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Abstract

A central and longstanding open problem in coding theory is the rate-versus-distance trade-off
for binary error-correcting codes. In a seminal work, Delsarte introduced a family of linear
programs establishing relaxations on the size of optimum codes. To date, the state-of-the-art
upper bounds for binary codes come from dual feasible solutions to these LPs. Still, these bounds
are exponentially far from the best-known existential constructions.

Recently, hierarchies of linear programs extending and strengthening Delsarte’s original LPs
were introduced for linear codes, which we refer to as higher-order Delsarte LPs. These new
hierarchies were shown to provably converge to the actual value of optimum codes, namely, they
are complete hierarchies. Therefore, understanding them and their dual formulations becomes a
valuable line of investigation. Nonetheless, their higher-order structure poses challenges. In fact,
analysis of all known convex programming hierarchies strengthening Delsarte’s original LPs has
turned out to be exceedingly difficult and essentially nothing is known, stalling progress in the
area since the 1970s.

Our main result is an analysis of the higher-order Delsarte LPs via their dual formulation.
Although quantitatively, our current analysis only matches the best-known upper bounds, it
shows, for the first time, how to tame the complexity of analyzing a hierarchy strengthening
Delsarte’s original LPs. In doing so, we reach a better understanding of the structure of the
hierarchy, which may serve as the foundation for further quantitative improvements. We provide
two additional structural results for this hierarchy. First, we show how to explicitly lift any
feasible dual solution from level k to a (suitable) larger level ℓ while retaining the objective value.
Second, we give a novel proof of completeness using the dual formulation.
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1 Introduction

A central and longstanding open problem in coding theory is the rate-vs-distance tradeoff for
binary error-correcting codes. Roughly speaking, it asks for every δ ∈ (0, 1/2), what is the largest
exponent R2(δ) such that there is a distance δn error-correcting code of size 2R2(δ)n? Despite many
decades of effort, the best upper and lower bounds on the rate R2(δ) are still far apart, implying
that we do not understand the exponential growth rate of optimal binary codes.

Convex programming is not only fundamental to algorithm design but it can also be employed to
study combinatorial and mathematical structures. The best known upper bounds on R2(δ) come from
the analysis of convex programming relaxations. In a seminal work, Delsarte [Del73] showed how to set
up linear program relaxations for the maximum possible size of an error-correcting code. The Delsarte
LPs have unfolded into a far-reaching theory leading, for instance, to the best known upper bounds
on R2(δ) [MRRW77], to breakthroughs in sphere packing [CE03, Via17, CKM+17], and to improved
bounds on packings and codes in other types of geometric spaces [Lev98, Bac06, BV08, BN06].

The success of convex relaxations is sometimes limited by an integrality gap between their
optimum and the true value of the combinatorial problem. For error-correcting codes, it is known that
the value of the Delsarte LP is exponentially far from the Gilbert–Varshamov lower bound [Sam01]. If
the true size of an optimal binary code is actually near the Gilbert–Varshamov bound (as conjectured
by some specialists [JV04, Gop93]), then this family of relaxations needs to be substantially
strengthened.

Given this context, stronger convex relaxations might be imperative to tighten the upper
bounds. In principle, powerful semi-definite programming (SDP) tools such as the Sum-of-Squares
hierarchy [Las15] can be applied to this problem [Lau07]. However, asymptotic analysis of these
SDP-based relaxations remains elusive even for the simplest cases [Sch05], and only numerical results
are known for small constant values of blocklength [GMS12].

To appreciate the difficulty of asymptotically analyzing convex relaxations, recall that the goal is
to construct a feasible dual solution which upper bounds the primal objective value. Typically, this
requires an explicit construction and analysis. This is a different goal from typical uses of convex
programming in algorithm design, where the starting point of the analysis is a solution returned
by a convex programming solver. There, one does not need to know the precise structure of the
optimum but only the property that it is (near) optimum.

Recently, hierarchies of linear programs extending the Delsarte LPs were proposed for the
important case of linear codes [CJJ22, LL23b]. We refer to them informally as “higher-order
Delsarte LPs”. The idea behind them is to strengthen the Delsarte LPs with additional natural
constraints which nonetheless might be simple enough to theoretically analyze. In fact, these
hierarchies were shown to converge to the true size of the code [CJJ22, CJJ23], namely, they are
complete. Besides being LPs instead of SDPs, these hierarchies bear strong similarities with Delsarte
LPs for which we now have various theoretical analyses and a richer set of techniques [MRRW77,
FT05, NS05, BN06, BN08, NS09, Sam23b, LL23a, CDA24].

Constructing dual solutions for the higher-order Delsarte LPs can lead to a breakthrough
in the rate-versus-distance problem. Nonetheless, the higher-order structure of these LPs may
still require substantial effort to be understood and analyzed. In this work, our main goal is to
substantially increase our understanding of the structure of the higher-order Delsarte LP hierarchies
by establishing three new results about their dual formulations.

Before we present our results, we first recall these LPs with an informal and intuitive description
(see Section 2 and Appendix A for more details). The Delsarte LP (used in the first LP bound) has
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a variable intended to count the number of codewords of each Hamming weight. The higher-order
Delsarte LPs form a hierarchy with a level parameter ℓ ∈ N. There is a variable intended to count
the number of ℓ-tuples of codewords with every possible Hamming weight configuration of a subspace
of dimension ℓ. For example, for ℓ = 2, essentially there is a variable for each (a, b, c) ∈ {0, 1, . . . , n}3
which is intended to be the number of pairs of codewords (x, y) such that (|x|, |y|, |x+ y|) = (a, b, c).

1.1 Our Contributions

We show three different ways of constructing dual solutions for the higher-order Delsarte LPs.
First, we show how to lift a solution from any level k to a higher level ℓ. Second, we show how to
construct an explicit solution at a higher level. In contrast with the lift that takes any solution
as a black box, here we must directly understand and tackle the additional complicated structure
imposed by the higher levels. Lastly, by relaxing the constraints, we are able to come up with a dual
solution that shows completeness. We will now elaborate on each of these three new constructions
of higher-order dual solutions.

Motivated by the proven strength of these new hierarchies (their completeness) and our extensive
understanding of the first level of the hierarchy (i.e., Delsarte’s original LPs), a natural question is
how to lift a dual solution from level 1 to an arbitrary level ℓ, i.e., how to explicitly construct a
level ℓ dual solution from a level 1 dual solution while (appropriately) retaining its objective value.
A lift is one way to identify an explicit solution to level ℓ of the hierarchy whose value matches
the Delsarte LP. Therefore, there may be potential to perturb the lifted solution in a direction
which improves the objective value. Besides improving our understanding of how dual solutions are
related to each other across multiple levels of the hierarchy, the additional structure of the dual
at higher levels has the potential of leading to improvements in the objective value (in case the
original Delsarte LPs suffer from integrality gap). We prove a general lifting result from a level k
dual solution to level ℓ assuming that k divides ℓ. More precisely, our first structural result is given
below.

Theorem 1.1 (Lifting Dual Solutions (Informal version of Theorem 4.9)). Given an arbitrary dual
feasible solution of level k, we can explicitly construct a new dual feasible solution of level ℓ ⩾ k
provided k divides ℓ (this can be done over any finite field Fq). Furthermore, this new dual solution
has (appropriately) the same objective value of the given starting solution.

Remark 1.2. Unlike more structured convex programming hierarchies such as the Sum-of-Squares
SDP hierarchy or Sherali-Adams LP hierarchy, establishing a lift for the higher-order Delsarte
dual LPs is not trivial. We also stress that the value of the above theorem lies in its explicitness;
“monotonicity” of the objective value was already established [CJJ22] (using the primal formulation),
and this is not the point of the preceding theorem.

Another natural question is whether we can construct dual feasible solutions for higher levels of
these new hierarchies from scratch. As noted above, there are now a wealth of perspectives and
techniques to construct dual feasible solutions to level 1 (the original Delsarte LPs). For instance,
the original MRRW proof relies on properties of the Krawtchouk polynomials, which form a family
of orthogonal polynomials, whereas some more recent proofs use spectral graph theory and Fourier
analysis. Curiously, these various analyses are largely different perspectives or small variations of a
single construction. Nonetheless, having multiple perspectives can be very helpful, and they can
serve as (seemingly) different starting points for analyzing the hierarchies.
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Although these hierarchies are structurally similar to the original LPs (coinciding at level 1), there
are challenges to be addressed. First, the hierarchy at level ℓ ⩾ 2 inherently relies on multivariate
versions of Krawtchouk polynomials, as opposed to the univariate version of level 1. The asymptotic
behavior of the first root of univariate Krawtchouk polynomials plays a crucial role in the original
analysis, while establishing an analogous property in the multivariate case is less clear. Moreover,
while level 1 is the same regardless of whether a code is linear or not (only the meaning of the
variables changes), higher levels of these hierarchies have new constraints associated with linearity
which pose new challenges.

Our second structural and main result is an explicit construction of dual feasible solutions to
constant levels of the hierarchy for the important class of balanced linear codes1, giving the first
theoretical analysis of a convex programming hierarchy containing Delsarte’s original LP. The main
contribution here is to make sense of the higher-order structure of the hierarchy, suitably generalizing
spectral-based techniques for the Delsarte LP. Obtaining such suitable generalization was met with
substantial challenges (see Section 3) as it may be expected in analyzing any convex programming
hierarchy strengthening Delsarte’s LP since progress in this area has stalled in 1970s. The objective
value of our constructed solutions approximately matches the state-of-the-art MRRW bound up to
lower-order terms in ε. Our main result is stated below.

Theorem 1.3 (Higher-order Dual Solution (Informal version of Corollary 6.11 of Theorem 6.7)). For
every constant level ℓ ∈ N+, there is an explicit construction of dual feasible solutions at level ℓ for
binary ε-balanced linear codes with rate upper bound Rℓ

2(δ), with δ = (1− ε)/2, satisfying

Rℓ
2(δ) = (1 + oε(1)) ·RMRRW

2 (δ),

where RMRRW
2 (δ) is the rate upper bound of the first LP bound of [MRRW77].

The proof of the above theorem establishes a footprint of how to construct higher-order dual
solutions, breaking the ice on the daunting complexity of higher-order convex programs. It may
serve as a technical foundation for further quantitative improvements.

We now give some additional context before describing our third structural result. A feasible
solution of the dual can be seen as a certificate establishing a universal upper bound on the size
of codes. Ideally, the better we understand the structure and nature of these dual certificates, the
better positioned we may be for designing new ones. The higher-order Delsarte hierarchies are
known to converge to the true value of a linear code; however, the known proofs [CJJ22, CJJ23]
are entirely based on the primal version of these hierarchies. It is then natural to ask if we can use
the dual hierarchies to prove completeness. Our third result is a novel completeness proof of these
hierarchies which uses their dual formulations.

Theorem 1.4 (Completeness from the Dual (Informal version of Theorem 5.1)). The dual higher-order
Delsarte LPs obtain the true value of a linear code for any level ℓ ⩾ n and over any finite field Fq.

Remark 1.5. Unlike other more structured convex programming hierarchies, such as the Sum-of-
Squares SDP hierarchy or Sherali-Adams LP hierarchy, (exact) completeness for the higher-order
Delsarte’s LP is not immediate [CJJ22, CJJ23].

A better understanding of completeness from the dual may also help understand the power of
natural LP hierarchies for lattice packings, extending the celebrated Cohn and Elkies LP for sphere

1Recall that, for ε ∈ (0, 1), an ε-balanced linear code is a code in which every non-zero codeword has Hamming
weight in [(1− ε)n/2, (1 + ε)n/2].
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packing [CE03, Via17, CKM+17]. Recall that the Cohn and Elkies LP can be seen as a close analog
of Delsarte’s dual LP designed for sphere packing.

1.2 Organization

First, we recall the higher-order Delsarte LP hierarchies of [CJJ22, LL23b] in Section 2. We
provide several different formulations of the hierarchies which will be used to establish our results
(other equivalent formulations that will not be used in the present work are included in Appendix A
for the curious reader). In Section 3, we give the main technical intuition of the proofs. We
formally prove the lifting in Section 4. The completeness from dual is presented in Section 5. The
spectral-based construction of higher-order dual feasible solutions is given in Section 6. We end
with some concluding remarks in Section 7.

The reader should refer to Appendix B for notation as needed.

2 A Brief Introduction to the Hierarchies

Both hierarchies of [CJJ22, LL23b] can be used to upper bound sizes of linear codes in an
arbitrary set of “valid” linear codes Validn ⊆ LFq(Fn

q ). In the prototypical cases, Validn is the set of
all linear codes of distance at least d, or the set of all ε-balanced codes. Once Validn is fixed, at
level ℓ ∈ N+ the hierarchies make use of the set

Validn,ℓ
def
= {X ∈ Fℓ×n

q | span({X1, . . . , Xℓ}) ∈ Validn}.

The easiest way of stating the hierarchy of [CJJ22] at level ℓ is as the Lovász ϑ′ of the graph
Gn,ℓ over the vertex set Fℓ×n

q in which X,Y ∈ Fℓ×n
q are adjacent exactly when X − Y /∈ Validn,ℓ. If

C ∈ Validn, then the set {X ∈ Fℓ×n
q | X1, . . . , Xℓ ∈ C} is an independent set in Gn,ℓ of size exactly

|C|ℓ, which is upper bounded by ϑ′(Gn,ℓ), giving us the first formulation of the hierarchy of (34)
(which is deferred to Appendix A.1 as it will not be used in the present paper).

It turns out that the SDP arising in the Lovász ϑ′ function can be explicitly diagonalized, leading
to a linear program. By noting that there is a natural “global translation” action of Fn

q on the space

Fℓ×n
q given by

(z ·X)jk
def
= Xjk + zk (X ∈ Fℓ×n

q , z ∈ Fn
q , j ∈ [ℓ], k ∈ [n]),

and that the program (34) of ϑ′(Gn,ℓ) is Fn
q -symmetric, every feasible solution can be symmetrized

under this action without violating its feasibility or changing its value. Furthermore, Fn
q -symmetric

solutions are simultaneously diagonalizable and the positive semidefinite constraint is then encoded
by the Fourier transform (see Appendix A.2 for more details) given by

f̂(X)
def
= ⟨f, χX⟩ = 1

qnℓ

∑
X∈Fℓ×n

q

f(X)χZ(X) (f ∈ CFℓ×n
q , X ∈ Fℓ×n

q ),

χZ(X)
def
= exp

∑
j∈[ℓ]

∑
k∈[n]

2πiXjkZjk

q

 (X ∈ Fℓ×n
q ).
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This yields the linear program (1) below, whose dual is (2) and that first appeared in [CJJ22].

A linear code C ∈ Validn yields a natural solution fC of (1) given by fC(X)
def
= 1[X1, . . . , Xℓ ∈ C],

whose value is |C|ℓ. Note that when q is a power of 2, due to X = −X, the symmetry constraints in
the primal are automatically enforced and we can therefore remove β from the dual.

