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Quantum entanglement is a fundamental property of quantum mechanics and it serves
as a basic resource in quantum computation and information. Despite its importance, the
power and limitations of quantum entanglement are far from being fully understood. Here,
we study entanglement via the lens of computational complexity. This is done by studying
quantum generalizations of the class NP with multiple unentangled quantum proofs, the
so-called QMA(2) and its variants. The complexity of QMA(2) is known to be closely
connected to a variety of problems such as deciding if a state is entangled and several classical
optimization problems. However, determining the complexity of QMA(2) is a longstanding
open problem, and only the trivial complexity bounds QMA ⊆ QMA(2) ⊆ NEXP are known.

In this work, we study the power of unentangled quantum proofs with non-negative
amplitudes, a class which we denote QMA+(2). In this setting, we are able to design proof
verification protocols for (increasingly) hard problems both using logarithmic size quantum
proofs and having a constant probability gap in distinguishing yes from no instances. In
particular, we design global protocols for small set expansion (SSE), unique games (UG), and
PCP verification. As a consequence, we obtain NP ⊆ QMA+

log(2) with a constant gap. By
virtue of the new constant gap, we are able to “scale up” this result to QMA+(2), obtaining
the full characterization QMA+(2) = NEXP by establishing stronger explicitness properties
of the PCP for NEXP. We believe that our protocols are interesting examples of proof
verification and property testing in their own right. Moreover, each of our protocols has a
single isolated property testing task relying on non-negative amplitudes which if generalized
would allow transferring our results to QMA(2).

One key novelty of these protocols is the manipulation of quantum proofs in a global
and coherent way yielding constant gaps. Previous protocols (only available for general
amplitudes) are either local having vanishingly small gaps or treating the quantum proofs as
classical probability distributions requiring polynomially many proofs. In both cases, these
known protocols do not imply non-trivial bounds on QMA(2).
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1 Introduction

Quantum entanglement is a fundamental property of quantum mechanics and it plays a
major role in several fields such as quantum computation, information, cryptography, con-
densed matter physics, etc [HHHH09, NC10, Wat18, Oru19]. Roughly speaking, quantum
entanglement is a distinctive form of quantum correlation that is stronger than classical
correlations. Entanglement can lead to surprising (and sometimes counter-intuitive) phe-
nomena as presented in the celebrated EPR paradox [EPR35] and the violation of Bell’s
(style) inequalities [Bel64, CHSH69]. In a sense, entanglement is necessary to access the full
power of quantum computation since it is known that quantum computations requiring “lit-
tle” entanglement can be simulated classically with small overhead [Vid03]. Entanglement is
also crucial in a variety of protocols such as quantum key distribution [BB14], teleportation
[BBC+93], interactive proof systems [JNV+20], and so on. However, despite this central role,
the power and limitations of quantum entanglement are far from being understood. Here,
we study quantum entanglement via the lens of computational complexity. More precisely,
we investigate the role of entanglement in the context of quantum proof verification.

The notions of provers, proofs, and proof verification play a central role in our under-
standing of classical complexity theory [AB09]. The quantum setting allows for various and
vast generalizations of these classical notions [VW16]. For instance, by allowing the proof to
be a quantum state of polynomial size and the verifier to be an efficient quantum machine,
one obtains the class QMA which is a natural generalization of the class NP [Wat00]. The
QMA proof verification model can be further generalized to two quantum proofs from two
unentangled provers. This generalization gives rise to a class known as QMA(2) [KMY03]
(see Definition 3.1). This latter complexity class is known to be closely connected to a
variety of computational problems such as the fundamental problem of deciding whether a
quantum state (given its classical description) is entangled or not. It is also connected to a
variety of classical optimization problems such as polynomial and tensor optimization over
the sphere as well as some norm computation problems [HM13].

Determining the complexity of QMA(2) is a major open problem in quantum complexity.
Contrary to many other quantum proof systems (e.g., QIP [JJUW11] and MIP∗ [JNV+20]),
we still do not know any non-trivial complexity bounds for QMA(2). On one hand, we
trivially have QMA ⊆ QMA(2) since a QMA(2) verifier can simply ignore one of the proofs.
On the other hand, a NEXP verifier can guess exponentially large classical descriptions
of two quantum proofs of polynomially many qubits and simulate the verification protocol
classically in exponential time. Hence, we also have QMA(2) ⊆ NEXP. Despite consider-
able effort with a variety of powerful techniques brought to bear on this question, such as
semi-definite programming hierarchies [DPS04, BKS17, HNW17], quantum de Finetti the-
orems [KM09, BH13, BCY11], and carefully designed nets [BH15, SW12], only the trivial
bounds QMA ⊆ QMA(2) ⊆ NEXP are known.

Even though there are no non-trivial complexity bounds for QMA(2), there are results
showing surprisingly powerful consequences of unentangled proofs. An early result by Blier
and Tapp [BT09] shows that two unentangled proofs of a logarithmic number of qubits
suffice to verify the NP-complete problem of graph 3-coloring. The version of QMA(2) with
logarithmic-size proofs is known as QMAlog(2). It is know that QMAlog(1) ⊆ BQP from
the work of Marriott and Watrous [MW05], and this together with their protocol provides
some evidence that having two unentangled proofs of logarithmic size is more powerful than
having a single one. This suggests that the lack of quantum entanglement across the proofs
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can play an important role in proof verification. Furthermore, note that this situation is
in sharp contrast with the classical setting where having two classical proofs of logarithmic
size is no more powerful than having a single one since two proofs can be combined into a
larger one.

The above protocol has a critical drawback, namely, the verifier only distinguishes yes
from no instances with a polynomially small probability. This distinguishing probability is
known as the gap of the protocol. These weak gaps are undesirable for two reasons. First,
we cannot obtain tighter bounds on QMA(2) from these protocols since scaling up these
results to QMA(2) leads to exponentially small gaps. Such tiny gaps fall short to imply
NEXP = QMA(2) as the definition of QMA(2) can tolerate up to only polynomially small
gaps. Second, the strength of the various hardness results that can be deduced from these
protocols depends on how large the gap is. For instance, we do not know if several of these
problems are also hard to approximate within say a more robust universal constant. A series
of subsequent works extended Blier and Tapp’s result in the context of QMAlog(2) protocols
for NP-complete problems [Bei10, GNN12, CF13]. However, all these protocols suffer from
a polynomially small gap.

Another piece of evidence pointing to the additional power of unentangled proofs appears
in the work of Aaronson et al. [ABD+08]. They show that Õ(

√
n) quantum proofs of

logarithmic size suffice to decide an NP-complete variant of the SAT problem of size n with
a constant gap. Due to the work of Harrow and Montanaro [HM13], it is possible to convert
this protocol into a two-proof protocol where each one has size Õ(

√
n) and the gap remains

constant. Unfortunately, this converted protocol does not imply tighter bounds for QMA(2)
since it only shows NP ⊆ QMA(2).

In this work, we study unentangled quantum proofs with non-negative amplitudes.
We name the associated complexity classes introduced here as QMA+(2) and QMA+

log(2)
(see Definition 3.2) in analogy to QMA(2) and QMAlog(2), respectively. The main question
we consider is the following:

What is the power of unentangled proofs with non-negative amplitudes?

This non-negative amplitude setting is intended to capture several structural properties
of the general QMA(2) model while providing some restriction on the adversarial provers
in order to gain a better understanding of unentangled proof verification. In this non-
negative amplitude setting, we are able to derive much stronger results and fully characterize
QMA+(2). In particular, we are able to design QMA+

log(2) protocols with constant gaps for
(increasingly) hard(er) problems. Each of these protocols contributes to our understanding
of proof verification and leads to different sets of techniques, property testing routines, and
analyses.

Our first protocol is for the small set expansion (SSE) problem [RS10, BBH+12]. Roughly
speaking, the SSE problem asks whether all small sets of an input graph are very expand-
ing1 or if there is a small non-expanding set. The SSE problem arises in the context of
the unique games (UG) conjecture. This conjecture plays an important role in the classical
theory of hardness of approximation [Kho02, KR03, KKMO04, Rag08, KO09, Kho10]. One
key reason is that the unique games problem is a (seemingly) more structured computational
problem as opposed to more general and provably NP-hard constraint satisfaction problems

1In terms of edge expansion.
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(CSPs) making it easier to reduce UG to other problems. In this context, the SSE problem
is considered an even more structured problem than UG since some of its variants can be
reduced to UG. This extra structure of SSE compared to UG can make it even easier to
reduce SSE to other problems. So far the hardness of SSE remains an open problem —it
has evaded the best known algorithmic techniques [RST10].

Theorem 1.1 (Informal). Small set expansion is in QMA+
log(2) with a constant gap.

Our second protocol is for the unique games problem. The UG problem is a special
kind of CSP wherein the constraints are permutations and it is enough to distinguish almost
fully satisfiable instances from those that are almost fully unsatisfiable. The fact that the
constraints of a UG instance are bijections which in turn can be implemented as valid
(i.e., unitary operators) is explored in our protocol. Although the hardness of UG remains
an open problem, a weaker version of the UG problem was recently proven to be NP-
hard [DKK+18a, KMS18, BKS19]. From our UG protocol and this weaker version of the
problem, we obtain NP ⊆ QMA+

log(2) with a constant gap (see Corollary 1.3 below).

Theorem 1.2 (Informal). Unique Games is in QMA+
log(2) with a constant gap protocol.

A key novelty of our protocols is their global and coherent manipulation of quantum
proofs leading to constant gaps. The previous protocols for QMAlog(2) with a logarithmic
proof size are local in the sense that they need to read local information2 from the quantum
proofs thereby suffering from vanishingly small gaps. Furthermore, the previous protocol
with a constant gap treats the quantum proofs as classical probability distributions (e.g.,
relying on the birthday paradox) and this classical treatment ends up requiring polynomially
many proofs to achieve the constant gap.

Another interesting feature of our protocols is that they already almost work in the
general amplitude case in the sense that each protocol isolates a single property testing task
relying on non-negative amplitudes. If such a property testing task can be generalized to
general amplitudes, then the corresponding protocol works in QMAlog(2) as well.

As discussed earlier, by Theorem 1.2 together with the work on the 2-to-2 conjecture,
we obtain that NP is contained in QMA+

log(2) with a constant gap.

Corollary 1.3 (Informal). NP ⊆ QMA+
log(2) with a constant gap.

By virtue of the constant gaps of our protocols for QMA+
log(2), we can “scale up” our

results to give an exact characterization of QMA+(2) building on top of ideas of very efficient
classical PCP verifiers.

Theorem 1.4. QMA+(2) = NEXP.

