.6, we have∣∣∣⟨ht+1, ht+1⟩νt+1

− ⟨ht+1, ht+1⟩νt

∣∣∣ ≤ ∑
ℓ,ℓ′
|cℓ| · |cℓ′ | ·

∣∣∣⟨ fℓ, fℓ′⟩νt+1
− ⟨ fℓ, fℓ′⟩νt

∣∣∣ ≤ τ ·R2
1.

A.2 Decoding

To handle the technical requirement of a base code in Ta-Shma’s construction having a
symbol multiplicity property (cf., Definition 7.13), we use the following observation.

Claim A.1 ([JST21]). Let C0 ⊆ Fn
q be an ε0-balanced linear code of dimension D0. Suppose that

C0 is uniquely decodable within (fractional) radius δ0 ∈ (0, 1] in time T0(n). Let m ∈ N and
C ⊆ Fm·n

q be the code formed by replicating m times each codeword from C0, i.e.,

C := {z1 · · · zm ∈ Fm·n
q | z1 = · · · = zm ∈ C0}.

Then, C is an ε0-balanced linear code of dimension D0 that can be uniquely decoded within (frac-
tional) radius δ0 in time m · T0(n) + Õ(m2 · n).

55

Proof. The only non-immediate property is the unique decoding guarantees of C. Given
ỹ ∈ Fm·n

q within δ0 (relative) distance of C. Let βi be the fraction of errors in the ith Fn
q

component ỹ. By assumption Ei∈[m]βi ≤ δ0, so there is at least one of such component
that can be correctly uniquely decoded. We issue unique decoding calls for Co on each
component i ∈ [m]. For each successful decoding say z ∈ C0, we let y = z . . . z ∈ Fm·n

q and
check whether ∆(ỹ, y) ≤ δ0 returning y if this succeeds. Finally, observe that this procedure
indeed takes at most the claimed running time.

56

	Introduction
	Proof Strategy
	Constraint Types and Alphabets
	General CSPs via the Binary Regularity
	Stating the Extended Weak Regularity Framework
	Improved Case: k-LIN over Zq
	Improved Case: k-LIN over a Finite Group G

	Some Definitions and Notation
	Splittable Tuples
	Factors
	Functions and Measures

	Weak Regularity
	Abstract Weak Regularity Lemma
	Existential Weak Regularity Decomposition
	Efficient Weak Regularity Decomposition
	Realizability Brute Force
	Invoking Concrete Matrix Correlation Oracles

	Concrete Correlation Oracles
	Grothendieck Problem over Boolean Variables
	Grothendieck Problem over Primitive Roots of Unity
	Grothendieck Problem over Representations

	Fast Decoding Prime q-ary Codes near the GV Bound
	Preliminaries on Codes
	Near-linear Time Prime q-ary Decoding
	Instantiating the Decoder with a Base Code

	Tuple versus Set Constraints
	Deferred Proofs
	Splittable Mixing Lemmas
	Decoding