Variables: f : Fℓ×n
q → R

max
∑

X∈Fℓ×n
q

f(X)

s.t. f(0) = 1 (Normalization)

f(X) = 0 ∀X ∈ Fℓ×n
q \Validn,ℓ (Validity)

f̂(X) ⩾ 0 ∀X ∈ Fℓ×n
q (Fourier)

f(X) ⩾ 0 ∀X ∈ Fℓ×n
q (Non-negativity)

f(X) = f(−X) ∀X ∈ Fℓ×n
q (Symmetry)

(1)

Variables: g : Fℓ×n
q → R, β : Fℓ×n

q → R
min g(0)

s.t. ĝ(0) = 1 (Normalization)

g(X) + β(X)− β(−X) ⩽ 0 ∀X ∈ Validn,ℓ \{0} (Validity)

ĝ(X) ⩾ 0 ∀X ∈ Fℓ×n
q (Non-negativity)

(2)

Next, one observes that there is a natural “label permutation” action of Sn on Fℓ×n
q given by

(σ ·X)ij
def
= Xiσ(j) (X ∈ Fℓ×n

q , σ ∈ Sn, i ∈ [ℓ], j ∈ [n]).

It is easy to see that if Validn is Sn-symmetric under the natural action of Sn on Fn
q , then so are

Validn,ℓ and (1) under the Sn-action above. This allows us to further symmetrize the program
to obtain the formulation in (36) in which the Fourier transform is encoded using multivariate
Krawtchouk polynomials (see Appendix A.3).

Finally, we introduce the Partial Fourier Hierarchy of [LL23b]. This hierarchy follows from the

observation that the natural solutions fC(X)
def
= 1[X1, . . . , Xℓ ∈ C] to (1) not only have non-negative

Fourier transforms, but in fact have non-negative “partial Fourier transforms” defined as follows.
First, we note that GLℓ(Fq) also acts on Fℓ×n

q by left-multiplication, which in turn induces a

right-action of GLℓ(Fq) on the set of functions Fℓ×n
q → C given by (f ·M)(X)

def
= f(M ·X). Then

for X,Y ∈ Fℓ×n
q , k ∈ {0, 1, . . . , n} and M ∈ GLℓ(Fq), we let

χ
(k)
Y (X)

def
= q(ℓ−k)n ·

 k∏
j=1

χYj (Xj)

 ·

 n∏
j=k+1

1Yj (Xj)

 , χk,M
Y (X)

def
= χ

(k)
M−1·Y (M

−1 ·X),

where χy(x)
def
= exp(

∑
j∈[n] 2πiyjxj/q) is the usual character and we let

Fk(f)(X)
def
= ⟨f, χ(k)

X ⟩ = 1

qℓn
·
∑

Z∈Fℓ×n
q

f(Z) · χ(k)
X (Z), Fk,M (f)(X)

def
= ⟨f, χk,M

X ⟩,
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for every f : Fℓ×n
q → C. A straightforward calculation then yields

Fk,M (f) = Fk(f ·M) ·M−1, F−1
k,M (f) = qkn · Fk,M (f) ·Rk, (3)

where Rk is the diagonal matrix whose diagonal consists of k entries −1 followed by ℓ− k entries 1.

Noting that for every C ∈ LFq(Fn
q ) the function fC(X)

def
= 1[X1, . . . , Xℓ ∈ C] satisfies Fk,M (fC) ⩾

0 (k ∈ [ℓ], M ∈ GLℓ(Fq)), it follows that we can add further constraints to (1) to obtain a stronger
hierarchy,2 called the partial Fourier hierarchy [LL23b], formulated in (4) and whose rather technical
dual (7) is deferred to Section 4. We will show in Lemma 4.2 that the dual of (4) is further equivalent
to the simpler (5) below.

Variables: f : Fℓ×n
q → R

max
∑

X∈Fℓ×n
q

f(X)

s.t. f(0) = 1 (Normalization)

f(X) = 0 ∀X ∈ Fℓ×n
q \Validn,ℓ (Validity)

Fk,M (f)(X) ⩾ 0 ∀X ∈ Fℓ×n
q ,∀k ∈ [ℓ],∀M ∈ GLℓ(Fq) (Partial Fourier)

f(X) ⩾ 0 ∀X ∈ Fℓ×n
q (Non-negativity)

f(X) = f(−X) ∀X ∈ Fℓ×n
q (Symmetry)

(4)

Variables: gk : Fℓ×n
q → R (k ∈ [ℓ])

min 1 +
∑
k∈[ℓ]

gk(0)

s.t. 1 +
1

|GLℓ(Fq)|
·

∑
k∈[ℓ]

M∈GLℓ(Fq)

(gk ·M)(X) ⩽ 0 ∀X ∈ Validn,ℓ \{0} (Validity)

Fk(gk) ⩾ 0 ∀k ∈ [ℓ] (Partial Fourier)

(5)

3 Technical Overview of the Proofs

The purpose of this section is to highlight the main ideas of the proofs and provide intuition, in
preparation for the full results. For simplicity, we restrict ourselves here to q = 2.

3.1 Lifting Dual Solutions

A lift transforms a level-k solution of value V into a level-ℓ solution, with objective value V ℓ/k.
The scaling is correct, since solutions in the hierarchy’s ℓ-th level provide an upper-bound on |C|ℓ
for C ∈ Validn. In our approach we construct functions f (1), f (2), . . . , f (ℓ/k) that satisfy increasingly
more constraints, and terminate with a feasible solution f (ℓ/k).

2In fact, [LL23b] only includes partial Fouriers with M = I, but explicitly requires solutions to be GLℓ(Fq)-
symmetric; here we opt for this formulation which can be shown to be equivalent straightforwardly.
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Here we illustrate our method with the LP (2) over F2. In Section 4, the lifts are developed in
full for the stronger LP (5) over general finite fields, Fq.

We start with a lift from level 1. Let h′ : Fn
2 → R be a feasible solution for level 1 of the dual

hierarchy (2). It will be more convenient to work with h
def
= h′ − 1. Observe that

ĥ ⩾ 0, ĥ(0) = 0, ∀x ∈ Validn,1 \{0}, h(x) ⩽ −1,

To lift h to level ℓ we start by defining

f (1)(X)
def
= h(X1) ∀X = (X1, . . . , Xℓ) ∈ Fℓ×n

2 .

Namely, we ignore all of the rows of X except for the first.
The Fourier transform of f (1) is non-negative, since ĥ ⩾ 0. Also, f̂ (1)(0) = 0. These two

properties persist throughout the process, for f (2), f (3), . . . etc.
The validity constraints are only satisfied if X1 ∈ Validn,1 \{0}: otherwise, f (1)(X) = h(0),

which not only is positive but in fact exponentially large. To handle the case X ∈ Validn,ℓ with
X1 = 0, we define

f (2)(X)
def
= f (1)(X) + (1 + h(0)) · h(X2) · 1[X1 = 0]

Observe that f (2) only differs from f (1) when X1 = 0. The validity constraints now hold if
(X1, X2) ∈ Validn,2, but not when X1 = X2 = 0.

We continue by defining, for t = 3, . . . , ℓ,

f (t)(X)
def
= f (t−1)(X) + (1 + h(0))t−1 · h(Xt) · 1[X1,...,t−1 = 0]

It is not hard to verify that f (t) satisfies3

f̂ (t) ⩾ 0, f̂ (t)(0) = 0,

f (t)(X) ⩽ −1 ∀X ∈ Fℓ×n
q with X1,...,t ∈ Validn,t \{0}

f (t)(X) = (1 + h(0))t − 1 ∀X ∈ Fℓ×n
q with X1,...,t = 0.

Thus, the function f
def
= f (ℓ)+1 is a feasible solution and f(0) = (1+h(0))ℓ = h′(0)ℓ. This concludes

the lift from level 1 to level ℓ in the LP (2).
The lift from level k to level ℓ proceeds similarly, except that we advance in chunks of k rows

per step. Suppose we have a level-k feasible solution to the hierarchy (2), h′ : Fk×n
2 → R, and let

h
def
= h′ − 1. We define

f (0)
def
= 0

f (t)
def
= f (t−1) + (1 + h(0))t−1 · h(Xk·(t−1)+1,...,k·t) · 1[X1,...,k·(t−1)] (t ∈ [ℓ/k]).

Then, similar arguments show that f
def
= f (ℓ/k)+1 is feasible for level ℓ, and its value is f(0) = h′(0)ℓ/k.

Our strategy remains unchanged as we move to the stronger LP (5). However, the symmetry
operation in the validity constraints calls for a slight change in the argument. Rather than arguing

3In fact, there holds, moreover: f (t)(X) ⩽ −1 for every X such that X1,...,t ̸= 0 and {X1, . . . , Xt} ⊂ Validn,1.
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in terms of the number of zero rows in X, we now account by X’s rank. Let h1, . . . , hk be a feasible
solution to level k, that is

Fi(hi) ⩾ 0 ∀i ∈ [k],

1 +
k∑

i=1

EM∼U(GLℓ(Fq))[hi(M ·X)] ⩽ 0 ∀X ∈ Validn,k \{0},

where U(GLℓ(Fq)) is the uniform distribution on GLℓ(Fq) and the value of (h1, . . . , hk) is Vh
def
=

1 +
∑

i∈[k] hi(0).
We would like to put the information of this level-k solution in the top k levels of a level-ℓ solution

g, that is, we would like to put the information h1, . . . , hk into gℓ−k+1, . . . , gℓ, respectively; we will

then set g1
def
= · · · def

= gℓ−k
def
= 0. Furthermore, this needs to be organized so that the constraints

Fi(gi) ⩾ 0 follow directly from the constraints Fi(hi) ⩾ 0. To do so, the solution is slightly permuted
around when compared to the previous cases.

For each i ∈ [k], we define a sequence of functions f
(1)
i , f

(2)
i , . . . , f

(ℓ/k)
i as follows:

f
(0)
i

def
= 0, f

(t)
i

def
= f

(t−1)
i + V t−1

h · hi(Xℓ−k+1,...,ℓ) · 1[X1,...,kt = 0] (t ∈ [ℓ/k]).

We will then argue that for every t ∈ [ℓ/k], we have

Fℓ−k+i(f
(t)
i ) ⩾ 0 ∀i ∈ [k],

1 +

k∑
i=1

EM∼U(GLℓ(Fq))[f
(t)
i (M ·X)] ⩽ 0 ∀X ∈ Validn,ℓ \{0} with rk(X) ⩾ ℓ− t · k.

Consequently, letting gi
def
= 0 for eveery i ∈ [ℓ − k] and gi

def
= f

(ℓ/k)
i−ℓ+k for ℓ − k + 1 ⩽ i ⩽ ℓ, we

obtain a feasible solution whose value is V
ℓ/k
h .

3.2 Spectral-based Construction of Dual Solutions

We describe now how we use spectral techniques to construct dual solutions for the hierarchy.
We start with an abstract description of the idea, then move to its realization in Delsarte’s case, and
finally to the way that we implement it in higher levels of the hierarchy. Throughout this section,
we refer only to the LP hierarchy (2) over F2, of which level 1 is Delsarte’s LP.

We begin with the abstract construction, which is mostly inspired by [NS05], and presented
with more detail in [LL22, Sam23a]. Although this abstract construction is relatively intuitive, fully
implementing it for the higher-order hierarchy is far from trivial as the reader will see in this paper.
One can form a feasible f : Fℓ×n

2 → R by defining

f(X)
def
=
ϕ(X) · Γ2(X)

ϕ̂ · Γ2(0)
,

where ϕ,Γ: Fℓ×n
2 → R are not identically zero, and satisfy

∀X ∈ Validn,ℓ \{0}, ϕ(X) ⩽ 0, Γ̂ ⩾ 0, 2nℓϕ̂ ∗ Γ̂ ⩾ Γ̂.
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The sign of f is governed by ϕ, hence it fulfills the validity constraints. The Fourier constraints are met,
because, by the convolution theorem, f̂ is up to positive constants equal to ϕ̂ ∗ Γ̂ ∗ Γ̂ ⩾ 2−nℓΓ̂ ∗ Γ̂ ⩾ 0.
An upper bound on the objective function is derived using Cauchy-Schwarz as follows

f(0) ⩽ 2nℓϕ(0) · Γ2(0)

(Γ̂ ∗ Γ̂)(0)
= 2nℓϕ(0) · ∥Γ̂∥

2
1

∥Γ̂∥22

C.S
⩽ ϕ(0) · |supp(Γ̂)|.

One usually fixes ϕ as a low-degree polynomial, and seeks a feasible Γ so that |supp(Γ̂)| is minimal.
The operator “2nℓϕ̂ ∗ −” of convolution by ϕ̂ (up to renormalization) can be represented by a

matrix which we denote Mϕ ∈ RFℓ×n
2 ×Fℓ×n

2 , that is, we have

Mϕh = 2nℓϕ̂ ∗ h, (h : Fℓ×n
2 → R).

Thus, finding Γ becomes a spectral problem.
When ℓ = 1 and working with distance-d codes, ϕ can be as simple as the linear function

ϕMRRW(x) = 2(d − |x|), which is usually the case. The corresponding matrix is MϕMRRW
=

A− (n−2d)I, where A is the adjacency matrix of the Hamming graph, A(x, y) = 1[|x− y| = 1]. The
problem of finding an appropriate Γ is well explored. It can be done through different techniques,
e.g., specific properties of Krawtchouk Polynomials [MRRW77], Perron-Frobenius Theorem [BN06],
or by taking advantage of the fact that the matrix A is highly symmetric [NS05].

As ℓ grows, however, the set Validn,ℓ becomes increasingly complicated and cannot be captured
or closely approximated by a linear function. Constructing a satisfactory ϕ is a problem in itself,
which was first addressed in [LL22]. Finding a complementary Γ was left by the authors of [LL22]
as an open problem. The methods used to find Γ in Delsarte’s case ℓ = 1 are inapplicable here
due to the high-dimensionality of the problem, and the complicated structure of the corresponding
matrix Mϕ.

In the current work we solve this open problem for a variation of the suggested polynomial ϕ,
which is valid for ε-balanced linear codes. The polynomial, denoted Φm, is defined in (20) and its
necessary properties are established in Lemma 6.5. We find an appropriate Γ for Φm which leads to
a feasible solution whose value is equivalent to MRRW, up to lower order terms.

Our strategy is as follows. First, we show (Lemma 6.6) that the matrix Mm, which corresponds
to the operator “2nℓΦ̂m ∗ −”, is a sum of terms of the form∏

u∈U

∑
v∈Fℓ

2
⟨u,v⟩=1

Am
v

 ·

1

k
·
∑
v∈Fℓ

2
⟨i,v⟩=1

Am
v − 2ℓ−1(εn)m

2ℓ − k


with non-negative coefficients. Here,

• Av, for every v ∈ Fℓ
2 \ {0}, is the adjacency matrix of a graph over the vertex set Fℓ×n

2 , where
X,Y are adjacent if X is obtained from Y by adding v to one of its columns.