The characterization above is proven by designing a global QMA+(2) protocol for NEXP.
To design this global protocol, we not only rely on the properties of the known efficient
classical PCP verification for NEXP, but we need additional explicitness and regularity
properties. Regarding the explicitness, we call doubly explicit the kind of PCP required in
our global protocol (in analogy to the terminology of graphs). Roughly speaking, doubly

2Roughly speaking, they treat a quantum proof as quantum random access codes that encodes n bits
using log2(n) qubits. By Nayak’s bound the probability of recovering a queried position is polynomially
small in n.
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explicitness means that we can very efficiently not only determine the variables appearing
in any given constraint, but also reverse this mapping by very efficiently determining the
constraints in which a variable appears. Here, we prove that these properties can be indeed
obtained by carefully combining known PCP constructions.

An intriguing next step is to explore the improved understanding of the unentangled
proof verification from our protocols in the general amplitude case. Investigating problems
like SSE and UG might provide more structure towards this goal. Characterizing the com-
plexity of QMA(2) would be extremely interesting whatever this characterization turns out
to be.

Organization. This document is organized as follows. In Section 2, we give an overview
of our global protocols. In Section 3, we formally define QMA+(2) and its variants as well
as fix some notation and recall basic facts. In Section 4, we develop some quantum property
testing primitives that will be common to our protocols. In Section 5, we present our global
protocol for SSE. In Section 6, we present our global protocol for UG and we use it to
prove NP ⊆ QMA+

log(2) with a constant gap. In Section 7, we prove the characterization
QMA+(2) = NEXP.

2 Overview of Global Protocols

We now give an overview of our global protocols for SSE in Section 2.1, for UG in Section 2.2
and for NEXP in Section 2.3. As alluded earlier, a key insight of these protocols is the
manipulation of quantum proofs in a global and coherent way in order to achieve a constant
gap. For the problems considered here, there is always an underlying graph to the problem
whose edge set can be (or almost) decomposed into perfect matchings. Taking advantage
of this collection of perfect matchings will be one of the aspects in allowing for a global
manipulation of the quantum proofs in these protocols. It will be more convenient to design
protocols with constantly many unentangled proofs rather than just two. Recall that due to
the result of Harrow and Montanaro [HM13], these protocols can be converted into two-proof
protocols with a constant multiplicative increase in the proof size.

2.1 Small Set Expansion Protocol

We provide an overview of the SSE protocol in QMA+
log(2) with a constant gap from Sec-

tion 5. Suppose that we are given an input n-vertex graph G on the vertex set V . Our goal
is to decide whether G is a yes or no instance of (η, δ)-SSE. Recall that, in the yes case, there
exists a set S of measure δ, such that S essentially does not expand, i.e., ΦG(S) ≤ η ≈ 0.
Nonetheless, in the no case, every set S of measure at most δ has near-perfect expansion,
i.e., ΦG(S) ≥ 1− η ≈ 1.

In the design of the protocol, we are allowed two unentangled proofs on Oη,δ(log(n))
qubits. It is natural to ask for one of these proofs to be a state |ψ⟩ “encoding” a uniform
superposition of elements of a purported non-expanding set S of the form

|ψ⟩ =
1√
S

∑
i∈S

|i⟩ .
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We now check the non-expansion of the support set of |ψ⟩ as follows. Suppose we could
apply the adjacency matrix A of G directly to the vector |ψ⟩. While A is not necessarily
a valid quantum operation, it will not be difficult to resolve this issue later. If we are in
the yes case and the support of |ψ⟩ indeed encodes a non-expanding set, we would have
supp(A|ψ⟩)∩ supp(|ψ⟩) ≈ supp(|ψ⟩). However, if we are in the no case, provided the size of
supp(|ψ⟩) is small (at most a δ fraction of the vertices), the small set expansion property of
G would imply supp(A|ψ⟩) ∩ supp(|ψ⟩) ≈ ∅.

How can we check the support conditions above? For this, suppose that we have not only
one copy of |ψ⟩ but rather two equal unentangled copies |ψ1⟩ = |ψ2⟩. We apply A to |ψ1⟩
and then measure the correlation between A|ψ1⟩ and |ψ2⟩. In the yes case, the two vectors
are almost co-linear, whereas in the no case they are almost orthogonal. It is well-known
that co-linearity versus orthogonality of two unentangled quantum states can be tested via
the swap test.

We now address the issue that the adjacency matrix A may not be a unitary matrix, and
hence it is not necessarily a valid quantum operation. Nonetheless, the adjacency matrix
of a d-regular graph can always be written as a sum of d permutation matrices P1, . . . , Pd,
which are special unitary matrices. In terms of the support guarantees described above, it
is possible to show that applying one of these permutation matrices uniformly at random in
the protocol leads to a similar behavior as applying A.

In the yes case, it can be shown that all goes well with the above strategy. However,
in the no case, things become more delicate starting with the fact that |ψ⟩ is an arbitrary
adversarial state of the form

|ψ⟩ =
∑
i∈S

αi|i⟩ ,

where we have no control over the amplitudes αi’s magnitudes and phases.
One important issue is that the support of |ψ⟩ may not be small (i.e., at most a δ

fraction), and the graph G may have large non-expanding sets even in the no case. We
design a sparsity test to enforce that its support is indeed small. The soundness of this spar-
sity test takes advantage of the non-negative amplitudes assumption to achieve dimension-
independent parameters and this is the only test of the protocol that rely on the non-negative
assumption. This points to a very natural question in quantum property testing: how effi-
ciently can we test sparsity3 with the help of a prover in the general amplitude case?

In our protocol, the support conditions from above are actually checked by considering
the average magnitude of the overlap between Pr|ψ⟩ and |ψ⟩. This overlap governs (part of)
the acceptance probability of the protocol which can be bounded as

E
r∈[d]

[|⟨Prψ |ψ⟩|] ≤ 1

d

∑
i,j

Ai,j |αi| |αj | =
1

d
⟨A |ψ| | |ψ|⟩ ,

where ||ψ|⟩ =
∑

i∈S |αi| |i⟩, with this bound phases are no longer relevant.
A second important and more delicate issue is that the magnitude of the amplitudes

αi’s of |ψ⟩ may be very far from flat. By definition, the SSE property of the graph G only
states that for every “flat” indicator vector 1S , where S is any vertex set of measure at most

3For this task, we can have multiple unentangle copies of the state to be tested as well multiple unentangle
proofs to help the tester.
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δ, we have

1

d

〈
A

1S√
|S|

∣∣∣∣∣ 1S√
|S|

〉
≈η,d 0 .

Nonetheless, in order to not be fooled by the provers, we need a stronger analytic condition

max
u : ∥u∥2=1,|supp(u)|≤δ|V |

1

d
⟨Au |u⟩ ≈ 0 ,

where u ranges over arbitrary unit vectors. For every disjoint set S, T ⊆ V of combined
measure at most δ, the SSE property of G allows us to deduce

1

d

〈
A

1S√
|S|

∣∣∣∣∣ 1T√
|T |

〉
≈η,d 0 . (2.1)

Ideally, we would like to leverage the bounds we have for flat indicator vectors of small sets
from (2.1) to conclude that arbitrary unit vectors of small support have a bounded quadratic
form. The seminal work on 2-lifts [BL06] of Bilu and Linial dealt with a similar question, but
without the sparse support conditions. Surprisingly, they gave sufficient conditions for this
phenomenon. Here, we prove that the same phenomenon also happens for the sparse version
of the problem. In particular, this shows that SSE graphs satisfy the more “robust” analytic
SSE property. Using this robust property, we conclude the soundness of the protocol.

2.2 Unique Games Protocol

We provide an overview of the UG protocol in QMA+
log(2) with a constant gap from Section 6.

Suppose that we are given an input UG instance with alphabet Σ, namely, an n-vertex d-
regular graph G = (V,E), where each directed4 edge e ∈ E is associated with a permutation
constraint fe : Σ → Σ. We say that an assignment ℓ : V → Σ satisfies an edge e = (i, j) if
fe(ℓ(i)) = ℓ(j). This means that for each assigned value for i there is a unique value for j
and vice-verse satisfying the permutation constraint of edge e. The goal is to distinguish
between (yes) there exists an assignment satisfying at least 1− η fraction of the constraints,
and (no) every assignment satisfies at most a δ fraction of constraints.

In the yes case, the protocol expects from the unentangled provers copies of a quantum
state |ψ⟩ encoding an assignment ℓ of value at least 1− η of the form

|ψ⟩ =
n∑
i=1

1√
n
|i⟩|ℓ(i)⟩ . (2.2)

We will again explore the underlying graph structure of the problem to make the proof
verification global leading to a constant gap. Similarly to the SSE protocol, we will also
use the fact that the adjacency matrix A of a d-regular graph can be written as a sum of d
permutation matrices P1, . . . , Pd and these matrices are special cases of unitary operators.
Using a permutation matrix Pr and the UG constraints, we will define a unitary operator
Πr intended to help us check the constraints along the edges of Pr. Each Πr is defined as
follows

Πr|i⟩|a⟩ 7→ (Pr|i⟩) |f(i,Pri)(a)⟩ ,
4The reverse edge of e is typically associated with the constraint f−1

e .
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where i ranges in V and a ranges in Σ. The crucial observation is that if the constraints along
the edges of Pr are almost fully satisfied by ℓ, we should have |ψ⟩ ≈ Πr|ψ⟩ whereas if they
almost fully unsatisfied by ℓ, we should have |ψ⟩ almost orthogonal to Πr|ψ⟩. By sampling
a uniformly random Πr and checking this approximate co-linearity versus orthogonality
property, we obtain a global test to check if an assignment is good.

In the no case, there is no reason the adversarial provers will provide proofs of the form
of (2.2) encoding a valid assignment. In general, we will have an arbitrary state of the form

|ψ⟩ =
n∑
i=1

αi|i⟩

(∑
a∈Σ

βi,a|a⟩

)
.

There are two main issues. First, the adversary can omit the assignment to several vertices
by making αi ≈ 0. Second, even if all the vertices are present in the superposition with
amplitudes αi = 1/

√
n, the prover can assign a superposition of multiple values to each

position as in

|ψ⟩ =
n∑
i=1

1√
n
|i⟩

(∑
a∈Σ

βi,a|a⟩

)
.

Fortunately, both of these issues can be handled in a global way. In addressing the second
issue, we currently rely on the non-negative amplitudes assumption. To give a flavor of
why non-negative amplitudes can be helpful, consider the following simplified scenario that
Σ = {0, 1} and

|ψ⟩ =
n∑
i=1

1√
n
|i⟩
(

1√
2
|0⟩+ 1√

2
|1⟩
)
.