• m ∈ N is even,

• 1 ⩽ k ⩽ 2ℓ − 1,

• i ∈ Fℓ
2 \ {0},
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• U ⊆ Fℓ
2 \ {0}.

Noting that for every i ∈ Fℓ
2 \ {0}, there exists at least one v ∈ Fℓ

2 with ⟨i, v⟩ = 1 and |v| = 1, a

sufficient condition for Mm · Γ̂ ⩾ Γ̂ is that

Am
v Γ̂ ⩾ (22ℓ−1εmnm + 1)Γ̂ (6)

for every v ∈ Fℓ
2 with |v| = 1 .

Solving for each Av individually is analogous to the ℓ = 1 case. It is less clear, however, how the
above methods can be employed to solve jointly for all Av. To this end we use the combinatorial
argument of [LL23a], as follows. Let F ⊆ Fℓ×n

2 and let Γ̂(X) = 1[X ∈ F ]. Consider the inequalities
in (6): if X ∈ Fℓ×n

2 \F , the right-hand side is zero, while the left-hand side is non-negative. Otherwise,
X ∈ F and the left-hand side is the number of walks on the graph of Av, of length m, that start at
X and end in F .

It remains to choose a set F with minimal size and at least 22ℓ−1εmnm + 1 many returning
walks. The symmetry of the problem suggests to seek F among the configuration sets, i.e., the
orbits of Fℓ×n

2 with respect to the Sn-action. In Lemmas 6.3 and 6.4, we count the returning walks
for configurations. In Section 6.3, we choose configurations that lead to the desired result.

3.3 Completeness via Subspace Symmetric Dual LPs

We now provide an overview of some ingredients and ideas in the completeness proof from Sec-
tion 5. As mentioned above, this new proof will take place in the dual formulation of these
hierarchies, as opposed to the proof of [CJJ23], which takes place entirely in their primal formulation.
Consequently, this new proof will be useful in shedding new light on the structure of the dual.

Recall that our goal is to prove that the hierarchy (2) is exactly complete at level n: its optimum
is the maximum |C|ℓ for C ∈ Validn, for every ℓ ⩾ n. Note that this will imply the same for the
stronger partial Fourier hierarchy of [LL23b] (see (4), (5) and (7)). Our starting point will be the
subspace symmetric formulation of these hierarchies from [CJJ23]. We recall this formulation later,
in (12), and provide its dual in (13), but we will not need their precise details in this high-level
overview.

The proof proceeds as follows. If the hierarchy is indeed complete at level ℓ, then there exists a

dual solution whose value is qkℓ, where k
def
= max{dimFq(C) | C ∈ Validn}. However, constructing

such a solution directly seems extremely hard. Instead, we consider a weaker hierarchy, by replacing
the set Validn, which depends on the code’s distance, with the set Validdim⩽k

n , which includes all
linear codes of dimension at most k. We observe that

Validn ⊆ Validdim⩽k
n , max{|C| | C ∈ Validn} = max{|C| | C ∈ Validdim⩽k

n }

We then proceed to analyze this weaker hierarchy since it suffices to prove its completeness to deduce
that the original hierarchy is also complete. A key observation is that to obtain the desired tight
objective value qkℓ several LP variables are forced to be zero. This will simplify the structure of the
dual, leading to a recurrence relating the value of the remaining variables.

4 Lifting Dual Solutions

In this section we show that dual solutions lift. That is, from a solution h at a level k of value

Vh, we can construct a natural solution at any level ℓ divisible by k with value V
ℓ/k
h . Let us point
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out that in terms of values, it was already known from [CJJ22, Corollary 6.6] that the value of the
hierarchy (1) at level ℓ was at most the ℓ/kth power of its value at level k (provided k divides ℓ);
the main contribution of this section is an explicit lift of dual solutions and the analogous result for
the partial Fourier hierarchy (4), which does not immediately follow from the results of [CJJ22].

4.1 Further Symmetrization of the Dual

Our first order of business is to use the GLℓ(Fq)-symmetry to simplify the dual program. We
start by recalling that the standard dual of the partial Fourier hierarchy of (4) is (7) below.

Variables: hk,M : Fℓ×n
q → R (k ∈ [ℓ],M ∈ GLℓ(Fq), β : Fℓ×n

q → R

min 1 +
∑
k∈[ℓ]

M∈GLℓ(Fq)

Fk,M (hk,M )(0)

s.t. 1 +
∑
k∈[ℓ]

M∈GLℓ(Fq)

Fk,M (hk,M )(X) + β(X)− β(−X) ⩽ 0 ∀X ∈ Validn,ℓ \{0} (Validity)

hk,M (X) ⩾ 0 ∀X ∈ Fℓ×n
q ,∀k ∈ [ℓ],∀M ∈ GLℓ(Fq) (Non-negativity)

(7)

Remark 4.1. It will also be useful to think of hierarchy (2) as a special case of (7) above. For this, note

that every solution of (2) yields a solution of (7) with the same value by setting hℓ,I
def
= 2nℓ(ĝ − 10)

and setting all other hk,M to zero. Conversely, if ((hk,M )k,M , β) is a solution of (7) such that
hk,M = 0 whenever (k,M) ̸= (ℓ, I), then we can obtain a solution of (2) of better or equal value

by taking g
def
= (1 + ĥℓ,I)/(1 + 2nℓhℓ,I(0)). Thus, hierarchy (2) is equivalent to (7) with the extra

constraints that hk,M = 0 whenever (k,M) ̸= (ℓ, I).

We will now symmetrize (7) and pass to the Fourier basis, proving that it is equivalent to (5).

Lemma 4.2. If ((hk,M )k,M , β) is a solution of (7), then letting

gk
def
=

∑
M∈GLℓ(Fq)

Fk,M (hk,M ) ·M (k ∈ [ℓ])

yields a solution of (5) with the same value.
Conversely, if (gk)k is a solution of (5), then letting

hk,M
def
=

qkn

|GLℓ(Fq)|
· Fk,M (gk ·M) (k ∈ [ℓ],M ∈ GLℓ(Fq)),

β
def
= 0,

yields a solution of (7) with the same value.
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Proof. For the first direction, note that for X ∈ Validn,ℓ (zero or not), we have

1 +
1

|GLℓ(Fq)|
·

∑
k∈[ℓ]

M∈GLℓ(Fq)

(gk ·M)(X)

= 1 +
1

|GLℓ(Fq)|
·
∑
k∈[ℓ]

∑
M,N∈GLℓ(Fq)

(Fk,N (hk,N ) · (N ·M))(X)

=
1

|GLℓ(Fq)|
·

∑
M∈GLℓ(Fq)

1 +
∑
k∈[ℓ]

∑
N∈GLℓ(Fq)

Fk,N (hk,N )(M ·X) + β(M ·X)− β(−M ·X)

 ,

where the last equality follows by a change of variables and since the β contributions cancel out
when we sum over M .

Since Validn,ℓ is GLℓ(Fq)-invariant, if X ̸= 0, then the above is simply an average of the left-hand
side of the validity constraints in (7), so it must be non-positive.

On the other hand, if X = 0, then the first expression in the above is the objective value of (5)
and the last expression is the objective of (7) (as both the average over M goes away and the β
contributions cancel out since M · 0 = 0).

Finally, note that by (3), we have

Fk(gk) =
∑

M∈GLℓ(Fq)

Fk(Fk,M (hk,M ) ·M)

=
∑

M∈GLℓ(Fq)

Fk,M (Fk,M (hk,M )) ·M

= q−kn ·
∑

M∈GLℓ(Fq)

hk,M ·R−1
k ·M.

Since hk,M ⩾ 0 for every M ∈ GLℓ(Fq), we conclude that Fk(gk) ⩾ 0.

We now prove the converse. Note that for X ∈ Validn,ℓ (zero or not), we have

1 +
∑
k∈[ℓ]

M∈GLℓ(Fq)

Fk,M (hk,M )(X) + β(X)− β(−X)

= 1 +
∑
k∈[ℓ]

M∈GLℓ(Fq)

qkn

|GLℓ(Fq)|
· Fk,M (Fk,M (gk ·M))(X)

= 1 +
1

|GLℓ(Fq)|
·

∑
k∈[ℓ]

M∈GLℓ(Fq)

(gk ·M ·R−1
k )(X),

where the second equality follows from (3).
Since Validn,ℓ is GLℓ(Fq)-invariant, if X ̸= 0, then the above is non-positive as it is the left-hand

side of a validity constraint in (5).
On the other hand, if X = 0, then the first expression in the above is the objective value of (7)

(as the β contributions cancel out) and the last expression is the objective value of (5) (as the
average over M goes away in the latter since M ·R−1

k · 0 = 0).
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Finally, note that (3) implies

hk,M =
qkn

|GLℓ(Fq)|
· Fk,M (gk ·M−1) =

1

|GLℓ(Fq)|
· Fk(gk) ·M−1.

Since Fk(gk) ⩾ 0, we conclude that hk,M ⩾ 0. ■

Remark 4.3. Recalling from Remark 4.1 that hierarchy (2) is equivalent to (7) with the extra
constraints that hk,M = 0 whenever (k,M) ̸= (ℓ, I), an analogue of Lemma 4.2 shows that the dual
above is equivalent to (5) with the extra constraints that gk = 0 for every k ∈ [ℓ− 1].

4.2 Basic Properties

We now prove some basic combinatorial properties about matrices over Fq.

Lemma 4.4. For a prime power q and ℓ ∈ N, the group

GLℓ(Fq)
def
= {M ∈ Fℓ×ℓ

q | det(M) ̸= 0}

has size exactly

(q − 1)ℓ · q(
ℓ
2) · ℓ!q

Proof. By iteratively counting how many columns preserve linear independence, we get

|GLℓ(Fq)| =
ℓ−1∏
j=0

(qℓ − qj) = (q − 1)ℓ · q(
ℓ
2) ·

ℓ−1∏
j=0

[ℓ− j]q = (q − 1)ℓ · q(
ℓ
2) · ℓ!q. ■

Definition 4.5. Let q be a prime power, let s, t, ℓ, n ∈ N with s ⩽ t ⩽ ℓ ⩽ n and let X ∈ Fℓ×n
q . We

define

M s,t
q (X)

def
= {M ∈ GLℓ(Fq) | (M ·X)1,...,s = 0 ∧ (M ·X)t+1,...,ℓ = 0}.

When t = ℓ, we will use the shorthand notation M s
q (X)

def
= M s,ℓ

q (X).
Furthermore, we define the marginal action of GLs(Fq) on GLℓ(Fq) by

N ·M def
=

(
N 0
0 I

)
·M (N ∈ GLs(Fq),M ∈ GLℓ(Fq))

(on the right-hand side, the identity matrix is of order ℓ− s and the product is the usual matrix
product).

Lemma 4.6. Let q be a prime power, let s, t, ℓ, n ∈ N with s ⩽ t ⩽ ℓ ⩽ n and let X ∈ Fℓ×n
q . Then

the following hold.

i. The sets M0,t
q (X) and M s,t

q (X) are GLs(Fq)-invariant.

ii. If M is picked uniformly at random in M0,t
q (X), then the distribution of (M · X)1,...,s is

GLs(Fq)-invariant.
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iii. For z = s+ ℓ− t and r
def
= rk(X), we have

|M s,t
q (X)| = |M z

q (X)| = (q − 1)ℓ · q(
ℓ
2) · (ℓ− z)r,q · (ℓ− r)!q.

Proof. Item (i) follows since for every N ∈ GLs(Fq) and every M ∈ GLℓ(Fq), we have((
N 0
0 I

)
·M ·X

)
1,...,s

= 0 ⇐⇒ (M ·X)1,...,s = 0,((
N 0
0 I

)
·M ·X

)
t+1,...,ℓ

= 0 ⇐⇒ (M ·X)t+1,...,ℓ = 0.

For Item (ii), note that the distribution of M is GLs(Fq)-invariant. Thus, for every N ∈ GLs(Fq),
we have

N · (M ·X)1,...,s =

((
N 0
0 I

)
·M ·X

)
1,...,s

∼ (M ·X)1,...,s.

It remains to prove Item (iii).
The fact that |M s,t

q (X)| = |M z
q (X)| follows since there is a natural bijection between these sets

obtained by permuting rows s+ 1, . . . , z with rows t+ 1, . . . , ℓ.
Let us then compute the size of M z

q (X). First note that for every N ∈ GLℓ(Fq), we have

M z
q (N ·X) = {M ·N−1 |M ∈M z

q (X)},

so it suffices to show only the case when

X1 = e1, X2 = e2, . . . , Xz = ez, Xz+1 = 0, Xz+2 = 0, . . . , Xℓ = 0,

where ei ∈ Fn
q is the ith canonical basis vector.

By decomposing an element M ∈M z
q (X) into blocks as

M =

(
A B
C D

)
such that A ∈ Fz×r

q , B ∈ Fz×(n−r)
q , C ∈ F(ℓ−z)×r

q and D ∈ F(ℓ−z)×(n−r)
q , we note that we must have

A = 0, so we can count the elements of M z
q (X) by iteratively counting how many columns preserve

linear independence to get

|M z
q (X)| =

r−1∏
j=0

(qℓ−z − qj)

 ·
ℓ−1∏
j=r

(qℓ − qj) = (q − 1)ℓ · q(
ℓ
2) · (ℓ− z)r,q · (ℓ− r)!q,

as desired. ■
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4.3 The Lifts

We now have all the ingredients to lift dual solutions. We start with a warm-up by lifting
solutions from level 1 to level ℓ. The bold reader should feel free to skip directly to Theorem 4.9.

Proposition 4.7. Let q be a prime power. If h is a solution of (5) with ℓ = 1, then for every ℓ ∈ [n],
letting

g1
def
= g2

def
= · · · def= gℓ−1

def
= 0, gℓ(X)

def
=
∑
t∈[ℓ]

(1 + h(0))ℓ−t · h(X1) · 1[Xt+1,...,ℓ = 0]

gives a solution of (5) whose objective value is the ℓth power of the objective value of h, i.e., we have

1 +
∑
u∈[ℓ]

gu(0) = (1 + h(0))ℓ.

Proof. Clearly Fu(gu) = 0 for every u ∈ [ℓ− 1]. Also, for every X ∈ Fℓ×n
q , we have

Fℓ(gℓ)(X) =
∑
t∈[ℓ]

(1 + h(0))ℓ−t · ĥ(X1) · 1[X2,...,t = 0] · 2−n(ℓ−t),

which is non-negative as ĥ = F1(h) ⩾ 0.

Let us now show the validity constraints. Let X ∈ Valid \{0} and let r
def
= rk(X). We need to

show that

1 +
1

|GLℓ(Fq)|
·
∑
u∈[ℓ]

∑
M∈GLℓ(Fq)

(gu ·M)(X) ⩽ 0,

which is equivalent to∑
t∈[ℓ]

(1 + h(0))ℓ−t · 1

|GLℓ(Fq)|
·

∑
M∈GLℓ(Fq)

h((M ·X)1) · 1[(M ·X)t+1,...,ℓ = 0] ⩽ −1,

which in turn is equivalent to∑
t∈[ℓ]

(1 + h(0))ℓ−t · EM∼U(GLℓ(Fq))[h((M ·X)1) · 1[(M ·X)t+1,...,ℓ = 0]] ⩽ −1, (8)

where U(GLℓ(Fq)) is the uniform distribution on GLℓ(Fq).
To prove the above, fix t ∈ [ℓ] and let us study the expression h((M ·X)1) ·1[(M ·X)t+1,...,ℓ = 0].
First, recalling Definition 4.5, we partition GLℓ(Fq) into the sets

M1,t
q (X), M0,t

q (X) \M1,t
q (X), GLℓ(Fq) \M0,t

q (X),

which by Lemmas 4.4 and 4.6 have sizes

(q − 1)ℓ · q(
ℓ
2) · (t− 1)r,q · (ℓ− r)!q,

(q − 1)ℓ · q(
ℓ
2) · ((t)r,q − (t− 1)r,q) · (ℓ− r)!q,

(q − 1)ℓ · q(
ℓ
2) · ((ℓ)r,q − (t)r,q) · (ℓ− r)!q,

(9)
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respectively.
Note that 1[(M ·X)t+1,...,ℓ = 0] only takes non-zero values when M is in one of the first two

sets.
Clearly, if we condition on M ∈M1,t

q (X), then (M ·X)1 = 0.
On the other hand, by Items (i) and (ii) of Lemma 4.6, we know that the conditional distribution

of (M ·X)1 given M ∈M0,t
q (X) \M1,t

q (X) is GL1(Fq)-invariant. In particular, this implies that
if N ∼ U(GL1(Fq)) is independent from M , then the conditional distributions of (M ·X)1 and

N · (M · X)1 given M ∈ M0,t
q (X) \M1,t

q (X) are the same. Finally, since X ∈ Valid \{0}, we
know that when we condition on M ∈M0,t

q (X) \M1,t
q (X), then (M ·X)1 is always an element of

Valid \{0}. Thus we conclude that

EM [h((M ·X)1) · 1[(M ·X)t+1,...,ℓ = 0] |M ∈M1,t
q (X)] = h(0),

EM [h((M ·X)1) · 1[(M ·X)t+1,...,ℓ = 0] |M ∈M0,t
q (X) \M1,t

q (X)]

= EM [EN [h(N · (M ·X)1)] |M ∈M0,t
q (X) \M1,t

q (X)] ⩽ −1,

EM [h((M ·X)1) · 1[(M ·X)t+1,...,ℓ = 0] |M ∈ GLℓ(Fq) \M0,t
q (X)] = 0,

where the inequality follows from the validity constraints for h.
Thus, we get

EM∼U(GLℓ(Fq))[(M ·X)1 · 1[(M ·X)t+1,...,ℓ = 0]] ⩽
|M1,t

q (X)| · h(0)− |M0,t
q (X) \M1,t

q (X)|
|GLℓ(Fq)|·

=
(t− 1)r,q · (1 + h(0))− (t)r,q

(ℓ)r,q
,

where the equality follows from Lemma 4.4 and (9).
Recalling that our goal is to show (8), we note that∑

t∈[ℓ]

(1 + h(0))ℓ−t · EM∼U(GLℓ(Fq))[(M ·X)1 · 1[(M ·X)t+1,...,ℓ = 0]]

⩽
1

(ℓ)r,q

∑
t∈[ℓ]

(1 + h(0))ℓ−t · ((t− 1)r,q · (1 + h(0))− (t)r,q)

=
(1 + h(0))ℓ · (0)r,q − (ℓ)r,q

(ℓ)r,q
= −1,

where the first equality follows since the sum telescopes. Thus, g is a feasible solution.
It remains to compute the value of g. Note that

1 +
∑
u∈[ℓ]

gu(0) = 1 +
∑
t∈[ℓ]

(1 + h(0))ℓ−t · h(0)

= 1 +
∑
t∈[ℓ]

(1 + h(0))ℓ−t · ((1 + h(0))− 1) = (1 + h(0))ℓ,

where the last equality follows since the sum telescopes. ■

Remark 4.8. Note that since the lift in Proposition 4.7 sets all gu with u < ℓ to 0, it follows that
this is also a lift of the dual of the full Fourier hierarchy (see Remark 4.3).
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We now prove the more general lift from level k to level ℓ under the assumption that k divides ℓ.
We point out that when we take k = 1 in Theorem 4.9 below, we recover Proposition 4.7, except for
the fact that the constructed solution has coordinates slightly permuted so that it is appropriately
compatible with the partial Fourier.

Theorem 4.9. Let q be a prime power and k ∈ N+. If h is a solution of (5) with ℓ = k and objective

value Vh
def
= 1 +

∑
u∈[k] hu(0), then for every ℓ ∈ [n] divisible by k, letting

gu(X)
def
=


0, if u ⩽ ℓ− k,

ℓ/k−1∑
t=0

V t
h · hu−ℓ+k(Xℓ−k+1,...,ℓ) · 1[X1,...,kt = 0], otherwise,

gives a solution of (5) whose objective value is the (ℓ/k)th power of the objective value of h, i.e., we
have

1 +
∑
u∈[ℓ]

gu(0) = V
ℓ/k
h =

1 +
∑
u∈[k]

hu(0)

ℓ/k

.

Proof. Clearly Fu(gu) = 0 for every u ∈ [ℓ− k]. Also, for every X ∈ Fℓ×n
q , we have

Fℓ(gℓ)(X) =

ℓ/k−1∑
t=0

V t
h · Fu−ℓ+k(hu−ℓ+k(Xℓ−k+1,...,ℓ)) · 1[Xkt+1,...,ℓ−k = 0] · 2−nkt,

which is non-negative as Fu(hu) ⩾ 0 for every u ∈ [k].

Let us now show the validity constraints. Let X ∈ Valid \{0} and let r
def
= rk(X). We need to

show that

1 +
1

|GLℓ(Fq)|
·
∑
u∈[ℓ]

(gu ·M)(X) ⩽ 0,

which is equivalent to

ℓ/k−1∑
t=0

V t
h

ℓ∑
u=ℓ−k+1

1

|GLℓ(Fq)|
∑

M∈GLℓ(Fq)

hu−ℓ+k((M ·X)ℓ−k+1,...,ℓ) · 1[(M ·X)1,...,kt = 0] ⩽ −1.

By permuting the rows of the resulting matrix in the expression above, we see that the above is
equivalent to

ℓ/k−1∑
t=0

V t
h

∑
u∈[k]

EM∼U(GLℓ(Fq))[hu((M ·X)1,...,k) · 1[(M ·X)ℓ−kt+1,...,ℓ = 0]] ⩽ −1, (10)

where U(GLℓ(Fq)) is the uniform distribution on GLℓ(Fq).
To prove the above, fix t ∈ {0, . . . , ℓ/k − 1} and let us study the expression∑

u∈[k]

hu((M ·X)1,...,k) · 1[(M ·X)ℓ−kt+1,...,ℓ = 0],

17



where M ∼ U(GLℓ(Fq)).
First, recalling Definition 4.5, we partition GLℓ(Fq) into the sets

Mk,ℓ−kt
q (X), M0,ℓ−kt

q (X) \Mk,ℓ−kt
q (X), GLℓ(Fq) \M0,ℓ−kt

q (X),

which by Lemmas 4.4 and 4.6 have sizes

(q − 1)ℓ · q(
ℓ
2) · (ℓ− k(t+ 1))r,q · (ℓ− r)!q,

(q − 1)ℓ · q(
ℓ
2) · ((ℓ− kt)r,q − (ℓ− k(t+ 1))r,q) · (ℓ− r)!q,

(q − 1)ℓ · q(
ℓ
2) · ((ℓ)r,q − (ℓ− kt))r,q) · (ℓ− r)!q,

(11)

respectively.
Note that 1[(M ·X)ℓ−kt+1,...,ℓ = 0] only takes non-zero values when M is in one of the first two

sets.
Clearly, if we condition on M ∈Mk,ℓ−kt

q (X), then (M ·X)1,...,k = 0.
On the other hand, by Items (i) and (ii) of Lemma 4.6, we know that the conditional distribution

of (M · X)1,...,k given M ∈ M0,ℓ−kt
q (X) \Mk,ℓ−kt

q (X) is GLk(Fq)-invariant. In particular, this
implies that if N ∼ U(GLk(Fq)) is independent from M , then the conditional distributions of

(M · X)1,...,k and N · (M · X)1,...,k given M ∈ M0,ℓ−kt
q (X) \Mk,ℓ−kt

q (X) are the same. Finally,

since X ∈ Valid \{0}, we know that when we condition on M ∈ M0,ℓ−kt
q (X) \Mk,ℓ−kt

q (X), then
(M ·X)1,...,k is always an element of Valid \{0}. Thus we conclude that∑

u∈[k]

EM [hu((M ·X)1,...,u) · 1[(M ·X)ℓ−kt+1,...,ℓ = 0] |M ∈Mk,ℓ−kt
q (X)] =

∑
u∈[k]

hu(0) = Vh − 1,

∑
u∈[k]

EM [hu((M ·X)1,...,u) · 1[(M ·X)ℓ−kt+1,...,ℓ = 0] |M ∈M0,ℓ−kt
q (X) \Mk,ℓ−kt

q (X)]

=
∑
u∈[k]

EM [EN [hu(N · (M ·X)1,...,u) · 1[(M ·X)ℓ−kt+1,...,ℓ = 0]] |M ∈M0,ℓ−kt
q (X) \Mk,ℓ−kt

q (X)]

⩽ −1,∑
u∈[k]

EM [hu((M ·X)1,...,u) · 1[(M ·X)ℓ−kt+1,...,ℓ = 0] |M ∈ GLℓ(Fq) \M0,ℓ−kt
q (X)] = 0,

where the inequality follows from the validity constraints for h.
Thus, we get ∑

u∈[k]

EM∼U(GLℓ(Fq))[hu((M ·X)1,...,u) · 1[(M ·X)ℓ−kt+1,...,ℓ = 0]]

⩽
|Mk,ℓ−kt

q (X)| · (Vh − 1)− |M0,ℓ−kt
q (X) \Mk,ℓ−kt

q (X)|
|GLℓ(Fq)|

=
(ℓ− k(t+ 1))r,q · Vh − (ℓ− kt)r,q

(ℓ)r,q
,

where the equality follows from Lemma 4.4 and (11).
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Recalling that our goal is to show (8), we note that

ℓ/k−1∑
t=0

V t
h

∑
u∈[k]

EM∼U(GLℓ(Fq))[hu((M ·X)1,...,u) · 1[(M ·X)ℓ−kt+1,...,ℓ = 0]]

⩽
1

(ℓ)r,q

ℓ/k−1∑
t=0

V t
h · ((ℓ− k(t+ 1))r,qVh − (ℓ− kt)r,q)

=
V

ℓ/k
h · (0)r,q − (ℓ)r,q

(ℓ)r,q
= −1,

where the first equality follows since the sum telescopes. Thus, g is a feasible solution.
It remains to compute the value of g. Note that

1 +
∑
u∈[ℓ]

gu(0) = 1 +

ℓ/k−1∑
t=0

V t
h

ℓ∑
u=ℓ−k+1

hu−ℓ+k(0) = 1 +

ℓ/k−1∑
t=0

V t
h(Vh − 1) = V

ℓ/k
h ,

where the last equality follows since the sum telescopes. ■

5 Completeness via Subspace Symmetric Dual LPs

We will now give a new proof that the hierarchy is complete, i.e., it recovers the true size of a
code at level ℓ ⩾ n. For this proof, we recall yet another formulation of the hierarchy from [CJJ23].

Instead of symmetrizing (1) under the action of Sn, we recall that GLℓ(Fq) also acts on Fℓ×n
q by

left-multiplication and observe that (1) is also GLℓ(Fq)-symmetric. Inspired by terminology from
Sum-of-Squares algorithms, given a GLℓ(Fq)-symmetric solution f , for each S ∈ LFq(Fn

q ), we define
the notation

P̃[S ⊆ C̃]
def
= f(X)

for any X ∈ Fℓ×n
q with span({X1, . . . ,Xℓ}) = S and interpret this as a pseudo-probability that a

pseudo-random variable C̃ over LFq(Fn
q ) contains S. Computing the pseudo-probabilities P̃[S] def=

P̃[S = C̃] amounts to a Möbius inversion on the poset LFq(Fn
q ) under the inclusion partial order. At

levels ℓ ⩾ n and when Validn is closed under taking subspaces4, this yields the formulation in (12),

whose dual is (13); a code C ∈ Validn yields a solution P̃C [S]
def
= 1[S = C] of (12), whose value is

|C|ℓ. The first completeness at levels ℓ ⩾ n of [CJJ23] was based on the primal formulation (12)
and crucially relied on the fact that non-negative solutions to (12) are convex combinations of true
solutions.

4It is possible to make this Möbius inversion at lower levels and without the closure under subspaces assumption,
but it yields more complicated constraints. Since our completeness result will only hold for levels ℓ ⩾ n anyway, we
opt for the simpler formulation instead.
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Variables: (P̃[S] | S ∈ LFq(Fn
q ))

max
∑

S∈LFq (Fn
q )

|S|ℓP̃[S]

s.t.
∑

S∈LFq (Fn
q )

P̃[S] = 1 (Normalization)

P̃[S] = 0 ∀S ∈ LFq(Fn
q ) \Validn (Validity)∑

S∈LFq (Fn
q )

S⊆U

|S|ℓP̃[S] ⩾ 0 ∀U ∈ LFq(Fn
q ) (Downward sums)

∑
S∈LFq (Fn

q )

U⊆S

P̃[S] ⩾ 0 ∀U ∈ LFq(Fn
q ) (Upward sums)

(12)

Variables: α ∈ R, β, γ : LFq(Fn
q ) → R

min α

s.t. α = |S|ℓ + |S|ℓ
∑

T∈LFq (Fn
q )

S⩽T

β(T ) +
∑

T∈LFq (Fn
q )

T⩽S

γ(T ) ∀S ∈ Validn (Equality to objective)

β(S) ⩾ 0 ∀S ∈ LFq(Fn
q ) (β non-negativity)

γ(S) ⩾ 0 ∀S ∈ LFq(Fn
q ) (γ non-negativity)

(13)

It will also be convienient to define for every k ∈ N the set

Validdim⩽k
n

def
= {S ∈ LFq(Fn

q ) | dimFq(S) ⩽ k}.