Suppose that we measure the second register (containing the values in Σ) of two copies of
|ψ⟩ obtaining |0⟩ and |1⟩, and let |ψ0⟩ and |ψ1⟩ be the resulting states on the first register
containing the indices of the vertices, respectively. In the ideal scenario, if each vertex has
a single well defined value in |ψ⟩ (which is not the case in this example), we should have
|ψ0⟩ ⊥ |ψ1⟩. If not (as in this toy example), the supports of |ψ0⟩ and |ψ1⟩ are not disjoint.
With non-negative amplitudes, if there is substantial “mass” in the intersection of their
supports, then this condition can be tested using a swap test since ⟨ψ0 |ψ1⟩ will be large (in
this toy example it is 1 as |ψ0⟩ = |ψ1⟩ =

∑n
i=1 1/

√
n|i⟩).

With this UG protocol and the recent proof5 of the NP-hardness of deciding UG with
parameters η = 1/2 and δ > 0 an arbitrarily small chosen constant, we can deduce that
NP ⊆ QMA+

log(2).

2.3 PCP Verification Protocol for NEXP

We provide an overview of the NEXP protocol in QMA+(2) with constant gap from Section 7.
Recall that scaling up to QMA(2) the previous protocols for QMAlog(2) from literature leads
to exponentially small gaps which are intolerable to QMA(2). This motivates our study of
constant gap protocols for hard problems in QMA+

log(2). Our new constant gap protocols can
be indeed scaled up to QMA+(2) and the gap remains constant! Another issue unresolved

5Coming from the proof of the 2-to-2 conjecture.
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in the previous work is that if we scale up the protocol naively, the running time of the
verifier becomes exponential and this is also intolerable to QMA(2) (or QMA+(2)) which
requires a polynomial-time BQP verifier. Simultaneously achieving a constant gap with
a polynomial-time verifier is quite interesting since this requires considering very efficient
forms of quantum proof verification.

Classically, it is known that NEXP admits polynomial time proof verification protocols
with a constant gap, i.e., very efficient PCPs. Note that the proof size is exponentially
large in the input size and the verification runs in polylogarithmic time in the size of the
proof. These protocols manipulate exponentially large objects given in very succinct explicit
forms. We will build on some of these PCPs results to design our QMA+(2) protocol for
NEXP, but our global verification of quantum proofs will require even stronger explicitness
and regularity properties of these objects. In this work, we prove these additional properties
by carefully investigating the composition of known PCP constructions.

A PCP protocol naturally gives rise to a label cover CSP (via a simple and standard
argument). We give a global QMA+(2) protocol for label cover arising from the PCP for
NEXP with the additional explicit and regularity properties alluded above. Recall that a
label cover instance is given by a bipartite graph G = (L⊔R,E) with a left and right vertex
partitions L and R, left and right alphabets ΣL and ΣR and constraints fe : ΣL → ΣR
on the edges e ∈ E. Given assignments to the left and right partitions ℓL : L → ΣL and
ℓR : R → ΣR, a constraint on edge e = (i, j) is satisfied if fe(ℓL(i)) = ℓR(j). In this
correspondence of PCP and label cover, the left vertices correspond to the constraints of
the PCP verifier and the right vertices correspond to the symbols of the proof which are the
variables in the PCP constraints.

We now give an abstract simplified description of our protocol to convey some intuition
and general ideas. The precise protocol is actually more involved and somewhat different
(see Section 7 for its full description). In the yes case our QMA+(2) protocol expects to
receive copies of the state |ψL⟩ and from it obtain copies of a state similar to |ψR⟩ both
described below

|ψL⟩ =
∑
i∈L

1√
|L|

|i⟩|ℓL(i)⟩ and |ψR⟩ =
∑
j∈R

1√
|R|

|j⟩|ℓR(j)⟩. (2.3)

Note that the left assignment ℓL specifies the values of all variables appearing in each PCP
constraint, and ℓR specifies the values of variables appearing in the PCP proof. In this
case, checking the constraints (essentially) amounts to testing consistency of these vari-
ous assignments to the variables. To accomplish this goal, we design two operations6 ΓL
and ΓR such that,7 if the label cover instance is fully satisfiable (with ℓL and ℓR), then
ΓL(|ψL⟩) ≈ ΓR(|ψR⟩), otherwise ΓL(|ψL⟩) will be approximately orthogonal to ΓR(|ψR⟩).
In a vague sense, ΓL tries to extract the value of some variables in the constraints and ΓR
tries to replicate the values of each variable in a quantum superposition so that ΓL(|ψL⟩)
and ΓR(|ψR⟩) become equal if ℓL, ℓR are fully satisfying assignments and they become close
to orthogonal if the CSP instance is far from satisfiable (regardless of ℓL, ℓR). At a high
level, there is some parallel8 with the SSE and UG protocols. There, we had |ψL⟩ = |ψR⟩,
ΓL being the identity and ΓR being either Pr (in SSE) or Πr (in UG).

6We stress that this is a simplistic view of the protocol. See Section 7 for the precise technical details.
7assuming |ψL⟩ and |ψR⟩ are of the above form
8As in the SSE and UG protocols, there is also distribution on pairs of operator (ΓL,ΓR) here.
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A crucial point is that to make the operations ΓL and ΓR efficient, we need to be able
to determine both (1) the neighbors of any given vertex in L in polynomial time and (2) the
neighbors of any given vertex in R in polynomial time. We call an instance satisfying (1)
and (2) doubly explicit. While (1) follows easily from the definition of PCP, to get property
(2) we need to carefully compose known PCP protocols and prove that this property holds.

Similarly to the UG protocol, we also need to check that the quantum proofs are close to
a valid encoding of an assignment to the variables. The provers should not (substantially)
omit the values of variables nor provide a superposition of multiple values for the same
variable. Similarly, checking this second condition is the part of the protocol that currently
relies on non-negative amplitudes.

3 Preliminaries

Let N,R,C stand for the natural, real and complex numbers. N+ denotes the positive
natural number. For any real number x,

sgn(x) =


1 x > 0;

0 x = 0;

−1 x < 0.

In this paper, log stands for the logarithm to the base 2. We adopt both the Dirac notation
and the usual notation of vectors (whichever seems more appropriate) as we consider both
quantum and classical objects. For p ∈ [1,∞), we denote the ℓp-norm of u ∈ Cn as ∥u∥p, i.e.,
∥u∥p = (

∑n
i=1 |ui|

p)1/p. We omit the subscript for the ℓ2-norm, i.e., ∥u∥ := ∥2∥2. We denote
the ℓ∞-norm of u ∈ Cn as ∥u∥∞, i.e., ∥u∥∞ = maxi∈[n] |ui|. Let Sn := {u ∈ Cn+1 : ∥u∥ = 1}
be the n-dimensional sphere and S+n := {u ∈ (R≥0)

n+1 : ∥u∥ = 1} be the intersection of
the n-dimensional sphere and the non-negative orthant. The subscript will almost always
be omitted in this manuscript since it can be confusing and the dimension is normally clear
from the context. Adopt the short-hand notation [n] = {1, 2, . . . , n}. For any universe U
and any subset S ⊆ U , let S := U \ S. Denote the characteristic vector of S by 1S , i.e.,
1S ∈ RU and

1S(x) =

{
1 if x ∈ S,

0 otherwise.

For a logical condition C, we use the Iverson bracket

1 [C] =

{
1 if C holds,
0 otherwise.

3.1 Quantum Merlin-Arthur with Multiple Provers

The class QMA(k) can be formally defined in more generality as follows.

Definition 3.1 (QMAℓ(k, c, s)). Let k : N → N and c, s, ℓ : N → R+ be polynomial time
computable functions. A promise problem Lyes,Lno ⊆ {0, 1}∗ is in QMAℓ(k, c, s) if there
exists a BQP verifier V such that for every n ∈ N and every x ∈ {0, 1}n

9



- Completeness: If x ∈ Lyes, then there exist unentangled states |ψ1⟩, . . . , |ψk(n)⟩, each
on at most ℓ(n) qubits, s.t. Pr[V (x, |ψ1⟩ ⊗ · · · ⊗ |ψk(n)⟩) accepts] ≥ c(n).

- Soundness: If x ∈ Lno, then for every unentangled states |ψ1⟩, . . . , |ψk(n)⟩, each on
at most ℓ(n) qubits, we have Pr[V (x, |ψ1⟩ ⊗ · · · ⊗ |ψk(n)⟩) accepts] ≤ s(n).

The class QMA(k)+ is formally defined in more generality as follows.

Definition 3.2 (QMA+
ℓ (k, c, s)). Let k : N → N and c, s, ℓ : N → R+ be polynomial time

computable functions. A promise problem Lyes,Lno ⊆ {0, 1}∗ is in QMA+
ℓ (k, c, s) if there

exists a BQP verifier V such that for every n ∈ N and every x ∈ {0, 1}n

- Completeness: If x ∈ Lyes, then there exist unentangled states |ψ1⟩, . . . , |ψk(n)⟩, each
on at most ℓ(n) qubits and with real non-negative amplitudes, s.t. Pr[V (x, |ψ1⟩ ⊗ · · · ⊗
|ψk(n)⟩) accepts] ≥ c(n).

- Soundness: If x ∈ Lno, then for every unentangled states |ψ1⟩, . . . , |ψk(n)⟩, each on
at most ℓ(n) qubits and with real non-negative amplitudes, we have Pr[V (x, |ψ1⟩ ⊗
· · · ⊗ |ψk(n)⟩) accepts] ≤ s(n).

In our work, we are only interested in QMA+
log(2) := QMA+

O(logn)(2, c, s), and QMA+(2) :=

∪i∈N QMA+
O(ni)

(2, c, s) for any c, s such that c− s = Ω(1). Due to the work of Harrow and
Montanaro [HM13], it is equivalent to consider QMA+

log(k, c, s),QMA+(k, c, s) for any con-
stant k ≥ 2 for any c − s = Ω(1). In the remainder of the paper, we will use constantly
many proofs without further referring to this result.

3.2 Trace Distances

A standard notion of distance for quantum states is that of the trace distance. The trace
distance between |ψ⟩ and |ϕ⟩, denoted D(|ψ⟩, |ϕ⟩), is

1

2
Tr

√
(|ψ⟩⟨ψ| − |ϕ⟩⟨ϕ|)2.

The following fact provides an alternative definition for trace distance.

Fact 3.3. The trace distance between |ϕ⟩ and |ψ⟩ is given by D(|ϕ⟩, |ψ⟩) = 1
2

√
1− |⟨ϕ |ψ⟩|2.

The trace distance remains small under the tensor product.

Fact 3.4. Let |ψ0⟩, |ϕ0⟩ ∈ Sn and |ψ1⟩, |ϕ1⟩ ∈ Sm for arbitrary n,m ∈ N. Then

D(|ψ0⟩ ⊗ |ψ1⟩, |ϕ0⟩ ⊗ |ϕ1⟩)2 ≤ D(|ψ0⟩, |ϕ0⟩)2 +D(|ψ1⟩, |ϕ1⟩)2.