It is clear that for any Validn ⊆ LFq(Fn
q ) non-empty, if k

def
= max{dimFq(S) | S ∈ Validn}, then

Validn ⊆ Validdim⩽k
n . We will show completeness of (13) for valid sets of the form Validdim⩽k

n (k ∈ N)
and leverage this to show completeness for arbitrary non-empty valid sets Validn ⊆ LFq(Fn

q ) that
are closed under taking subspaces. We start with the following key observation.
Key observation: With valid set Validdim⩽k

n , at completeness levels (i.e., ℓ ⩾ n), we must have
α = qkℓ, and, for the dual to achieve this optimum value, many variables β(S) and γ(S) will
need to be zero. This will greatly simplify the dual LP allowing us to establish a recurrence to
determine bounds on the remaining variables proving that they can be taken to be nonnegative
thereby implying the feasibility of the solution.

Theorem 5.1 (Exact Completeness from the Dual). For every ℓ ⩾ n and every Validn ⊆ LFq(Fn
q )

non-empty and closed under taking subspaces, the optimum value of (13) is qℓk, where

k
def
= max{dimFq(S) | S ∈ Validn}.

Proof. Let us make the key observation above formal. First note that since Validn ⊆ Validdim⩽k
n ,

it follows that (13) with Validn has less constraints than the same program with Validdim⩽k
n , so it
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suffices to produce a feasible solution for (13) with Validdim⩽k
n whose value is α

def
= qℓk. Since for

every S ∈ LFq(Fn
q ) with dimFq(S) = k we have

α = qℓk = |S|ℓ + |S|ℓ
∑

T∈LFq (Fn
q )

S⊆T

β(T ) +
∑

T∈LFq (Fn
q )

T⊆S

γ(T )

= |Fq|ℓk + |Fq|ℓk
∑

T∈LFq (Fn
q )

S⊆T

β(T ) +
∑

T∈LFq (Fn
q )

T⊆S

γ(T )

and both β and γ must be non-negative, we must have β(T ) = 0 whenever dimFq(T ) ⩾ k and
γ(T ) = 0 whenever dimFq(T ) ⩽ k.

Let us in fact set γ(T ) = 0 for every T ∈ LFq(Fn
q ). For β, it will be convenient (and sufficient) to

consider β(T ) = β̃dimFq (T ), namely, these variables will only depend on the dimension. Then for a

space S ∈ LFq(Fn
q ) of dimension s, the equality to objective constraint reads

α = qℓk = |S|ℓ + |S|ℓ
n∑

i=dimFq (S)

∑
T∈LFq (Fn

q )

S⊆T
dimFq (T )=i

β̃i

= qℓs + qℓs
k−1∑
i=s

∑
T∈LFq (Fn

q )

S⊆T
dimFq (T )=i

β̃i (Since β̃i = 0 whenever i ⩾ k.)

= qℓs + qℓs
k−1∑
i=s

(
n− s

i− s

)
q

β̃i.

Thus, to satisfy all equality to objective constraints, the following recurrence must hold for every
s ∈ {0, . . . , k − 1}:

β̃s = qℓ(k−s) − 1−
k−1∑

i=s+1

(
n− s

i− s

)
q

β̃i. (14)

Our objective is then to prove by reverse induction in s ∈ {0, . . . , k − 1} that defining β̃ by (14)
above yields β̃s ⩾ 0 for every s ∈ {0, . . . , k − 1}.

First note that (14) for s = k − 1 yields β̃k−1 = qℓ − 1 ⩾ 0. Suppose now that s ∈ {0, . . . , k − 2}
and note that using (14) for β̃s+1 in its version for β̃s, we get

β̃s = qℓ(k−s) − 1−
k−1∑

i=s+2

(
n− s

i− s

)
q

β̃i −
(
n− s

1

)
q

(
qℓ(k−s−1) − 1−

k−1∑
i=s+2

(
n− s− 1

i− s− 1

)
q

β̃i

)

= qℓ(k−s)

(
1− [n− s]q

qℓ

)
+ [n− s]q − 1 +

k−1∑
i=s+2

(
[n− s]q

(
n− s− 1

i− s− 1

)
q

−
(
n− s

i− s

)
q

)
β̃i ⩾ 0,
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where the inequality follows since

1− [n− s]q
qℓ

⩾ 1− qn−s−ℓ ⩾ 0 (since ℓ ⩾ n),

[n− s]q − 1 ⩾ 0 (since s ⩽ k − 2 < n),

[n− s]q

(
n− s− 1

i− s− 1

)
q

−
(
n− s

i− s

)
q

=

(
n− s

i− s

)
q

([i− s]q − 1) ⩾ 0 (for every i ⩾ s+ 2),

and since inductively we have β̃i ⩾ 0 for every i ⩾ s+ 2.
Thus, we conclude that setting

α
def
= qℓk, β(T )

def
= β̃dimFq (T ), γ(T )

def
= 0,

(where β̃s is given recursively by (14) for s ∈ {0, . . . , k − 1} and is zero when s ⩾ k) yields a feasible
solution of (13) (for both Validn and Validdim⩽k

n ) whose value is qℓk. ■

6 Spectral-based Dual solutions for Balanced codes

In this section, we construct a spectral-based solution at level ℓ for ε-balanced codes over F2

whose values are comparable with the MRRW solution. The set of (linear) ε-balanced codes (over
Fn
2 ) is defined as

Validεn
def
=
{
C ∈ LF2(F

n
2 )
∣∣∣ ∀x ∈ C \ {0},

(
(1− ε)

n

2
⩽ |x| ⩽ (1 + ε)

n

2

)}
,

so we have

Validεn,ℓ =
{
X ∈ Fℓ×n

2

∣∣∣ ∀u ∈ Fℓ
2,
(
uX ̸= 0 →

(
(1− ε)

n

2
⩽ |uX| ⩽ (1 + ε)

n

2

))}
.

We recall that for an ε-balanced code, the MRRW bound on the rate is of the form

1 + o(1)

4
ε2 lg

1

ε
+Oε

(
lg(n)

n

)
(15)

as n→ ∞ and ε→ 0 (in the above, the error term Oε(lg(n)/n) hides multiplicative factors dependent
on ε, but the error term o(1) only hides multiplicative factors that do not depend on n nor on ε).
We will retrieve this bound on every constant level of the hierarchy. However, we point out right
away that the error terms hidden are slightly worse than the MRRW bound and get worse as the
level increases.

Recall that the LP (2) is symmetric under the action of Sn, and so is the solution we construct.
Namely, it is constant on the orbits Fℓ×n

2 /Sn. As it turns out, Sn-orbits can be characterized in
terms of configurations, defined below in (16). In Section 6.1 we develop the language and tools
necessary to work with symmetric functions.

In Section 6.2 we construct a family of feasible solutions of the form5

f(X)
def
=

Φm(X) · Λ̂2(X)

(Φ̂m ∗ Λ ∗ Λ)(0)
,

5In Section 3, we used the notation Γ which relates to Λ by Γ = Λ̂, up to a positive multiplicative factor.
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where Φm is non-positive on X ∈ Validεn,ℓ, and Λ(X)
def
= 1[confign,ℓ(X) = h] for some h ∈ Confign,ℓ.

The definition of Φm is given in (20), and its necessary properties in Lemma 6.6. It can be

viewed, informally, as the product of 2ℓ − 1 cylinders in RFℓ
2\{0} (see Figs. 1 to 6). Each cylinder is

negative on the inside and positive on the outside. The cylinders are centered and rotated so that
every X ∈ Validεn,ℓ is inside an odd number of cylinders, and hence Φm(X) ⩽ 0.

In Theorem 6.7 we prove that the construction yields a feasible solution, given that Λ satisfies
certain conditions. The theorem also provides an upper bound on the objective value attained by
this construction, and hence on |C|ℓ for C ∈ Validn.

Finally, in Section 6.3 we find a satisfactory Λ by choosing a configuration h ∈ Confign,ℓ, and
showing that it satisfies Theorem 6.7 and gives the correct value.

6.1 Basic definitions and properties

This section is dedicated to basic definitions and properties working up to Lemma 6.4, which
provides an easier formula for the action of powers of the matrix Av defined below.

For X ∈ Fℓ×n
q , the (Venn diagram) configuration of X is the function confign,ℓ(X) : Fℓ

q → N
given by letting for each u ∈ Fℓ

q

confign,ℓ(X)(u)
def
= |{k ∈ [n] | ∀j ∈ [ℓ], Xjk = uj}|

be the number of columns of X that are equal to u. It is straightforward to check that two elements
X and Y of Fℓ×n

q are in the same Sn-orbit if and only if confign,ℓ(X) = confign,ℓ(Y ). The set of all
configurations is denoted by

Confign,ℓ
def
= confign,ℓ(Fℓ×n

q ) = {g : Fℓ
q → N |

∑
u∈Fℓ

q

g(u) = n}. (16)

It will be convenient to use the set

NConfigℓ
def
=

G : Fℓ
2 → R+

∣∣∣∣∣∣
∑
v∈Fℓ

2

G(v) = 1


of normalized Venn diagram configurations over F2 (note that we can naturally interpret elements
of NConfigℓ as probability distributions on Fℓ

2).

For h ∈ Confign,ℓ, we let Ah ∈ RFℓ×n
2 ×Fℓ×n

2 and Lh ∈ RFℓ×n
2 be given by

Ah(x, y)
def
= 1[confign,ℓ(x− y) = h], Lh(x)

def
= 2nℓ1[confign,ℓ(x) = h],

and note that

AhΛ = Lh ∗ Λ.

For every u ∈ Fℓ
2 \ {0}, define hu ∈ Confign,ℓ by

hu(v)
def
=


1, if u = v,

n− 1, if u = 0,

0, otherwise,

and define the shorthand notations Au
def
= Ahu and Lu

def
= Lhu .
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Figure 1: Different projections of the space of all possible Hamming weight combinations when
ℓ = 2 (the picture rescales n out). Three of the six edges of the tetrahedron are contained on the
coordinate planes. The top left projection is isometric.
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Figure 2: Different projections of Validεn,ℓ (in Hamming weight coordinates) with ε = 0.2 (the picture
rescales n out) when ℓ = 2. The region Validn,ε consists of the origin, the three line segments on
the coordinate planes and the cube (with interior) in the middle. The cube faces are paralel to the
coordinate planes. The top left projection is isometric.
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Figure 3: Different projections of Validεn,ℓ (in Hamming weight coordinates) with ε = 0.2 (the
picture rescales n out) and the cylinders when ℓ = 2. The region Validn,ε consists of the origin,
the three line segments on the coordinate planes and the cube (with interior) in the middle. The
vertices of the cube are precisely the points in which all three cylinder surfaces intersect. The cube
faces and cylinder bases are parallel to the coordinate plane. The top left projection is isometric.
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Figure 4: Different projections of the space of all possible Venn diagram configurations when ℓ = 2
(the picture rescales n out). Three of the tetrahedron faces are on coordinate planes. The top left
projection is isometric.
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Figure 5: Different projections of Validεn,ℓ in Venn diagram configuration space with ε = 0.2 (the

picture rescales n out) when ℓ = 2. Here Xi
def
= supp(xi). The region Validn,ε consists of the origin,

the three line segments on the coordinate axes and the cube (with interior) in the middle. None of
the cube faces are parallel to the coordinate planes. The top left projection is isometric. On the top
right and bottom left projections, two of the cube faces are parallel to the projection plane.
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Figure 6: Different projections of Validεn,ℓ (in Venn diagram configuration) with ε = 0.2 (the picture

rescales n out) and the cylinders when ℓ = 2. Here Xi
def
= supp(xi). The region Validn,ε consists of

the origin, the three line segments on the coordinate axes and the cube (with interior) in the middle.
The vertices of the cube are precisely the points in which all three cylinder surfaces intersect. None
of the cube faces or cylinder bases are parallel to the coordinate planes and none of the cylinder
axes are parallel to any coordinate axes. The top left projection is isometric. On the top right and
bottom left projections, two of the cube faces are parallel to the projection plane and two of the
slanted cylinders have their bases appearing degenerate due to the projection and the other has its
axis orthogonal to the projection.
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Lemma 6.1. For ℓ, n ∈ N+ and g ∈ Confign,ℓ, we have

|config−1
n,ℓ(g)| =

(
n

g

)
.

In particular, if G ∈ NConfigℓ is such that G(u) > 0 for every u ∈ Fℓ
2 and n ·G ∈ Confign,ℓ, then

|config−1
n,ℓ(n ·G)| = (1 + o(1)) ·

√
(2πn)(1−2ℓ)∏

u∈Fℓ
2
G(u)

· 2H2(G)·n

as n→ ∞ with ℓ fixed, where H2(G) is the binary entropy of G (as a probability distribution over
Fℓ
2).

Proof. By definition, every X ∈ config−1
n,ℓ(g) must be such that for every u ∈ Fℓ

2, exactly g(u) of the
n columns of X must be equal to u. Thus, we conclude that

|config−1
n,ℓ(g)| =

(
n

g

)
=

n!∏
u∈Fℓ

2
g(u)!

.

Finally, if G ∈ NConfigℓ is such that G(u) > 0 for every u ∈ Fℓ
2 and n ·G ∈ Confign,ℓ, then

|config−1
n,ℓ(n ·G)| =

(
n

n ·G

)
= (1 + o(1)) ·

√
(2πn)(1−2ℓ)∏

u∈Fℓ
2
G(u)

· 1∏
u∈Fℓ

2
G(u)G(u)·n

= (1 + o(1)) ·

√
(2πn)(1−2ℓ)∏

u∈Fℓ
2
G(u)

· 2H2(G)·n,

where the second equality follows from Stirling’s Approximation. ■

Lemma 6.2. Let g, h ∈ Confign,ℓ and let

Fg,h
def
=

F : Fℓ
2 × Fℓ

2 → N

∣∣∣∣∣∣
∑
u∈Fℓ

2

F (u,−) = g ∧
∑
v∈Fℓ

2

F (−, v) = h

 . (17)

Then the following hold for Y ∈ config−1
n,ℓ(g).

i. For every X ∈ config−1
n,ℓ(h), let FX : Fℓ

2 × Fℓ
2 → N be given by letting

FX(u, v)
def
= |{k ∈ [n] | ∀j ∈ [ℓ], (Xjk = uj ∧ Yjk = vj)}| (18)

be the number of indices k ∈ [n] such that the kth column of X is u and the kth column of Y
is v. Then FX ∈ Fg,h.

ii. For F ∈ Fg,h, we have

|{X ∈ config−1
n,ℓ(h) | FX = F}| =

∏
v∈Fℓ

2

(
g(v)

F (−, v)

)
,

where FX is given by (18).
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Proof. Item (i) follows since for every v ∈ Fℓ
2, we have∑

u∈Fℓ
2

FX(u, v) = |{k ∈ [n] | ∀j ∈ [ℓ], Yjk = vj}| = confign,ℓ(Y )(v) = g(v)

and for every u ∈ Fℓ
2, we have∑

v∈Fℓ
2

Fx(u, v) = |{k ∈ [n] | ∀j ∈ [ℓ], Xjk = uj}| = confign,ℓ(X)(u) = h(u).

For Item (ii), we note that to count the number of X ∈ config−1
n,ℓ(h) with FX = F , we consider

[n] partitioned naturally into 2ℓ parts indexed by v ∈ Fℓ
2 as

Pv
def
= {k ∈ [n] | ∀j ∈ [ℓ], Yjk = vj}

and note that to get FX = F for each u ∈ Fℓ
2, we must have exactly F (u, v) elements of Pv in

{k ∈ [n] | ∀j ∈ [ℓ], (Xjk = uj ∧ Yjk = vj)},

since the above are pairwise disjoint and |Pv| = g(v), we conclude that the number of such choices
amounts to the multinomial (

g(v)

F (−, v)

)
(recall that

∑
u∈Fℓ

2
F (u, v) = g(v), so the multinomial above is non-zero). Since all such choices are

independent for the different v ∈ Fℓ
2, we conclude that

|{X ∈ config−1
n,ℓ(h) | FX = F}| =

∏
v∈Fℓ

2

(
g(v)

F (−, v)

)
,

as desired. ■

Lemma 6.3. Let Ψ: Confign,ℓ → R, let ψ def
= Ψ◦confign,ℓ, let g, h ∈ Confign,ℓ and let Y ∈ config−1

n,ℓ(g).
Then

Ahψ(Y ) =
∑

F∈Fg,h

∏
w∈Fℓ

2

(
g(w)

F (−, w)

)
Ψ(g +∆F ),

where Fg,h is given by (17) and

∆F (v)
def
=
∑
u∈Fℓ

2

(F (u, u+ v)− F (u, v)).

Proof. First note that

Ahψ(Y ) =
∑

Z∈Fℓ×n
2

confign,ℓ(Z−Y )=h

ψ(Z) =
∑

X∈config−1
n,ℓ(h)

ψ(X + Y ).
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We now split the sum above based on the joint configuration of X and Y , that is, for X ∈
config−1

n,ℓ(h), we let FX : Fℓ
2 × Fℓ

2 → N be given by (18), i.e., we have

FX(u, v)
def
= |{k ∈ [n] | ∀j ∈ [ℓ], (Xjk = uj ∧ Yjk = vj)}|.

Note that sets in the above partition [n] naturally into 2ℓ × 2ℓ parts indexed by (u, v) ∈ Fℓ
2 × Fℓ

2.
Recalling that confign,ℓ(Y ) = g, we note that

confign,ℓ(X + Y )(v) = |{k ∈ [n] | ∀j ∈ [ℓ], (X + Y )jk = vj}|

=
∑
u∈Fℓ

2

|{k ∈ [n] | ∀j ∈ [ℓ], (Xjk = uj ∧ Yjk = uj + vj)}|

= g(v) + ∆F (v),

where the last equality follows since
∑

u∈Fℓ
2
F (u, v) = g(v). ■

Lemma 6.4. Let v ∈ Fℓ
2 \ {0} and g0 ∈ Confign,ℓ be such that for every u ∈ Fℓ

2, if g0(u) ̸= 0, then

g0(u) ⩾ Ω(n). Let also Λ
def
= 1config−1

n,ℓ(g0)
and X ∈ config−1

n,ℓ(g0).

Then

Am
v Λ(X) =

∑
F∈Fm,v

(
m

F

) ∏
u∈Fℓ

2

g0(u)
F (u) + o(nm),

as n→ ∞ with m and ℓ fixed, where

Fm,v
def
=

F : Fℓ
2 → N

∣∣∣∣∣∣
∑
u∈Fℓ

2

F (u) = m ∧ ∀u ∈ Fℓ
2, F (u+ v) = F (u)

 . (19)

Proof. Applying Lemma 6.3 for the particular case when h = hv, every F ∈ Fg,h is of the form
F = Ft for some t ∈ Fℓ

2, where

Ft(u,w)
def
=


1, if u = v and w = t,

g(t)− 1, if u = 0 and w = t,

g(w), if u = 0 and w ̸= t,

0, otherwise.

Furthermore, note that we have ∆Ft = 1{v+t} − 1{t} and

∏
w∈Fℓ

2

(
g(w)

Ft(−, w)

)
= g(t).

Thus we have

Avψ(Y ) =
∑
t∈Fℓ

2

g(t)Ψ(g + 1{v+t} − 1{t})
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and with a simple induction, we have

Am
v ψ(Y ) =

∑
t∈Tm(g)

 m∏
j=1

gt,j−1(tj)

Ψ(gt,m),

where

gt,j
def
= g +

j−1∑
k=1

(1{v+tk} − 1{tk}),

Tm(g)
def
= {t ∈ (Fℓ

2)
m | ∀j ∈ [m], gt,j ∈ Confign,ℓ, gt,j−1(tj) ̸= 0}.

For our particular case, we have ψ = Λ = 1config−1
n,ℓ(g0)

and Ψ = 1{g0} and since m is constant

and for every u ∈ Fℓ
2, if g0(u) ̸= 0, then g0(u) ⩾ Ω(n), it follows that for n sufficiently large, we

have Tm(g0) = (Fℓ
2)

m and for every t ∈ (Fℓ
2)

m, j ∈ [m] and u ∈ Fℓ
2, we have (g0)t,j(u) = g0(u) + o(n).

Thus, since X ∈ config−1
n,ℓ(g0), we have

Am
v ψ(X) =

∑
t∈(Fℓ

2)
m

 m∏
j=1

g0(tj)

Ψ((g0)t,m) + o(nm),

where the error term follows since both m and ℓ are constants. Thus, we get

Am
v Λ(X) =

∑
t∈T

m∏
j=1

g0(tj) + o(nm),

where

T
def
= {t ∈ (Fℓ

2)
m | (g0)t,m = g0}.

For each t ∈ T , let us define a function Ft : Fℓ
2 → N by Ft(u)

def
= |t−1(u)|. Note that we must

have
∑

u∈Fℓ
2
Ft(u) = m and since (g0)t,m = g0, we must have∑

u∈Fℓ
2

Ft(u)(1{v+u} − 1{u}) = 0,

which is equivalent to

∀u ∈ Fℓ
2, Ft(u+ v) = Ft(u).

It is straightforward to check that for Fm,v as in (19), we have {Ft | t ∈ T} = Fm,v and that for
each F ∈ Fm,v, we have

|{t ∈ T | Ft = F}| =
(
m

F

)
.

Thus, we get

Am
v Λ(X) =

∑
F∈Fm,v

(
m

F

) ∏
u∈Fℓ

2

g0(u)
F (u) + o(nm),

as desired. ■
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6.2 The key functions and matrices

In this section, we provide an abstract way of constructing dual solutions (Theorem 6.7). We
refer the reader to Section 3.2 for an informal description.

Given ℓ, n ∈ N+ and ε ∈ (0, 1), for every m ∈ N and every u ∈ Fℓ
2 \ {0}, we let

ϕm,u(X)
def
=

∑
v∈Fℓ

2
⟨u,v⟩=1

(
(n− 2|vX|)m − (εn)m

)
,

Bm,u
def
=

∑
v∈Fℓ

2
⟨u,v⟩=1

(Am
v − (εn)mI),

where ⟨u, v⟩ def
=
∑

j∈[ℓ] ujvj .
We also define

Φm
def
=

∏
u∈Fℓ

2\{0}

ϕm,u, Mm
def
=

∏
u∈Fℓ

2\{0}

Bm,u. (20)

Note that these definitions ensure that

2nℓΦ̂m ∗ Λ =MmΛ (21)

for every Λ: Fℓ×n
2 → R.

Lemma 6.5. For every u ∈ Fℓ
2 \ {0}, every X ∈ Validεn,ℓ and every m even such that

m ⩾
ℓ− 1

lg(1/ε)
, (22)

where lg
def
= log2 is the binary log, the following hold.

i. If there exists v ∈ Fℓ
2 with ⟨u, v⟩ = 1 and vX = 0, then ϕm,u(X) ⩾ 0.

ii. If vX ̸= 0 for every v ∈ Fℓ
2 with ⟨u, v⟩ = 1, then ϕm,u(X) ⩽ 0.

iii. If X ̸= 0, then Φm(X) ⩽ 0.

iv. We have

Φm(0) = (2ℓ−1(1− εm)nm)2
ℓ−1.

Proof. For Item (i), note that since m is even and ⟨u, v⟩ = 1, we have

ϕm,u(X) =
∑
v′∈Fℓ

2
⟨u,v′⟩=1

(
(n− 2|v′X|)m − (εn)m

)
⩾ (n− 2|vX|)m − 2ℓ−1 · (εn)m

⩾ nm − 2ℓ−1 · (εn)m ⩾ 0,

where the last inequality follows from (22).
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For Item (ii), note that since X ∈ Validεn,ℓ and

ϕm,u(X) =
∑
v′∈Fℓ

2
⟨u,v′⟩=1

(
(n− 2|v′X|)m − (εn)m

)
,

each n− 2|v′X| in the above is between −εn and εn, so since m is even, we get ϕm,u(X) ⩽ 0.

For Item (iii), let V
def
= {v ∈ Fℓ

2 | vX = 0}. Clearly V is a linear subspace of Fℓ
2 and since X ̸= 0,

we have V ̸= Fℓ
2.

Note now the following chain of equivalences

u ∈ V ⊥ ⇐⇒ ∀v ∈ Fℓ
2, (vX = 0 → ⟨v, u⟩ = 0) ⇐⇒ ∀v ∈ Fℓ

2, (⟨v, u⟩ = 1 → vX ̸= 0),

so by Item (ii), we get ϕm,u(X) ⩽ 0 for every u ∈ V ⊥ \ {0}.
On the other hand, note that if u ∈ Fℓ

2 \V ⊥, then the equivalence above implies that there exists
v ∈ Fℓ

2 with ⟨v, u⟩ = 1 and vX = 0, so Item (i) implies ϕm,u(X) ⩾ 0.
Since V ̸= Fℓ

2, we have V ⊥ ̸= {0}, so |V ⊥ \ {0}| is odd, hence Φm,u(X) ⩽ 0 as it is a product of
an odd number of non-positive factors and some non-negative factors.

Finally, Item (iv) follows by direct calculation. ■

We now compute an alternative formula for Mm.

Lemma 6.6. We have

Mm =
∑

S⊆Fℓ
2\{0}

|S| odd

∑
i∈S

 ∏
u∈S\{i}

∑
v∈Fℓ

2
⟨u,v⟩=1

Am
v

 · (εn)m(2ℓ−1−|S|)

 1

|S|
·
∑
v∈Fℓ

2
⟨i,v⟩=1

Am
v − 2ℓ−1 · (εn)m

2ℓ − |S|

 . (23)

Proof. Let

V
def
= {v : Fℓ

2 \ {0} → Fℓ
2 | ∀u ∈ Fℓ

2 \ {0}, ⟨u, v(u)⟩ = 1},

Mm,v
def
=

∑
S⊆Fℓ

2\{0}
|S| odd

∑
i∈S

 ∏
u∈S\{i}

Am
v(u)

 (εn)m(2ℓ−1−|S|)

(
Am

v(i)

|S|
− (εn)m

2ℓ − |S|

)
(v ∈ V ).

We will first show that Mm =
∑

v∈V Mm,v.
Note that

Mm =
∏

u∈Fℓ
2\{0}

Bm,u =
∏

u∈Fℓ
2\{0}

∑
v∈Fℓ

2
⟨u,v⟩=1

(Am
v − (εn)mI) =

∑
v∈V

∏
u∈Fℓ

2\{0}

(Am
v(u) − (εn)mI).

Our objective is then to show that the inner product in the above is equal to Mm,v. To prove this,
note that ∏

u∈Fℓ
2\{0}

(Am
v(u) − (εn)mI) =

∑
S⊆Fℓ

2\{0}

(∏
u∈S

Am
v(u)

)
(−(εn)m)2

ℓ−1−|S|.
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We now group the terms in the sum above as follows: we sum over only S ⊆ Fℓ
2 \ {0} such that

|S| is odd and we redistribute the terms with |S| even equally among S ∪ {i} where i ranges in
Fℓ
2 \ ({0} ∪ S). With this redistribution, we have∏
u∈Fℓ

2\{0}

(Am
v(u) − (εn)mI)

=
∑

S⊆Fℓ
2\{0}

|S| odd

(∏
u∈S

Am
v(u)

)
(−(εn))m(2ℓ−1−|S|) +

∑
i∈S

1

2ℓ − |S|

 ∏
u∈S\{i}

Am
v(u)

 (−(εn)m)2
ℓ−|S|



=
∑

S⊆Fℓ
2\{0}

|S| odd

∑
i∈S

 ∏
u∈S\{i}

Am
v(u)

 (εn)m(2ℓ−1−|S|)

(
Am

v(i)

|S|
− (εn)m

2ℓ − |S|

)

=Mm,v,

so we conclude that Mm =
∑

v∈V Mm,v.
Finally, note that

Mm =
∑
v∈V

Mm,v

=
∑
v∈V

∑
S⊆Fℓ

2\{0}
|S| odd

∑
i∈S

 ∏
u∈S\{i}

Am
v(u)

 (εn)m(2ℓ−1−|S|)

(
Am

v(i)

|S|
− (εn)m

2ℓ − |S|

)

=
∑

S⊆Fℓ
2\{0}

|S| odd

∑
i∈S

 ∏
u∈S\{i}

∑
v∈Fℓ

2
⟨u,v⟩=1

Am
v

 · (εn)m(2ℓ−1−|S|)
∑
v∈Fℓ

2
⟨i,v⟩=1

(
Am

v

|S|
− (εn)m

2ℓ − |S|

)

=
∑

S⊆Fℓ
2\{0}

|S| odd

∑
i∈S

 ∏
u∈S\{i}

∑
v∈Fℓ

2
⟨u,v⟩=1

Am
v

 · (εn)m(2ℓ−1−|S|)

 1

|S|
·
∑
v∈Fℓ

2
⟨i,v⟩=1

Am
v − 2ℓ−1 · (εn)m

2ℓ − |S|

 ,

so (23) follows. ■

Theorem 6.7. Let ℓ,m ∈ N+ with m even such that

m ⩾
ℓ− 1

lg(1/ε)
, (24)

where lg
def
= log2 is the binary log.

Suppose further G ∈ NConfigℓ is such that G(u) > 0 for every u ∈ Fℓ
2.

Let further n ∈ N+ and suppose that n ·G(u) ∈ N for every u ∈ Fℓ
2 and that for Λ

def
= 1config−1

n,ℓ(n·G)

and every i ∈ Fℓ
2 \ {0}, there exists v ∈ Fℓ

2 with ⟨i, v⟩ = 1 and

Am
v Λ ⩾ (22ℓ−1εmnm + 1)Λ. (25)
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Finally, let

F
def
= Φm · Λ̂2, f

def
=

F

F̂ (0)
,

where Φm is given by (20).
Then f is a feasible solution of (2) with

lg f(0)

n
⩽ H2(G) +O

(
lg(n)

n

)
(26)

as n→ ∞ with ℓ fixed.