Proof. By the alternative definition of the trace distance,

D(|ψ0⟩ ⊗ |ψ1⟩, |ϕ0⟩ ⊗ |ϕ1⟩2 =
1

4
(1− |⟨ψ0, ϕ0⟩|2|⟨ψ1, ϕ1⟩|2)

≤ 1

4
(1− |⟨ψ0, ϕ0⟩|2 + 1− |⟨ψ1, ϕ1⟩|2)

= D(|ψ0⟩, |ϕ0⟩)2 +D(|ψ1⟩, |ϕ1⟩)2,

where the second step can be easily verified as −a2b2 + b2 ≤ 1− a2 for any a, b ∈ [0, 1].
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Two states with small trace distance are indistinguishable to quantum protocols.

Fact 3.5. If a quantum protocol accepts a state |ϕ⟩ with probability at most p, then it accepts
|ψ⟩ with probability at most p+ 2D(|ϕ⟩, |ψ⟩).

We will use the well-known swap test to compare unentangled quantum states.

Fact 3.6 (Swap Test). Let |ϕ⟩ and |ψ⟩ be two quantum states on the same Hilbert space.
Then the acceptance probability of SwapTest(|ϕ⟩, |ψ⟩) is

1

2
+

|⟨ϕ |ψ⟩|2

2
.

We can equivalently state the acceptance probability of the swap test in terms of the
trace distance as follows.

Remark 3.7. Any two quantum states |ϕ⟩ and |ψ⟩ pass the swap test with probability 1 −
2D(|ϕ⟩, |ψ⟩)2.

We record the following elementary facts. They are special cases of trace distance made
explicit in the inner product language.

Claim 3.8. Let u, v, z ∈ S+d for any natural number d. Let ε > 0 be some small real constant.

(i) (Closeness preservation) If ⟨u, v⟩2 ≥ 1− ε. Then∣∣⟨u, z⟩2 − ⟨v, z⟩2
∣∣ ≤ 3

√
ε.

(ii) (Triangle inequality) If ⟨u, z⟩2 ≥ 1− ε, and ⟨v, z⟩2 ≥ 1− ε. Then

⟨u, v⟩2 ≥ 1− 2ε.

Proof. The first item is bounded as below

|⟨u, z⟩2 − ⟨v, z⟩2| = |⟨u− v, z⟩| · |⟨u, z⟩+ ⟨v, z⟩|
≤ 2∥u− v∥

≤ 2
√

2− 2⟨u, v⟩

≤ 2

√
2− 2

√
1− ε

≤ 3
√
ε,

where the last step can be verified by elementary calculus.
Next, we prove the second item as follows

⟨u, v⟩2 =
(
2− ∥u− v∥2

2

)2

≥
(
2− ∥u− z∥2 − ∥v − z∥2

2

)2

= (⟨u, z⟩+ ⟨v, z⟩ − 1)2

≥ (2
√
1− ε− 1)2

= 5− 4ε− 4
√
1− ε

≥ 1− 2ε,

where the last step holds because
√
1− ε ≤ 1− ε/2.
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3.3 Expander Graphs

Let G = (V,E) be a d-regular graph. For non-empty sets S, T ⊆ V , we denote by E(S, T )
the following set of edges E(S, T ) = {(x, y) ∈ E | x ∈ S, y ∈ T}.9 The edge expansion of a
non-empty S ⊆ V , denoted ΦG(S), is defined as

ΦG(S) :=
|E(S, V \ S)|

d |S|
,

and it is a number in the interval [0, 1]. For S ⊆ V , we refer to relative size |S| / |V | as the
measure of S. A closely related notion called Cheeger constant for G, is defined as

min
S⊆G:|S|≤|G|/2

|E(S, V \ S)|
|S|

.

4 Property Testing Primitives

In this section, we prove some property testing primitives that we will use as the building
blocks in designing protocols for general problems.

The first test is the symmetry test. In many situations, we ask the prover to provide a
supply of constantly many copies of a state. To make sure that all copies are approximately
the same state, the symmetry test will be invoked. The symmetry test in general can be
applied in any quantum protocol.

The second test is the sparsity test. Consider the scenario where we ask the prover to
provide a state that is supposed to be some subset state. In particular, let Sγ ⊆ Cn be the
set of subset state spanning a γ fraction of computational basis, i.e.,

Sγ :=

{
1

√
γn

∑
i∈S

|i⟩ : S ⊆ [n], |S| = γn

}
.

We call γ the sparsity of the subset state in Sγ . The sparsity test is used to determine
whether a given state is close to Sγ . Our sparsity test relies on the fact that the amplitudes
of the quantum proofs are non-negative.

The third test is the validity test. A natural quantum proof for many problems like the
3-SAT or 3COLOR problem is to put the variables/vertices together with their values/colors
in superpositions. For example, for 3-SAT on [n] variables, such that variable i has value
xi, a valid proof should look like

|ϕ⟩ = 1√
n

∑
i∈[n]

|i⟩|xi⟩.

This can be generalized for an arbitrary set of variables X and an arbitrary value domain
Σ of the variables. Then the valid set would be

V =

{
1√
|X|

∑
i∈X

|i⟩|xi⟩ : ∀i ∈ X,xi ∈ Σ

}
.

9The graphs are usually undirected. In this case, E(S, S) actually counts the same edge twice by the
definition.
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The validity test tells whether a given state is close to a valid state. Our validity test works
only in the situation when the given state is close to a state in S|Σ|−1 , which is guaranteed
by the sparsity test. Thus, this validity test does not generalize.

4.1 ε-tilted States

Before we discuss the tests, let’s make the following definition first.

Definition 4.1 (ε-tilted states). A family of states |ψ1⟩, |ψ2⟩, . . . , |ψk⟩ defined on a same
space is an ε-tilted state if there is a subset R ⊆ [k] such that |R| ≥ (1 − ε)k and for any
i, j ∈ R,

D(|ψi⟩, |ψj⟩) ≤
√
ε.

Furthermore, we call |ψi⟩ a representative state for any i ∈ R, and the subset {|ψi⟩ : i ∈ R}
the representative set.

Note that a 0-tilted state is simply a set of equal states, and any ε-tilted state is also a
δ-tilted state for any δ > ε. The name ε-tilted state may be confusing. Our message is that
instead of treating this object as a set of states, we should simply treat them as a single
state conceptually (for example, think of it as a representative state tilted a little bit). As
we will see later in Section 4.2, when the symmetry test passes, we are supplied with an
ε-tilted state with high probability. Having a large number of (almost) equal states is very
convenient, therefore we always take advantage of the symmetry test and work with ε-tilted
states. We reserve the capital letters, i.e., |Ψ⟩ or simply Ψ, to denote an ε-tilted state. The
size of Ψ, denoted |Ψ|, is the size of Ψ viewed as a set of states.

The tilted states tensorize. In particular, for two sets of states Ψ = {|ψ1⟩, |ψ2⟩, . . . , |ψk⟩}
and Φ = {|ϕ1⟩, |ϕ2⟩, . . . , |ϕk⟩} defined on the same space, let Ψ⊗ Φ denote the set of states
{|ψ1, ϕ1⟩, . . . , |ψk, ϕk⟩} (if there is not a default order, the order can be set arbitrarily).

Proposition 4.2 (Tensorization of tilted states). If Ψ is an ε-tilted state and Φ is a γ-tilted
state. Then Ψ⊗ Φ is an (ε+ γ)-tilted state.

Proof. Let S and T be the representative set of Ψ and Φ, respectively. Simply note that

|S ∩ T | ≥ (1− ε− γ),

and for any i, j ∈ S ∩ T ,

D(|ψi⟩ ⊗ |ϕi⟩, |ψj⟩ ⊗ |ϕj⟩)2 ≤ D(|ψi⟩, |ϕi⟩)2 +D(|ψj⟩, |ϕj⟩)2 ≤ ε+ γ,

where the first inequality can be verified easily from Fact 3.3.

As commented earlier that we should treat an ε-tilted state as a single state conceptually.
Now we make this comment more formal. When we apply some quantum algorithm A to
Ψ, we mean apply A to all the states in Ψ. For any f : Cn → C, when we evaluate f on Ψ,
we mean the expected value of f on all states in Ψ, i.e.,

f(Ψ) = E
|ψ⟩∈Ψ

[f(|ψ⟩)].
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Proposition 4.3. For any quantum algorithm A, let A(|ψ⟩) denote the probability that A
accepts |ψ⟩. Let Ψ be an ε-tilted state, and |ψ⟩ any representative state of Ψ. Then

|A(|ψ⟩)−A(Ψ)| ≤ 3
√
ε. (4.1)

Furthermore, when apply A to Ψ, let α be the fraction of accepted executions of A. Then

Pr[|α−A(Ψ)| ≥
√
ε] ≤ exp(−ε|Ψ|/2), (4.2)

and therefore,

Pr[|α−A(|ψ⟩)| ≥ 4
√
ε] ≤ exp(−ε|Ψ|/2). (4.3)

Proof. Let Ψ = {|ψ1⟩, |ψ2⟩, . . . , |ψk⟩} and S be the representative set for Ψ. Then

A(Ψ) =
1

k

k∑
i=1

A(|ψi⟩) =
|S|
k

E
i∈S

A(|ψi⟩) +
k − |S|
k

E
i ̸∈S

A(|ψi⟩).

It follows that

(1− ε) E
i∈S

A(|ψi⟩) ≤ A(Ψ) ≤ (1− ε) E
i∈S

A(|ψi⟩) + ε,

Therefore,∣∣∣∣ Ei∈SA(|ψi⟩)−A(Ψ)

∣∣∣∣ ≤ ε. (4.4)

By Fact 3.5 and the definition of ε-tilted state, for any j ∈ S,∣∣∣∣ Ei∈SA(|ψi⟩)−A(|ψj⟩)
∣∣∣∣ ≤ 2

√
ε. (4.5)

Combining (4.4) and (4.5), we obtain (4.1). The furthermore part follows by Chernoff
bound.

By (4.3), it suffices to understand the typical behavior of the representative state in a
ε-tilted state.

4.2 Symmetry Test

The symmetry test is described below.
Symmetry Test
Input: Ψ = {a1, a2, . . . , ak} ⊆ S for some even number k.

(i) Sample a random matching π within 1, 2, . . . , k.
(ii) SwapTest on the pairs based on the matching π.

Accept if all SwapTests accept.

Theorem 4.4 (Symmetry test). Suppose Ψ is not an ε-tilted state. Then the symmetry
test passes with probability at most exp(−Θ(ε2k)). On the contrary, for 0-tilted state Ψ, the
symmetry test accepts with probability 1.
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Let N (i) := {aj : D(ai, aj) ≤
√
ε/2} be the set of vectors that are close to ai, and

B := {i : |N (i)| ≤ k/2} the set of vector ai who is far from at least half of the other vectors.
Finally for a random matching define

ℓ(π) = |{i : π(i) ̸∈ N (i)|,

twice the number of distant pairs in the matching.