Proof. It is clear that f̂(0) = 1.
On the other hand, if X ∈ Validεn,ℓ \{0}, then by Lemma 6.5, we have Φm(X) ⩽ 0, so we get

f(X) ⩽ 0.
For the Fourier constraints, by (21), we have

f̂ =
Φ̂m ∗ Λ ∗ Λ

F̂ (0)
=
MmΛ ∗ Λ
2nℓF̂ (0)

.

Since Λ ⩾ 0, to show that f̂ ⩾ 0, it suffices to show that MmΛ ⩾ 0.
By Lemma 6.6, we have

Mm =
∑

S⊆Fℓ
2\{0}

|S| odd

∑
i∈S

 ∏
u∈S\{i}

∑
v∈Fℓ

2
⟨u,v⟩=1

Am
v

 · (εn)m(2ℓ−1−|S|)

 1

|S|
·
∑
v∈Fℓ

2
⟨i,v⟩=1

Am
v − 2ℓ−1 · (εn)m

2ℓ − |S|


and from the factoring above, it suffices to show that for every S ⊆ Fℓ

2 \ {0} with |S| odd and every
i ∈ S, we have

1

|S|
·
∑
v∈Fℓ

2
⟨i,v⟩=1

Am
v Λ ⩾

2ℓ−1 · (εn)m

2ℓ − |S|
Λ.

Since 1 ⩽ |S| ⩽ 2ℓ − 1, it suffices to then show that

1

2ℓ
·
∑
v∈Fℓ

2
⟨i,v⟩=1

Am
v Λ ⩾ 2ℓ−1 · (εn)mΛ,

which follows directly from our assumption (25) (and the fact that all entries of Am
v and Λ are

non-negative). Note that since we have an extra 1 in (25), the argument above in fact implies

MmΛ ⩾ poly(n)Λ. (27)
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It remains to show (26). By Lemma 6.1 and Item (iv), we have

F (0) = Φm(0) · Λ̂(0)2 = (2ℓ−1(1− εm)nm)2
ℓ−1 ·

(
|config−1

n,ℓ(n ·G)|
2nℓ

)2

= poly(n) · 22(H2(G)−ℓ)n.

On the other hand, we have

F̂ (0) = (Φ̂m ∗ Λ ∗ Λ)(0) = (MmΛ ∗ Λ)(0)
2nℓ

⩾
poly(n)

2nℓ
(Λ ∗ Λ)(0) = poly(n) · 2(H2(G)−2ℓ)n,

where the inequality follows from (27) and the last equality follows from Lemma 6.1. Thus, we get

lg(f(0))

n
⩽ H2(G) +O

(
lg(n)

n

)
,

as desired. ■

6.3 Finding Good Configurations

Theorem 6.7 leaves open only one question: which normalized configurations G are such that
the corresponding function Λ satisfies (25) while having small binary entropy H2(G) so as to yield
a good value to (2)? In this section, we will see that two kinds of normalized configurations can
attain same rates as MRRW (see (15)) up to lower order terms via Theorem 6.7.

Definition 6.8. Given ℓ ∈ N+ and τ ∈ [0, 1/ℓ], the τ -vertex uniform normalized configuration (at
level ℓ) is defined as Gτ -vertex-unif ∈ NConfigℓ given by

Gτ -vertex-unif(u)
def
=


(1− ℓτ), if u = 0,

τ, if |u| = 1,

0, otherwise.

Given τ ∈ [0, 1], the τ -quasirandom normalized configuration (at level ℓ) is defined as Gτ -QR ∈
NConfigℓ given by

Gτ -QR(u)
def
= τ |u|(1− τ)ℓ−|u|.

Given further n ∈ N+, we let gτ -vertex-unif, gτ -QR be obtained by rounding n ·Gτ -vertex-unif and
n ·Gτ -QR respectively to integer values so that the result is in Confign,ℓ.

Lemma 6.9. Let ε ∈ (0, 1), let ℓ ∈ N+, let τ ∈ (0, 1/ℓ), let n,m ∈ N+ with m even and let

Λ
def
= 1config−1

n,ℓ(gτ -vertex-unif)
. Then the following hold:

i. For every v ∈ Fℓ
2 with |v| = 1 and every X ∈ config−1

n,ℓ(gτ -vertex-unif), we have

Am
v Λ(X) =

(
m

m/2

)
(1− ℓτ)m/2τm/2nm + o(nm).

ii. We have

H2(Gτ -vertex-unif) = ℓ

(
τ lg

1

τ
+ (1− ℓτ) lg

1

1− ℓτ

)
= ℓτ lg(τ) + ℓτ +O(τ2),

as τ → 0 with ℓ fixed.
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iii. If

τ =
1−

√
1− ℓ2(4ℓ−1)/mm1/mε2

2ℓ
, (28)

then

τ =
2(4ℓ−1)/mm1/m

4
ε2 +O(ε4) (29)

as ε→ 0 with ℓ and m fixed and

Am
v Λ ⩾ 22ℓ−1εmnmΛ + o(nm) (30)

for every v ∈ Fℓ
2 with |v| = 1 as n→ ∞ with ε, ℓ and m fixed.

Proof. First note that since 0 < τ < 1/ℓ, it follows that for every u ∈ Fℓ
2, if gτ -vertex-unif(u) ̸= 0, then

gτ -vertex-unif(u) ⩾ Ω(n), so by Lemma 6.4 with g0
def
= gτ -vertex-unif, we have

Am
v Λ(X) =

∑
F∈Fm,v

(
m

F

) ∏
u∈Fℓ

2

gτ -vertex-unif(u)
F (u) + o(nm),

where Fm,v is given by (19).
Since gτ -vertex-unif(u) = 0 whenever |u| ⩾ 2, it follows that the only terms of the sum above that

are non-zero correspond to F ∈ Fm,v that are entirely supported on {u ∈ Fℓ
2 | |u| ⩽ 1}. Since all

F ∈ Fm,v further satisfy F (u) = F (u+ v) for every u ∈ Fℓ
2, we conclude that only one term of the

sum above can be non-zero, namely the one corresponding to F0 ∈ Fm,v given by

F0(u)
def
=


m

2
, if u = 0 or u = v,

0, otherwise,

so we get

Am
v Λ(X) =

(
m

m/2

)
(1− ℓτ)m/2τm/2nm + o(nm),

so Item (i) holds.

For Item (ii), note that

H2(Gτ -vertex-unif) =
∑
u∈Fℓ

2

Gτ -vertex-unif(u) lg
1

Gτ -vertex-unif(u)
= ℓτ lg

1

τ
+ (1− ℓτ) lg

1

1− ℓτ

= ℓτ lg
1

τ
+ (1− ℓτ)(ℓτ +O(τ2)) = ℓτ lg

1

τ
+ ℓτ +O(τ2).

For Item (iii), first note that (29) follows from (28) and the fact that
√
1 + t = 1 + t/2 +O(t2)

as t→ 0.
Finally, note that (30) is trivial when evaluated on a point X not in the support of Λ as the

left-hand side is clearly non-negative.
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On the other hand, for X ∈ supp(Λ), that is, for X ∈ config−1
n,ℓ(gτ -vertex-unif), by Item (i), we

have

Am
v Λ(X) =

(
m

m/2

)
(1− ℓτ)m/2τm/2nm + o(nm)

⩾
2m√
2m

·

(
1− (1− ℓ2(4ℓ−1)/mm1/mε2)

4ℓ

)m/2

+ o(nm)

= 22ℓ−1εm + o(nm),

as desired. ■

Lemma 6.10. Let ε ∈ (0, 1), let ℓ ∈ N+, let τ ∈ (0, 1), let n,m ∈ N+ with m even and let

Λ
def
= 1config−1

n,ℓ(gτ -QR)
. Then the following hold:

i. For every v ∈ Fℓ
2 with |v| = 1 and every X ∈ config−1

n,ℓ(gτ -QR), we have

Am
v Λ(X) =

(
m

m/2

)
τm/2(1− τ)ℓm/2(1− 2τ + 2τ2)(ℓ−1)m/2nm + o(nm).

ii. We have

H2(Gτ -QR) = ℓ

(
τ lg

1

τ
+ (1− τ) lg

1

1− τ

)
= ℓτ lg

1

τ
+ ℓτ +O(τ2),

as τ → 0 with ℓ fixed.

iii. If τ is the first non-negative root of

4τ(1− τ)ℓ(1− 2τ + 2τ2)ℓ−1 − 2(4ℓ−1)/mm1/mε2 (31)

then

τ =
2(4ℓ−1)/mm1/m

4
ε2 +O(ε2(1+ℓ)) (32)

as ε→ 0 with ℓ and m fixed and

Am
v Λ ⩾ 22ℓ−1εmnmΛ + o(nm) (33)

for every v ∈ Fℓ
2 with |v| = 1 as n→ ∞ with ε, ℓ and m fixed.

Proof. First note that since 0 < τ < 1, it follows that gτ -QR(u) ⩾ Ω(n) for every u ∈ Fℓ
2, so by

Lemma 6.4 with g0
def
= gτ -QR, we have

Am
v Λ(X) =

∑
F∈Fm,v

(
m

F

) ∏
u∈Fℓ

2

gτ -QR(u)
F (u) + o(nm),

where Fm,v is given by (19).
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Let i0 ∈ supp(v) and note that there is a natural one-to-one correspondence between Fm,v and
the set

F def
=

F : F[ℓ]\{i0}
2 → N

∣∣∣∣∣∣∣
∑

u∈F[ℓ]\{i0}
2

F (u) =
m

2


in which F ∈ Fm,v corresponds to F |F[ℓ]\{i0}

2

. Thus, we get

Am
v Λ(X) =

∑
F∈F

(
m

F,F

) ∏
u∈F[ℓ]\{i0}

2

(gτ -QR(u)gτ -QR(u+ v))F (u) + o(nm)

=

(
m

m/2

)∑
F∈F

(
m/2

F

)2 ∏
u∈F[ℓ]\{i0}

2

(τ2|u|+1(1− τ)2ℓ−2|u|−1)F (u)nm + o(nm)

⩾

(
m

m/2

)∑
F∈F

(
m/2

F

) ∏
u∈F[ℓ]\{i0}

2

(τ2|u|+1(1− τ)2ℓ−2|u|−1)F (u)nm + o(nm)

=

(
m

m/2

) ∑
u∈F[ℓ]\{i0}

2

τ2|u|+1(1− τ)2ℓ−2|u|−1


m/2

nm + o(nm)

=

(
m

m/2

)
τm/2(1− τ)(2ℓ−1)m/2

(
1 +

(
τ

1− τ

)2
)(ℓ−1)m/2

nm + o(nm)

=

(
m

m/2

)
τm/2(1− τ)ℓm/2(1− 2τ + 2τ2)(ℓ−1)m/2nm + o(nm),

where the third equality follows from the Multinomial Theorem and the fourth equality follows from
the Binomial Theorem. Thus, Item (i) holds.

For Item (ii), note that

H2(Gτ -QR) =
∑
u∈Fℓ

2

τ |u|(1− τ)ℓ−|u| lg
1

τ |u|(1− τ)ℓ−|u|

=
ℓ∑

j=0

(
ℓ

j

)
τ j(1− τ)ℓ−j

(
j · lg 1

τ
+ (ℓ− j) lg

1

1− τ

)

= ℓ

(
τ lg

1

τ
+ (1− τ) lg

1

1− τ

)
= ℓτ lg

1

τ
+ ℓτ +O(τ2).

For Item (iii), first note that the expression in (31) takes a negative value when τ = 0 and takes
the value

23−2ℓ − 2(4ℓ−1)/mm1/mε2
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when τ = 1/2, which is positive if ε > 0 is small enough, so the expression in (31) has a non-negative
root before 1/2. If τ is the first non-negative root in (31), then (32) follows straightforwardly.

Finally, note that (33) is trivial when evaluated on a point X not in the support of Λ as the
left-hand side is clearly non-negative.

On the other hand, for X ∈ supp(Λ), that is, for X ∈ (configvn,ℓ)
−1(gτ -QR), by Item (i), we have

Am
v Λ(X) =

(
m

m/2

)
τm/2(1− τ)ℓm/2(1− 2τ + 2τ2)(ℓ−1)m/2nm + o(nm)

⩾
2m√
2m

τm/2(1− τ)ℓm/2(1− 2τ + 2τ2)(ℓ−1)m/2nm + o(nm)

= 22ℓ−1m1/mεmnm + o(nm),

where the second equality follows since τ is a root of (31). ■

Corollary 6.11. Let ε ∈ (0, 1), let ℓ,m ∈ N+ with m even such that

m ⩾
ℓ− 1

lg(1/ε)
,

where lg
def
= log2 is the binary log.

Then for every sufficiently large n, there exist g1, g2 ∈ Confign,ℓ with

|g1(u)− n ·Gτ -vertex-unif(u)| ⩽ o(n), |g2(u)− n ·Gτ -QR(u)| ⩽ o(n)

for every u ∈ Fℓ
2 such that for

Λi
def
= 1config−1

n,ℓ(gi)
, Fi

def
= Φm · Λ̂2

i , fi
def
=

Fi

F̂i(0)
,

where Φm is given by (20), we have that f1 and f2 are feasible solutions of (2) with

lg fi(0)

n
⩽

2(4ℓ−1)/mm1/m

4
ε2 lg

1

ε
+O(ε4) +Oε

(
lg(n)

n

)
=

1 + o(1)

4
ε2 lg

1

ε
+Oε

(
lg(n)

n

)
as n→ ∞ and ε→ 0 with ℓ andm fixed (in the above, the error term Oε(lg(n)/n) hides multiplicative
factors dependent on ε, but the error terms o(1) and O(ε4) only hide multiplicative factors that do
not depend on n nor on ε).

Proof. Follows by combining Lemmas 6.9 and 6.10 with Theorem 6.7 (note that the small adjustment
to the configurations is needed both due to the error terms in (30) and (33) and to obtain the extra
1 term needed in (25)). ■
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7 Conclusion

Establishing tight bounds on the rate-vs-distance trade-off of binary codes has remained a major
open question in coding theory. The best existential constructions given by the Gilbert–Varshamov
bound have not been improved for over 70 years, and the best upper bounds given by MRRW
bound have not been improved for almost 50 years. These known bounds are the same even for the
important class of linear codes. With the inception of complete linear programming hierarchies for
linear codes extending Delsarte’s LPs, an ambitious research program of analyzing these higher-order
Delsarte LPs is launched. On one hand their similarity with the original Delsarte LPs gives hope this
might be a viable task. On the other hand, the higher-order structure poses non-trivial challenges.

We view the contributions of this work as establishing important milestones in this research
program as we are able to construct higher-order dual feasible solutions for the first time. This is
done in two complementary ways. First, by explicitly lifting dual solutions from lower levels to
higher levels of these hierarchies. Second, by constructing higher-order dual solutions from scratch
generalizing spectral-based techniques. Given that these constructions either match or approximately
match the best known bounds, together with the proven strength of these complete hierarchies, they
open up important avenues of further exploration. For instance, very interesting concrete questions
made possible by this work are the following.

• After lifting a dual solution of the original Delsate LP to a higher-level ℓ of these hierarchies,
can we improve its objective value and improve over the MRRW bound?

• We saw that the spectral-based construction has some degrees of freedom, namely, there is a
choice of function ϕ capturing the sign of the valid region and a choice of configurations for an
eigenvalue-like problem. Can we find suitable choices to improve the MRRW bound?
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[CDA24] André Chailloux and Thomas Debris-Alazard. New solutions to delsarte’s dual linear
programs, 2024. arXiv:2405.07666. 1

[CE03] Henry Cohn and Noam Elkies. New upper bounds on sphere packings. I. Ann. of Math.
(2), 157(2):689–714, 2003. doi:10.4007/annals.2003.157.689. 1, 4

[CJJ22] Leonardo Nagami Coregliano, Fernando Granha Jeronimo, and Chris Jones. A complete
linear programming hierarchy for linear codes. In 13th Innovations in Theoretical
Computer Science Conference, volume 215 of LIPIcs. Leibniz Int. Proc. Inform., pages
Art. No. 51, 22. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2022. 1, 2, 3, 4, 5, 11

[CJJ23] Leonardo Nagami Coregliano, Fernando Granha Jeronimo, and Chris Jones. Exact
completeness of LP hierarchies for linear codes. In 14th Innovations in Theoretical
Computer Science Conference, volume 251 of LIPIcs. Leibniz Int. Proc. Inform., pages
Art. No. 40, 18. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2023. doi:10.4230/
lipics.itcs.2023.40. 1, 3, 10, 19

[CKM+17] Henry Cohn, Abhinav Kumar, Stephen D. Miller, Danylo Radchenko, and Maryna
Viazovska. The sphere packing problem in dimension 24. Ann. of Math. (2), 185(3):1017–
1033, 2017. doi:10.4007/annals.2017.185.3.8. 1, 4

[Del73] P. Delsarte. An algebraic approach to the association schemes of coding theory. Philips
Res. Rep. Suppl., (10):vi+97, 1973. 1

[FT05] Joel Friedman and Jean-Pierre Tillich. Generalized Alon-Boppana theorems and
error-correcting codes. SIAM J. Discrete Math., 19(3):700–718, 2005. doi:10.1137/
S0895480102408353. 1

[GMS12] Dion C Gijswijt, Hans D Mittelmann, and Alexander Schrijver. Semidefinite code
bounds based on quadruple distances. IEEE Transactions on Information Theory,
58(5):2697–2705, 2012. 1

[Gop93] V. D. Goppa. Bounds for codes. Dokl. Akad. Nauk, 1993. 1

[JV04] Tao Jiang and A. Vardy. Asymptotic improvement of the gilbert-varshamov bound on
the size of binary codes. IEEE Transactions on Information Theory, 50(8):1655–1664,
2004. doi:10.1109/TIT.2004.831751. 1

[Las15] Jean Bernard Lasserre. An introduction to polynomial and semi-algebraic optimization.
Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge,
2015. doi:10.1017/CBO9781107447226. 1

44

https://doi.org/10.1142/9789812832245_0002
https://doi.org/10.1142/9789812832245_0002
https://doi.org/10.1090/S0894-0347-07-00589-9
https://doi.org/10.1090/S0894-0347-07-00589-9
http://arxiv.org/abs/2405.07666
https://doi.org/10.4007/annals.2003.157.689
https://doi.org/10.4230/lipics.itcs.2023.40
https://doi.org/10.4230/lipics.itcs.2023.40
https://doi.org/10.4007/annals.2017.185.3.8
https://doi.org/10.1137/S0895480102408353
https://doi.org/10.1137/S0895480102408353
https://doi.org/10.1109/TIT.2004.831751
https://doi.org/10.1017/CBO9781107447226


[Lau07] Monique Laurent. Strengthened semidefinite programming bounds for codes. Math.
Program., 109(2-3):239–261, 2007. doi:10.1007/s10107-006-0030-3. 1

[Lev98] Vladimir I. Levenshtein. Universal bounds for codes and designs. In Handbook of coding
theory, Vol. I, II, pages 499–648. North-Holland, Amsterdam, 1998. 1

[LL22] Elyassaf Loyfer and Nati Linial. Linear programming hierarchies in coding theory: Dual
solutions, 2022. URL: https://arxiv.org/abs/2211.12977, arXiv:2211.12977. 8, 9

[LL23a] Nati Linial and Elyassaf Loyfer. An elementary proof of the first lp bound on the rate
of binary codes, 2023. arXiv:2303.16619. 1, 10

[LL23b] Elyassaf Loyfer and Nati Linial. New LP-based upper bounds in the rate-vs.-distance
problem for binary linear codes. IEEE Trans. Inform. Theory, 69(5):2886–2899, 2023.
doi:10.1109/tit.2023.3236660. 1, 4, 5, 6, 10

[MRRW77] Robert J. McEliece, Eugene R. Rodemich, Howard Rumsey, Jr., and Lloyd R. Welch.
New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities. IEEE
Trans. Inform. Theory, IT-23(2):157–166, 1977. doi:10.1109/tit.1977.1055688. 1,
3, 9

[NS05] M. Navon and A. Samorodnitsky. On delsarte’s linear programming bounds for bi-
nary codes. In 46th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’05), pages 327–336, 2005. doi:10.1109/SFCS.2005.55. 1, 8, 9

[NS09] Michael Navon and Alex Samorodnitsky. Linear programming bounds for codes via
a covering argument. Discrete Comput. Geom., 41(2):199–207, 2009. doi:10.1007/

s00454-008-9128-0. 1

[Sam01] Alex Samorodnitsky. On the optimum of Delsarte’s linear program. J. Combin. Theory
Ser. A, 96(2):261–287, 2001. doi:10.1006/jcta.2001.3176. 1

[Sam23a] Alex Samorodnitsky. On the difficulty to beat the first linear programming bound for
binary codes, 2023. URL: https://arxiv.org/abs/2308.16038, arXiv:2308.16038.
8

[Sam23b] Alex Samorodnitsky. One more proof of the first linear programming bound for binary
codes and two conjectures, 2023. doi:10.1007/s11856-023-2514-8. 1

[Sch05] Alexander Schrijver. New code upper bounds from the Terwilliger algebra and
semidefinite programming. IEEE Trans. Inform. Theory, 51(8):2859–2866, 2005.
doi:10.1109/TIT.2005.851748. 1

[Via17] Maryna S. Viazovska. The sphere packing problem in dimension 8. Ann. of Math. (2),
185(3):991–1015, 2017. doi:10.4007/annals.2017.185.3.7. 1, 4

45

https://doi.org/10.1007/s10107-006-0030-3
https://arxiv.org/abs/2211.12977
http://arxiv.org/abs/2211.12977
http://arxiv.org/abs/2303.16619
https://doi.org/10.1109/tit.2023.3236660
https://doi.org/10.1109/tit.1977.1055688
https://doi.org/10.1109/SFCS.2005.55
https://doi.org/10.1007/s00454-008-9128-0
https://doi.org/10.1007/s00454-008-9128-0
https://doi.org/10.1006/jcta.2001.3176
https://arxiv.org/abs/2308.16038
http://arxiv.org/abs/2308.16038
https://doi.org/10.1007/s11856-023-2514-8
https://doi.org/10.1109/TIT.2005.851748
https://doi.org/10.4007/annals.2017.185.3.7


A Other Formulations of the Hierarchy

In this section we state other formulations that are not used in the current work.

A.1 Lovász ϑ′ Formulation

The ϑ′ formulation mentioned in Section 2 is (34), whose dual is (35); a linear code C ∈ Validn

yields a natural solution MC of (34) given by MC(X,Y )
def
= 1[X1, . . . ,Xℓ, Y1, . . . , Yℓ ∈ C]/|C|ℓ,

whose value is |C|ℓ.

Variables: M : Fℓ×n
q × Fℓ×n

q → R symmetric

max
∑

X,Y ∈Fℓ×n
q

M(X,Y )

s.t. tr(M) = 1 (Normalization)

M(X,Y ) = 0 ∀X,Y ∈ Fℓ×n
q with X − Y /∈ Validn,ℓ (Validity)

M ⪰ 0 (Positive semidefiniteness)

M(X,Y ) ⩾ 0 ∀X,Y ∈ Fℓ×n
q (Non-negativity)

(34)

Variables: N : Fℓ×n
q × Fℓ×n

q → R symmetric

min β

s.t. βI −N ⪰ 0 (Maximum eigenvalue)

N(X,Y ) ⩾ 1 ∀X,Y ∈ Fℓ×n
q with X − Y ∈ Validn,ℓ (Validity)

(35)

A.2 LP Formulation

To get from the ϑ′ formulation of (34) to the LP formulation of (1), one first notes that all
Fn
q -symmetric solutions must lie in the span of the matrices

EZ(X,Y )
def
= 1[X − Y = Z] (X,Y, Z ∈ Fℓ×n

q ).

On the other hand, the space of Fn
q -invariant solutions is the also the span of the Fourier matrices

FZ(X,Y )
def
= χZ(X)χZ(Y ) (X,Y, Z ∈ Fℓ×n

q ),

which are positive semidefinite. The corresponding change of variables is summarized by∑
Z∈Fℓ×n

q

f(Z)EZ =
∑

Z∈Fℓ×n
q

f̂(Z)FZ , f̂(Z)
def
=

1

qnℓ

∑
X∈Fℓ×n

q

f(X)χZ(X) (f ∈ CFℓ×n
q ).

Since any Fn
q -symmetric solution is of the first form above for some f : Fℓ×n

q → C, the semidefinite

constraint amounts to non-negativity of f̂ and all other constraints translate easily to linear
constraints on f .
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A.3 Krawtchouk Formulation

The Krawtchouk formulation mentioned in Section 2 uses the Sn-symmetry to rewrite the Fourier
transform in terms of the higher-order Krawtchouk polynomials Kh : Confign,ℓ → C (h ∈ Confign,ℓ)
given by

Kh(g)
def
=

∑
F∈Fg,h

∏
w∈Fℓ

q

(
g(w)

F (−, w)

) ∏
u,w∈Fℓ

q

χu(w)
F (u,w),

Fg,h
def
=

F : Fℓ
q × Fℓ

q → N

∣∣∣∣∣∣
∑
u∈Fℓ

q

F (u,−) = g ∧
∑
w∈Fℓ

q

F (−, w) = h

 ,

(
g(w)

F (−, w)

)
def
=

g(w)!∏
u∈Fℓ

q
F (u,w)!

, χu(w)
def
= exp

(
2πiuw

q

)
.

In both the Krawtchouk formulation of (36) and its dual in (37) below, g− ∈ Confign,ℓ denotes

the configuration given by g−(u)
def
= g(−u); a linear code C ∈ Validn yields a natural solution fC

of (36) given by fC(g)
def
= |{X ∈ (confign,ℓ)

−1(g) | X1, . . . , Xℓ ∈ C}|.

Variables: f : Confign,ℓ → R

max
∑

g∈Confign,ℓ

f(g)

s.t. f(confign,ℓ(0)) = 1 (Normalization)

f(g) = 0 ∀g ∈ confign,ℓ(Fℓ×n
q \Validn,ℓ) (Validity)∑

g∈Confign,ℓ

Kh(g)f(g) ⩾ 0 ∀h ∈ Confign,ℓ (Krawtchouk)

f(g) ⩾ 0 ∀g ∈ Confign,ℓ (Non-negativity)

f(g) = f(g−) ∀g ∈ Confign,ℓ (Symmetry)

(36)

Variables: f : Confign,ℓ → R, β : Confign,ℓ → R

min 1 +
∑

g∈Confign,ℓ

Kg(0)f(g)

s.t. 1 +
∑

g∈Confign,ℓ

Kg(h)f(g) + β(g)− β(g−) ⩽ 0 ∀h ∈ confign,ℓ(Validn,ℓ \{0}) (Validity)

f(g) ⩾ 0 ∀g ∈ Confign,ℓ (Non-negativity)

(37)

An alternative way of obtaining (36) is directly from the Lovász ϑ′ formulation (34) by sym-
metrizing the action of the natural semidirect product Fn

q ⋊ Sn that joins the actions of Fn
q and Sn

into a single action. In turn, this amounts to the observation that this Fn
q ⋊ Sn-action turns Fℓ×n

q

naturally into a association scheme that is both a translation scheme and Schurian.
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B Notation

The set of non-negative integers is denoted by N and the set of positive integers is denoted by

N+
def
= N \ {0}. For n ∈ N, we let [n]

def
= {1, . . . , n}. We also let R+ be the set of non-negative reals.

For q, n ∈ N, we denote the nth geometric sum of ratio q by

[n]q
def
=

n−1∑
j=0

qj =


qn − 1

q − 1
, if q ̸= 1,

n, if q = 1.

We extend the notation above to when n ⩽ 0 in the natural way so that
∑a−1

j=a cj = 0 and∑b
j=a cj = −

∑a−1
j=b+1 cj .

Given further k ∈ Z, we denote the q-Gaussian falling factorial of n by k, the q-Gaussian
factorial and the q-Gaussian binomial of n by k by

(n)k,q
def
=

k−1∏
j=0

[n− j]q, k!q
def
= (k)k,q,

(
n

k

)
q

def
=


(n)k,q
k!q

, if k ⩾ 0,

0, otherwise,

respectively. When k ⩽ 0, products should be interpreted in the usual fashion so that
∏a−1

j=a cj = 1

and
∏b

j=a cj =
∏a−1

j=b+1 c
−1
j . We will omit q from the notation when q = 1, so that the above match

the usual falling factorial, factorial and binomial, respectively.
For a set V and k ∈ Z, we denote by

(
V
k

)
the set of all subsets of V of size k (so |

(
V
k

)
| =

(|V |
k

)
when V is finite).

For a prime power q ∈ N, we denote by Fq the field with q elements and for x ∈ Fn
q , we denote

by |x| def= |supp(x)| the Hamming weight of x. For an Fq-vector space V , we denote by LFq(V ) the
set of all Fq-linear subspaces of V and we denote by GLℓ(Fq) the general linear group of degree ℓ
over Fq (i.e., the group of non-singular ℓ× ℓ matrices over Fq). For a matrix X, we denote by Xi the
ith row of X and by Xi1,...,it the matrix obtained by restricting X to the rows indexed by i1, . . . , it.

A distance-d code is a code C ⊆ Fn
q such that |x− y| ⩾ d for all x, y ∈ C with x ̸= y. We denote

by Aq(n, d) the size of the largest distance-d code in Fn
q and by ALin

q (n, d) the size of the largest
distance-d code in Fn

q that is also a subspace of Fn
q .
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