Claim 4.5. Suppose |B| ≥ γk for any constant γ ∈ (0, 1]. Then

Pr
π

[
ℓ(π) ≥ γk

18

]
≥ 1− exp(−Θ(γk)).

Proof. Without loss of generality, let B = {a1, a2, . . . , am}. Assume m ≤ 2k/3, in another
word, γ ≤ 2/3. Consider the matching procedure: For i from 1 to k/2, find one vector in B
if there is one that hasn’t been matched yet, and pair it with a random unmatched vector;
if all vectors in B have been matched, pair two random unmatched vectors. Let Xi be the
indicator function that at time i, the paired vectors are

√
ε/2 far away in trace distance.

Then,

⌈m/2⌉∑
i=1

E[Xi] ≥
1

2
+

(
k/2− 2

k

)
+ · · ·+

(
k/2− 2⌈m/2⌉+ 2

k

)
=

1

2k
(k − 2⌈m/2⌉+ 2) ⌈m/2⌉

≥ 1

4k
(k −m)m

≥ 1

4
γ(1− γ)k.

Since Sj =
∑j

i=1Xi − E[Xi] is a martingale, we have

Pr

⌈m/2⌉∑
i=1

(Xi − E[Xi]) ≤ −t

 ≤ exp

(
− t2

m+ 1

)
.

Set t = γ(1−γ)k/12, our claim holds. When γ > 2/3, the claim can be verified by comparing
it with the case of γ = 2/3.

Lemma 4.6. Suppose |B| ≥ γk, for any constant γ ∈ (0, 1]. Then the probability that the
symmetry test passes with probability at most exp(−Θ(εγk)).

Proof. Fix any permutation π, the symmetry test passes with probability at most (1 −
ε/2)ℓ(π). Therefore using Claim 4.5, we have

Pr[Symmetry test passes]

≤ Pr

[
ℓ(π) <

γk

18

]
+ (1− ε/2)γk/18

≤ exp(−Θ(γk)) + exp(−Θ(εγk)).

At the point, Theorem 4.4 is a straightforward corollary of the above lemma.

15



Proof of Theorem 4.4. Let G = [k] \ B. Note that for any i, j ∈ G,

N (i) ∩N (j) ̸= ∅.

Thus D(ai, aj) ≤
√
ε by triangle inequality. Thus, |G| ≥ (1−ε)k implies that Ψ is an ε-tilted

state. By contraposition, if Ψ is not an ε-tilted state, then |B| > εk. It follows that, by
Lemma 4.6, the symmetry test passes with probability at most exp(−Θ(ε2k)).

4.3 Sparsity Test

Now we move on to the sparsity test, where the non-negative assumption is used crucially.
In the sparsity test, aside from the state that we want to test whether it’s close to some
subset state, the prover will provide an auxiliary proof to assist the verifier.

In what follows, we provide two versions of the sparsity tests. In the first version, we
want to know if a given the state |ψ⟩ is close to some subset state without prior knowledge
of the sparsity γ. In the second version, there is a target sparsity γ, and we want to know
if |ψ⟩ is close to Sγ . We describe the first version below.

Sparsity test I (with precision ε)
Input: Ψ = {u1, . . . , u2k} ⊆ S+,Φ = {v1, . . . , v2k} ⊆ S+.
Partition Ψ into Ψ0 and Ψ1 of equal size, and partition Φ into Φ0 and Φ1 of equal size.

(i) SwapTest on (Ψ0,1[n]/
√
n);

(ii) SwapTest on (Φ0,1[n]/
√
n);

(iii) SwapTest on (Ψ1,Φ1) .
Accept if and only if α + β ∈ [3/2 −

√
ε, 3/2 +

√
ε] and λ ≤ 1/2 +

√
ε, where α, β and λ

are the fractions of accepted SwapTests in (i), (ii), and (iii), respectively.
Output: α, β, λ.

Theorem 4.7 (Sparsity test). Given Ψ = {ui ∈ S+n }i∈[2k],Φ = {vi ∈ S+n }i∈[2k] two ε-tilted
states for ε < 1/2. Let α, β, and λ be the outputs.

(Completeness) For any 0-tilted states Ψ and Φ, such that Ψ ∈ Sδ, Φ ∈ S1−δ, and Ψ ⊥ Φ.
Then with probability at least 1− exp(−Θ(εk)) the sparsity test accepts, furthermore,

|2α− 1− δ| ≤
√
ε,

|2β − 1− (1− δ)| ≤
√
ε.

(Soundness) The sparsity test accepts with probability at most exp(−εk), if either of the
following fails to hold:

(i) There is S ⊆ [n], such that for any γ > 0,

|S| ≤ (2α− 1)n+ 36ε1/4n/γ,

and for any representative u ∈ Ψ,

∥u|S∥2 ≥ 1− γ − 2
√
ε.

(ii) There is S ⊆ [n], such that

||S| − (2α− 1)n| ≤ O(ε1/12(2α− 1)1/3)n,
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and for any representative u ∈ Ψ,

D
(
u,1S/

√
|S|
)
= O

(
ε1/24

(2α− 1)1/3

)
.

We first prove the following lemma useful in the soundness part.

Lemma 4.8. Let u, v ∈ S+n for an arbitrary natural number n. Let δ ∈ (0, 1) be some
constant. If for some small constant ε > 0, the following items are true:

(i) ⟨u, v⟩2 ≤ ε,
(ii) |⟨u,1[n]/

√
n⟩2 − δ| ≤ ε,

(iii) |⟨v,1[n]/
√
n⟩2 − (1− δ)| ≤ ε.

Then, for any 0 < γ < 1/2, and some |S| ≤ (δ + 2
√
ε/γ)n,

∥u|S∥2 ≥ 1− γ. (4.6)

Furthermore, for some S ⊆ [n] with

(δ −O(ε))n ≤ |S| ≤ (δ +O(ε1/6δ1/3))n

we have

⟨u,1S/
√
|S|⟩ ≥ 1−O

(
ε1/6

δ2/3

)
.

Proof. Let

U =

{
i : ui ≥

√
γ

n

}
, V =

{
i : vi ≥

√
γ

n

}
,

for some γ to be determined later. U will be the set S in the statement. Note that by our
definition of U, V ,

∥u|U∥
2, ∥v|V ∥

2 ≤ γ, (4.7)

∥u|U∥2, ∥v|V ∥2 ≥ 1− γ. (4.8)

We claim that

|U | ≥ (δ − ε)n, (4.9)
|V | ≥ (1− δ − ε)n, (4.10)

|U ∩ V | ≤
√
ε

γ
n. (4.11)

We verify (4.9), and (4.10) will follow the same reasoning. Note

δ − ε ≤
〈
u|U ,

1[n]√
n

〉2

≤ ∥u|U∥2
|U |
n
,
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where the first inequality is given; the second step uses Cauchy-Schwartz. Rearranging the
terms, we get (4.9). Next, we obtain (4.11),

√
ε ≥

∑
i∈U∩V

uivi ≥ |U ∩ V |γ
n
,

where the first step uses (i), and second step follows the definition of U and V . In view of
(4.11), we are done by rearranging the terms. By (4.10)-(4.11), we can conclude

|U | ≤ |U ∪ V | − |V |+ |U ∩ V |

≤ n− (1− δ − ε)n+

√
ε

γ
n

≤
(
δ +

2
√
ε

γ

)
n. (4.12)

This finishes the proof of the first part of the lemma. For the furthermore part, calculate:〈
u,

1U√
|U |

〉
=

1√
|U |

⟨u|U,1[n]⟩

=
1√
|U |

(⟨u,1[n]⟩ − ⟨u|U ,1[n]⟩)

≥
√

n

|U |
(
√
δ − ε−√

γ)

≥

√
δ − ε

δ + 2
√
ε/γ

−
√

γ

δ + 2
√
ε/γ

≥

√
1− 2

√
ε/γ + ε

δ + 2
√
ε/γ

−
√
γ

δ
,

where the third step uses (ii) given in the lemma statement, and (4.7) with Cauchy-Schwartz
inequality; the fourth step uses (4.12). Set κ6 = ε/δ4, γ = κ2δ, then〈

u,
1|U√
|U |

〉
≥ 1−O(κ).

Equipped with the above lemma, we move on to prove Theorem 4.7.

Proof of Theorem 4.7. The completeness part is a straightforward application of Chernoff
bound. So we focus on the soundness part. Let R and T be the representative set of Ψ and
Φ, respectively. When Ψ,Φ are ε-tilted states, then Ψ0,Ψ1,Φ0,Φ1 are 2ε-tilted states, and
Ψ1 ⊗ Φ1 is a 4ε-tilted state by Proposition 4.2. By Proposition 4.3, we have for any i ∈ R,
and j ∈ T ,

Pr
[∣∣⟨ui,1[n]/√n⟩2 + 1− 2α

∣∣ > 12
√
ε
]
≤ exp(−εk), (4.13)

Pr
[∣∣⟨vj ,1[n]/√n⟩2 + 1− 2β

∣∣ > 12
√
ε
]
≤ exp(−εk), (4.14)

Pr
[∣∣⟨ui, vj⟩2 + 1− 2λ

∣∣ > 16
√
ε
]
≤ exp(−2εk). (4.15)
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Set δ = 2α − 1. Note that the test passes only if |(2α − 1) + (2β − 1) − 1| ≤ 2
√
ε.

Together with (4.13) and (4.14), it implies that

|⟨ui,1[n]/
√
n⟩2 − δ| ≤ 12

√
ε, (4.16)

|⟨vj ,1[n]/
√
n⟩2 − (1− δ)| ≤ 14

√
ε. (4.17)

Therefore, if either (4.16) or (4.17) fails, the protocol accepts with probability at most
exp(−εk).

Moreover, the test passes only if 2λ− 1 ≤ 2
√
ε. Thus when the following does not hold

the test fails with probability at least 1− exp(−2εk).

⟨ui, vj⟩2 ≤ 18
√
ε. (4.18)

Now suppose (4.16), (4.17) and (4.18) are true for some i ∈ R and j ∈ T . By Lemma 4.8,
we have:

(i) For any γ, there is subset S ⊆ [n] such that |S| ≤ (2α−1)+36ε1/4/γ)n, and ∥ui|S∥2 ≥
1− γ.

(ii) There is subset S ⊆ [n] such that

||S| − (2α− 1)n| ≤ O(ε1/12(2α− 1)1/3)n,

and for all i ∈ R,

⟨ui,1S/
√
|S|⟩ ≥ 1−O

(
ε1/12

(2α− 1)2/3

)
.

Since for any representative state u ∈ Ψ, D(u, ui) ≤
√
ε, the above two items implies (i)

and (ii) in the theorem statements. Therefore, if either (i) or (ii) in the theorem statements
does not hold, then one of (4.16), (4.17) and (4.18) is not true, failing the sparsity test with
probability at least 1− exp(−εk).

Suppose that we have a target sparsity γ, a constant number in (0, 1). We adapt the
the previous sparsity test slightly to test whether some given state is close to Sγ .

Sparsity test II (with target sparsity γ and precision ε)
Input: Ψ = {u1, . . . , u2k},Φ = {v1, . . . , v2k}

(i) Sparsity test I on (Ψ,Φ) with precision ε.
Accept if the sparsity test I accepts and its output satisfies: 2α− 1 ∈ [γ −

√
ε, γ +

√
ε].

Theorem 4.9 (Sparsity test with target sparsity γ). Let ε > 0 be such that ε < γ4/5.
Suppose that Ψ and Φ are ε-tilted states. Then the sparsity test accepts with probability at
most exp(−εk) if the following fails to hold:

D(Ψ,Sγ) ≤ O

(
ε1/24

γ1/3

)
. (4.19)

If Ψ is the 0-tilted states from Sγ, then there is Φ such that the sparsity test accepts with
probability 1− exp(−εk)
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Proof. To prove the first part, it suffices to show that assuming Theorem 4.7 (ii) holds then
(4.19) holds. Suppose 2α−1 = (1+ ε′)γ. Then we assume that |ε′| ≤

√
ε/γ, since otherwise

the sparsity test rejects immediately. Note that ε′ is a very tiny number in absolute value.
By Theorem 4.7 (ii), there is constant c, C such that for any representative state |ψ⟩ ∈ Ψ,

D(|ψ⟩,Sγ′) ≤
Cε1/24

((1 + ε′)γ)1/3
, (4.20)

where

|γ′ − (2α− 1)| ≤ cε1/12(1 + ε′)1/3γ1/3.

Therefore,

|γ − γ′| ≤ |γ − (2α− 1)|+ |γ′ − (2α− 1)|
≤ ε′γ + cε1/12(1 + ε′)1/3γ1/3

≤ c′ε1/12γ1/3, (4.21)

where the last step holds due to that we set ε < γ4/5, and c′ is some constant. Note that
for any S ⊆ T ⊆ [n], we have,

D

(
1S√
|S|

,
1T√
|T |

)
=

1

2

√√√√1−

(
|S|√
|S||T |

)2

=
1

2

√
|T | − |S|

|T |
. (4.22)

By (4.20)-(4.22) and triangle inequality, for some absolute constant C ′,

D(|ψ⟩,Sγ) ≤
Cε1/24

(1 + ε′)1/3γ1/3
+

1

2

√
|γ − γ′|/γ,

≤ C ′ε1/24γ−1/3. (4.23)

The second part of the theorem is simply the completeness case from Theorem 4.7.

4.4 Validity Test

Consider the variable set X = {1, 2, . . . , n}, and domain Σ = {1, 2, . . . , q}. Recall that the
valid set is the following

V =

 1√
n

∑
i∈[n]

|i⟩|xi⟩ : ∀i ∈ [n], xi ∈ Σ

 .

The goal is to test whether a state is close to V.

Validity test (with precision d)
Input: Ψ = {|ψ1⟩, |ψ2⟩, . . . , |ψk⟩} ⊆ S+.

(i) Apply discrete Fourier transform to the second register of Ψ.
(ii) Measure the second register.

Accept if α ≤ 1/q + d, where α is the fraction of |0⟩ observed after measuring.
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Theorem 4.10 (Validity test). Suppose that Ψ is an ε-tilted state for some small ε > 0.
Further suppose that for any representative state |ψ⟩ ∈ Ψ, D(|ψ⟩,S1/q) ≤ d for 2ε ≤ d < 1/q.
Then the probability that in the validity test the fraction of measured |0⟩ is less than (1+qd)/q
is at most exp(−Θ(qd2k)), if

D(|ψ⟩,V) ≥
√

2qd+ d.

If Ψ is a 0-tilted state from V, then the validity test accepts with probability at least 1 −
exp(−Θ(qd2k)).

Proof. Fix an arbitrary representative state |ψ⟩, let |ϕ⟩ ∈ S1/q be such that

D(|ψ⟩, |ϕ⟩) = D(|ψ⟩,S1/q) ≤ d.

If D(|ψ⟩,V) ≥
√
2qd+ d, by triangle inequality

D(ϕ,V) ≥ D(|ψ⟩,V)−D(|ψ⟩, |ϕ⟩) ≥
√
2qd, (4.24)

Say S ⊆ [n]× [q] of size n is such that

|ϕ⟩ = 1√
n

∑
(i,v)∈S

|i⟩|v⟩.

For each i ∈ [n], let ci := |{(i, v) ∈ [n]× [q] : (i, v) ∈ S}|. Let Z := {i : ci = 0}. Then,

D(ϕ,V) = 1

2

√
1−

(
n− |Z|
n

)2

=⇒ |Z|
n

≥ 2D(ϕ,V)2.

When measuring the second register of |ϕ⟩ after the discrete Fourier transform, the proba-
bility p̃ that we observe |0⟩ can be calculated as below,

p̃ =

∑
i∈[n] c

2
i

nq
≥ n− |Z|

nq

(
n

n− |Z|

)2

=
1

q
· n

n− |Z|
≥ 1

q

(
1 +

|Z|
n

)
≥ 1

q
(1 + 2D(ϕ,V)2), (4.25)

where the second step follows by convexity. By (4.25) and (4.24),

p̃ ≥ (1 + 4qd)
1

q
.

Now let p be the probability that we observe 0 measuring the second register of |ψ⟩ after
applying Fourier transform, then by Fact 3.5,

p ≥ (1 + 4qd)
1

q
− 2d ≥ (1 + 2qd)

1

q
.

The first part of our lemma holds by Chernoff bound.
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Now suppose that Ψ is a 0-tilted state from V. Let |ψ⟩ be the representative state of Ψ
and let Π |ψ⟩ denote the projection of |ψ⟩ onto the subspace

Cn ⊗

(
1
√
q

∑
v∈Σ

|v⟩

)
.

Thus ∥Π |ψ⟩∥2 is the probability of observing |0⟩, after applying the Fourier transform to
and measuring the second register of |ψ⟩. For any |ψ⟩ ∈ V,

∥Π |ψ⟩∥2 = 1

q
.

It thus follows that in the validity test, we observe less than 1/q + d fraction of |0⟩ with
probability at least 1− exp(−Θ(qd2k)).

5 SSE ∈ QMA+
log(2)

Definition 5.1 ((η, δ)-SSE graph). Let η, δ ∈ (0, 1). We say that G is a (η, δ) small set
expander, or simply (η, δ)-SSE for short, if for every ∅ ≠ S ⊆ V of size |S| ≤ δ |V | we have
ΦG(S) ≥ 1− η.

Definition 5.2 ((η, δ)-SSE). Let η, δ ∈ (0, 1). An instance of (η, δ) small set expansion
(SSE) problem is a graph G on the vertex set V such that

(Yes) There exists S ⊆ V with measure at most δ and ΦG(S) ≤ η;
(No) Every set S ⊆ V of measure at most δ has expansion ΦG(S) ≥ 1− η.

We now show that SSE can be verified with constant copies of unentangled proofs of
non-negative amplitudes and a logarithmic number of qubits with constant completeness-
soundness gap. More precisely, we prove the following theorem.

Theorem 5.3. The (η, δ)-SSE problem is in QMA+
Oδ(log(n))

(2, c, s) with completeness c ≥
1− η and soundness s ≤ 5/6 +O(

√
η log(1/η)).

We will prove the theorem by showing that the QMAlog(2) protocol described in Algo-
rithm 5.4 is complete and sound for (η, δ)-SSE. More precisely, the theorem follows imme-
diately from the following lemmas proven in Sections 5.1 and 5.2, respectively.

Lemma 5.6 (Completeness). The protocol in Algorithm 5.4 accepts any yes instance with
probability at least 1− η.

Lemma 5.7 (Soundness). The protocol in Algorithm 5.4 accepts any no instance with prob-
ability at most 5/6 +O(

√
η log(1/η)).
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Algorithm 5.4: (η, δ)-SSE Protocol
Let ε = η8δ4/C, and k = C log(1/η)/ε2 for some large enough constant C.
Let S be the vertex set such that |S| ≤ δn and ΦG(S) ≤ η.
Provers: Send

(i) 2k copies of the superpositions of the non-expanding set S, i.e.,

|ψ1⟩, |ψ2⟩, . . . , |ψ2k⟩ =
1√
δn

∑
i∈S

|i⟩.

(ii) 2k copies of the superpositions of the complement of S, i.e.,

|ϕ1⟩, |ϕ2⟩, . . . , |ϕ2k⟩ =
1√

(1− δ)n

∑
i ̸∈S

|i⟩.

Verifier: Choose uniformly at random one of the following tests.
(i) Symmetry test on {|ψi⟩} and symmetry test on {|ϕi⟩}.
(ii) Sparsity test on ({|ψi⟩}, {|ϕi⟩}) with precision ε. If the output α is such that 2α−1 >

(1 + η)δ, reject.
(iii) Expansion test on |ψi⟩ and |ψj⟩ for two distinct random i, j ∈ {1, 2, . . . , 2k}.

Since G is a d regular graph, its adjacency matrix A can be written as a sum of d
permutation matrices P1, . . . , Pd. This representation as a sum of unitary matrices will be
important to view these matrices as valid quantum operations. To test the lack of expansion
of the support of |ψ1⟩, we apply to this state a permutation Pi, chosen uniformly at random.
Then, we test if the resulting state (mostly) overlaps with |ψ2⟩ (which is supposed to encode
the same set in its support). This test is described in Algorithm 5.5.

Algorithm 5.5: Expansion Test
Input: |ψ1⟩, |ψ2⟩ ∈ S+

(i) Choose r ∈ [d] uniformly at random;
(ii) Compute Pr|ψ1⟩;
(iii) SwapTest(Pr|ψ1⟩, |ψ2⟩).

Accept if the swap test accepts.

5.1 Completeness Analysis

We now analyze the completeness of the protocol by proving the following lemma.

Lemma 5.6 (Completeness). The protocol in Algorithm 5.4 accepts any yes instance with
probability at least 1− η.

Proof. Suppose that G is the input graph of a yes instance where S is a non-expanding set
of measure at most δ. We expect 4k unentangled quantum proofs of the form

|ψj⟩ =
1√
|S|

∑
i∈S

|i⟩, ∀j ∈ {1, 2, . . . , 2k},

|ϕj⟩ =
1√

n− |S|

∑
i ̸∈S

|i⟩, ∀j ∈ {1, 2, . . . , 2k}.
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The two symmetry tests accept with probability 1 since they are running on sets of equal
states. The sparsity test accepts with probability 1 − η, by Chernoff bound the fraction of
estimated size of S is no bigger than (1 + η/2)δ. It only remains to analyze the expansion
test. The assumption that ΦG(S) ≤ η can be expressed as

1

d
⟨Aψ1 |ψ1⟩ ≥ 1− η .

Then, using Jensen’s inequality we have

E
r∈[d]

[
|⟨Prψ1 |ψ1⟩|2

]
≥
(

E
r∈[d]

[|⟨Prψ1 |ψ1⟩|]
)2

=

〈
E

r∈[d]
[Pr]ψ1

∣∣∣∣ψ1

〉2

=

〈
1

d
Aψ1

∣∣∣∣ψ1

〉2

= (1− η)2 .

In this case, the swap test on (Pr|ψ1⟩, |ψ2⟩) accepts with probability at least 1/2+(1−η)2/2 ≥
1− η. Therefore, the entire protocol accepts with probability at least 1− η as claimed.

5.2 Soundness Analysis

We will establish the soundness of the protocol by showing the following lemma.

Lemma 5.7 (Soundness). The protocol in Algorithm 5.4 accepts any no instance with prob-
ability at most 5/6 +O(

√
η log(1/η)).

First, we record a simple fact about expander graphs.

Fact 5.8. Suppose that the graph G is (η, δ)-SSE. Then G is also ((c+1)η, (1+ cη)δ)-SSE,
for any c ≥ 0.

Proof. For any δn < |S| ≤ (1 + cη)δn, let T ⊆ S be such that |T | = δn. Then

|E(S, S)| ≤ |E(T, T )|+ d|S \ T | ≤ (c+ 1)ηδnd.

We will also need the following analytic version of the SSE property.

Definition 5.9 (Analytic SSE). Let η, δ ∈ (0, 1). We say that a graph G = (V,E) with
normalized adjacency matrix A is (η, δ)-analytic SSE if for every v ∈ RV of ℓ2-norm 1 and
support of measure at most δ it holds that

|⟨Av, v⟩| ≤ η .

This analytic property is implied by the SSE property as we show in the following
proposition (proved in Section 5.3).

Proposition 5.10. If G is (η, δ)-SSE, then G is (O(
√
η(log(1/η) + 1)), δ)-analytic SSE.

Assuming Proposition 5.10, we now proceed to the proof of Lemma 5.7.
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Proof of Lemma 5.7. Assume that |Ψ⟩ = {|ψ1⟩, . . . , |ψ2k⟩} and |Φ⟩ = {|ϕ1⟩, . . . , |ϕ2k⟩} are
ε-tilted states. We call this event E1. If E1 does not hold, the symmetry test accepts with
probability at most √

η for k = Ω(ε−2 log(1/η)).

Now we further assume that there is S ⊆ [n], such that

|S| ≤ (1 + 6η)δn,

and let ΠS be the projection into the subspace corresponding to S, then for any represen-
tative state |ψi⟩,

∥ΠS |ψi⟩∥2 ≥ 1− 1.1η.

This is the second event E2. By our choice of parameters and the fact that if 2α−1 > (1+η)δ
the sparsity test fails immediately, we can assume that

(2α− 1) + 36ε1/4/η ≤ (1 + 6η)δ,

20
√
ε ≤ η.

Therefore, by Theorem 4.7 (i), the sparsity test accepts with probability at most √η by our
choice of parameters if E2 does not hold.

Conditioning on E1 and E2, we analyze the probability that the expansion test passes.
Let’s say the two proofs we get for the expansion test are |ψ1⟩, |ψ2⟩. With probability at
least (1 − 2ε)2 ≥ 1 − 4ε, both are representative, thus satisfying that their mass projected
on to the coordinates of S is at least 1− η. We call this event E3. Let

|π1⟩ =
ΠS |ψ1⟩

∥ΠS |ψ1⟩∥
, |π2⟩ =

ΠS |ψ2⟩
∥ΠS |ψ2⟩∥

.

It follows that

⟨π1 | ψ1⟩2 = ∥Π|ψ1⟩∥ ≥ 1− 1.1η. (5.1)

Let δ0 = (1 + 6η)δ. By Proposition 5.10, the analytic (O(
√
η(log(1/η) + 1)), δ0)-SSE

property follows from the (η, δ)-SSE assumption and Fact 5.8. To determine the expected
acceptance probability of the swap test, we first bound the average value of |⟨Prπ1 |π1⟩| over
the random choice of r obtaining

E
r∈[d]

[|⟨Prπ1 |π1⟩|] =
〈

E
r∈[d]

[Pr]π1

∣∣∣∣π1〉
=

1

d
⟨Aπ1 |π1⟩

≤ O(
√
η(log(1/η) + 1)) ,

where the first step holds because the entries of |ψ1⟩, |ψ2⟩ and Pr, for every r, are non-
negative real numbers. Now, it follows that

E
r∈[d]

[
|⟨Prψ1 |ψ2⟩|2

]
≤ E

r∈[d]

[
| ⟨Prψ1 |ψ1⟩ |2

]
+ 3

√
ε

≤ E
r∈[d]

[
| ⟨Prπ1 |π1⟩ |2

]
+ 3

√
ε+

√
1.1η

≤ E
r∈[d]

[⟨Prπ1 |π1⟩] + 3
√
ε+

√
1.1η

= O(
√
η log(1/η)),
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where the first step follows Claim 3.8 (i); the second step is due to Fact 3.5 and the bound
2D(|π1⟩, |ψ1⟩) ≤

√
1.1η that follows (5.1). Hence, the swap test on (Pr|ψ1⟩, |ψ2⟩) accepts

with probability at most 1/2 +O(
√
η log(1/η)).

To conclude, if E1 (or E2) does not hold with probability at least 1/3 × (1 − √
η),

the protocol chooses the symmetry test (or sparsity test) and rejects. If both E1 and E2
hold, then the protocol chooses the expansion test with probability 1/3 and rejects with
probability at least (1/2 − O(

√
η)) conditioning on E3 which happens with probability at

least 1 − 4ε = 1 − O(
√
η log(1/η)). Hence the protocol accepts with probability at most

5/6 +O(
√
η log(1/η)).

5.3 The Analytic SSE Property

In this section, we will establish the analytic SSE property from the usual SSE property.

Proposition 5.10. If G is (η, δ)-SSE, then G is (O(
√
η(log(1/η) + 1)), δ)-analytic SSE.

In a seminal work on 2-lifts of graphs [BL06], Bilu and Linial found conditions under
which bounding the quadratic form ⟨Au, u⟩ of a matrix A for arbitrary vector u follows from
bounds on much simpler “flat” indicator vectors ⟨A1S ,1T ⟩. Our goal is to use a version of
their result adapted for vectors of small support as arising in our application. More precisely,
we will need an inequality of the form |⟨A1S ,1T ⟩| ≤ η(|S|+ |T |) for every disjoint S, T ⊆ V
of support at most δ. We first show that this inequality is indeed satisfied by the adjacency
matrix of SSE graph.

Lemma 5.11. Suppose G = (V,E) is a d-regular (η, δ)-SSE with adjacency matrix A (not
normalized). If S, T ⊆ V are disjoint sets with |S|+ |T | ≤ δ |V |, then

⟨A1S ,1T ⟩ ≤ 2
√
ηd
√
|S| |T |.

Proof. Let S, T be as in the assumption of the claim. Without loss of generality, assume
that |S| ≤ |T |. If |S| ≤ η |T |, then we can use the trivial bound by the fact that A is the
adjacency matrix of a d-regular graph,

⟨A1S ,1T ⟩ ≤ d|S| ≤ √
η
√
|S| |T |.

Now consider the case η |T | < |S| ≤ |T |. Set S′ = S ⊔ T . Towards a contradiction,
suppose that ⟨A1S ,1T ⟩ > 2

√
ηd
√
|S| |T |. In turn, this assumption implies that

⟨A1S ,1T ⟩ > 2
√
ηd
√
|S| |T | ≥ 2ηd |T | ≥ ηd (|S|+ |T |) = ηd

∣∣S′∣∣ . (5.2)

Using the above bound on the number of edges between S and T together with the SSE
assumption on G, we obtain

(1− η)d
∣∣S′∣∣ ≤ 〈A1S′ ,1S′

〉
≤ d

∣∣S′∣∣− ⟨A1S ,1T ⟩
< d

∣∣S′∣∣− ηd
∣∣S′∣∣ (By (5.2))

≤ (1− η)d
∣∣S′∣∣ ,

contradicting the (η, δ)-SSE property.
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We now show a “sparse support” analogue of a lemma in Bilu and Linial [BL06, Lemma 3.3]
bounding the quadratic form of the adjacency matrix for arbitrary sparse vectors assuming
that the quadratic form is bounded for “flat” sparse indicator vectors. This sparse analogue
follows by checking that their proof suitably “respects” the sparse support conditions we
need.

Lemma 5.12 (Sparse Analogue of [BL06, Lemma 3.3]). Let A ∈ RV×V be a real symmetric
matrix with non-negative entries, ℓ1-norm of each row at most d and diagonal entries zero.
Let δ ∈ (0, 1). If there exists α ∈ (0, 1) such that for every disjoint sets S, T ⊆ V with
|S ⊔ T | ≤ δ |V | we have

⟨A1S ,1T ⟩ ≤ αd
√

|S| |T |, (5.3)

then for every u ∈ RV with |supp(u)| ≤ δ |V | we have

⟨Au, u⟩ ≤ O(α(log(1/α) + 1))d ∥u∥2 . (5.4)

Proof. The assumption of (5.3) on disjoint sets S and T is strong enough to imply a similar
bound with an additional factor of 2 when S = T as follows.

Claim 5.13. Suppose that A is a symmetric matrix with diagonal entries equal to zero. The
assumption from (5.3) implies that for every R ⊆ V with |R| ≤ δ |V |

⟨A1R,1R⟩ ≤ 2αd |R| .

Proof. Let r = |R|. If r = 1, we have ⟨A1R,1R⟩ = 0 since A has diagonal entries equal to
zero. Now assume r ≥ 2. On one hand, we have∑

R′⊆R
|R′|=⌈r/2⌉

∣∣〈A1R′ ,1R\R′
〉∣∣ ≤ ( r

⌈r/2⌉

)
αd
√

|R′| |R \R′| ≤
(

r

⌈r/2⌉

)
αd |R| /2.

On the other hand, for distinct x, y ∈ R, the value Ax,y appears
(

r−2
⌈r/2⌉−1

)
in the LHS above.

Since A has diagonal entries equal to zero, this gives(
r − 2

⌈r/2− 1⌉

)
|⟨A1R,1R⟩| =

∑
R′⊆R

|R′|=⌈r/2⌉

∣∣〈A1R′ ,1R\R′
〉∣∣ .

From the two previous displays and the bound on the following binomial ratio(
r

⌈r/2⌉

)
/

(
r − 2

⌈r/2⌉ − 1

)
=

r(r − 1)

⌈r/2⌉⌊r/2⌋
≤ 4,

we conclude the proof.

Arbitrary vectors can be approximated to have entries that are powers of two with the
following nice properties.

Claim 5.14. Suppose A ∈ RV×V has diagonal entries equal to zero. Let u ∈ RV with
∥u∥∞ ≤ 1/2. Then, there exists u′ ∈ {±1/2i | i ∈ N+}V such that

(i) |⟨Au, u⟩| ≤ |⟨Au′, u′⟩|,
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(ii) ∥u′∥ ≤ 2 ∥u∥,
(iii) supp(u′) ⊆ supp(u).

Proof. For every i ∈ V , we define ηi ∈ [0, 1/4] such that ui = (1 − 2ηi) sgn(ui)2
⌈log(|ui|)⌉.

Note that (1 − 2ηi) ∈ [1/2, 1]. We define a random vector Z′ ∈ RV by setting Z′
i = 0 if

i ̸∈ supp(u), and otherwise by setting

Z′
i =

{
+sgn(ui)2

⌈log(|ui|)⌉ w.p. 1− ηi,

− sgn(ui)2
⌈log(|ui|)⌉ w.p. ηi.

Note that by construction, we have E[Z′
i] = ui. Using linearity of expectation and the

assumption that A has diagonal entries equal to zero, we have

⟨Au, u⟩ =
∑
i ̸=j

Ai,juiuj =
∑
i ̸=j

Ai,jE[Z′
i]E[Z′

j ] =
∑
i ̸=j

Ai,jE[Z′
iZ

′
j ] = E

[〈
AZ′,Z′〉] .

This implies that there is a choice of u′ satisfying

|⟨Au, u⟩| =
∣∣E [〈AZ′,Z′〉]∣∣ ≤ E

[∣∣〈AZ′,Z′〉∣∣] ≤ ∣∣〈Au′, u′〉∣∣ .
To conclude note that a term-by-term inequality gives∥∥u′∥∥2

2
=
∑
i

(u′i)
2 ≤ 4

∑
i

u2i = 4 ∥u∥22 ,

concluding the proof.

Let u ∈ RV be an arbitrary vector with |supp(u)| ≤ δ |V |. We want to give an upper
bound on |⟨Au, u⟩| as in (5.4). To prove this bound, we can assume ∥u∥∞ ≤ 1/2 without
loss of generality. Using Claim 5.14, we obtain u′ ∈ {±1/2i | i ∈ N+}V . Let Si := {j ∈ V |
|u′j | = 2−i}. Set t = log(1/α). Since the entries of A are non-negative, we have∣∣〈Au′, u′〉∣∣ ≤ ∑

x,y∈V
Ax,y

∣∣u′x∣∣ ∣∣u′y∣∣
=
∑
i,j∈N+

1

2i+j
〈
A1Si ,1Sj

〉
=
∑
i

1

22i
⟨A1Si ,1Si⟩︸ ︷︷ ︸
(a)

+
∑
i

∑
i<j≤i+t

1

2i+j
〈
A1Si ,1Sj

〉
︸ ︷︷ ︸

(b)

+
∑
i

∑
j>i+t

1

2i+j
〈
A1Si ,1Sj

〉
︸ ︷︷ ︸

(c)

.

Using the assumption in (5.3), by Claim 5.13 term (a) becomes∑
i

1

22i
⟨A1Si ,1Si⟩ ≤ 4αd

∑
i

1

22i
|Si| = 4αd

∥∥u′∥∥2
2
.
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Note that Si ∩ Sj = ∅ when i ̸= j. Using the assumption in (5.3), term (b) becomes∑
i

∑
i<j≤i+t

1

2i+j
〈
A1Si ,1Sj

〉
≤
∑
i

∑
i<j≤i+t

1

2i+j
αd
√

|Si| |Sj |

≤
∑
i

∑
i<j≤i+t

αd

(
1

22i
|Si|+

1

22j
|Sj |
)

≤ 2α log(1/α)d
∑
i

1

22i
|Si|

= 2α log(1/α)d
∥∥u′∥∥2

2
,

where the second step applies the Cauchy-Schwartz inequality.
Note that the ℓ1 bound of d on the row and column sums of A trivially implies that〈

A1Si ,1Sj

〉
≤ d |Si|. By the choice of t and this trivial bound, term (c) becomes∑

i

∑
j>i+t

1

2i+j
〈
A1Si ,1Sj

〉
≤
∑
i

∑
j>i+t

1

2i+j
d |Si|

≤ αd
∑
i

∑
j>i

1

2i+j
|Si|

≤ 2αd
∑
i

1

22i
|Si| = 2αd

∥∥u′∥∥2
2
.

Putting the bounds on (a), (b) and (c) together, we obtain

|⟨Au, u⟩| ≤
∣∣〈Au′, u′〉∣∣ ≤ 6α(log(1/α) + 1)d

∥∥u′∥∥2
2
≤ 12α(log(1/α) + 1)d ∥u∥22 ,

concluding the proof.

As a consequence of the above lemma and Lemma 5.11, we obtain our main result of
this section, namely, that SSE graphs are analytic SSE as follows.

Proposition 5.10. If G is (η, δ)-SSE, then G is (O(
√
η(log(1/η) + 1)), δ)-analytic SSE.

Proof of Proposition 5.10. Since G is a (η, δ)-SSE, using Lemma 5.11 we have for every
disjoint sets S, T ⊆ V (G) with |S ⊔ T | ≤ δ |V |

⟨A1S ,1T ⟩ ≤ αd
√
|S| |T | ,

where α = 2
√
η. By Lemma 5.12, this implies that G is (O(

√
η log(1/η)), δ)-analytic SSE

concluding the proof.

6 GapUG ∈ QMA+
log(2) and NP ⊆ QMA+

log(2)

Definition 6.1 (Unique Games). A unique game instance I consists of a d-regular graph
G = (V,E). Each edge e = (a, b) ∈ E is associated with a bijective constraint fe : Σ → Σ,
where Σ = {1, 2, . . . , q} for some constant q.
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For any labeling ℓ : [n] → Σ, the value associated with the labeling is the fraction of edge
constraints satisfied by the labeling, i.e.,

1

nd
|{(a, b) ∈ E : f(a,b)(ℓ(a)) = ℓ(b)}|.10

The value of I, denoted val(I), is the max value over all possible labelings.

Definition 6.2 ((1−δ, η)-GapUG problem). Given any unique games instance I. Determine
which of the following two cases is true:

(Yes) val(I) ≥ 1− δ.
(No) val(I) ≤ η.

The purpose of this section is to establish the following theorem.

Theorem 6.3. For any δ, η ∈ (0, 1) such that (1− δ)2 > η, then

(1− δ, η)-GapUG ∈ QMA+
log(2).

It suffices to present a QMA+
log(k) protocol (see Algorithm 6.6) for some constant k for

the (1− δ, η)-GapUG problem. For the given graph G = (V,E), say V = {1, 2, . . . , n}. Since
G is a regular graph, we can partition E into d permutations π1, π2, . . . , πd : {n} → {n}.
The permutation can also be thought of as a perfect matching between two vertex sets L
and R with L = R = V . We find the matching view more convenient, so we often call π a
matching. For any labeling ℓ : [n] → Σ, we represent it by the following quantum state

|ψ⟩ = 1√
n

∑
i∈[n]

|i⟩|ℓ(i)⟩.

Recall that V ⊆ S1/q denote the set of all valid labelings, i.e.,

V :=

{
1√
n

n∑
i=1

|i⟩|vi⟩ : vi ∈ Σ

}
.

Let Πr be the unitary map associated with the matching πr, such that for any r ∈ [d], i ∈ [n],
and v ∈ Σ :

Πr |i⟩|v⟩ 7→ |πr(i)⟩|f(i,πr(i))(v)⟩.

In words, when we pick a matching πr and a labeling |ψ⟩ on L, then Πr|ψ⟩ represents the
unique labeling on R that satisfies all the edge constraints for the edges in πr. In reality, L
and R are the same vertex set, they have the same labeling. Let

θ =
1

2

(
1 + (1− δ)2

2
+

1 + η

2

)
,

λ =
(1− δ)2

2
− η

2
.

We prove Theorem 6.3 by establishing the following two lemmas in the next subsection.
10Though the graph in the definition is undirected, when we describe an edge constraint for e = (a, b)

using a bijection, we need labels of one vertex as the domain and labels of the other as the range of f . So
when we say fe, we always have an implicit orientation of the edge. The actual orientation is not important,
it will be clear from the context.
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Lemma 6.4 (Completeness of UG protocol). For any unique games instance I, if val(I) ≥
1 − δ. Then there is a proof with k = Oδ,η(1) unentangled states, each of size Oδ,η(log n),
such that Algorithm 6.6 accepts with probability at least 0.99.

Lemma 6.5 (Soundness of UG protocol). For any unique games instance I, if val(I) ≤ η.
Then for any proof with k = Oδ,η(1) unentangled states, each of size Oδ,η(log n), such that
Algorithm 6.6 accepts with probability at most 7/8.

Algorithm 6.6: (1− δ, η)-GapUG Protocol
Let ε = λ48/(Cq32), and k = C/ε2 for some large enough constant C.
Provers: send

(i) 2k copies of labelings realize val(I), i.e.,

|ψ1⟩, |ψ2⟩, . . . , |ψ2k⟩ =
1√
n

∑
i∈[n]

|i⟩|ℓ(i)⟩.

(ii) 2k copies of the labelings but complemented, i.e.,

|γ1⟩, |γ2⟩, . . . , |γ2k⟩ =
1√
n

∑
i∈[n]

|i⟩ 1√
q − 1

∑
v ̸=ℓ(i)

|v⟩.

Verifier: Let Ψ = {|ψ1⟩, . . . , |ψ2k⟩}, and similarly for Γ. Run a uniformly random test of
the following

(i) Two symmetry tests on Ψ and Γ.
(ii) Sparsity test on (Ψ,Γ) with target sparsity 1/q and precision ε.
(iii) Validity test on Ψ with precision ν = ε1/24q1/3.
(iv) Labeling test on Ψ0, Ψ1, where Ψ0 and Ψ1 are partition of Ψ into two subsets with

equal size.

The labeling test is described below.
Labeling Test
Input: Ψ = {|ψ1⟩, |ψ2⟩, . . . , |ψk⟩},Φ = {|ϕ1⟩, |ϕ2⟩, . . . , |ϕk⟩}.

(i) For i from 1 to k, SwapTest on (Πr|ψi⟩, |ϕi⟩) for uniformly random r ∈ [d] (each
iteration with a fresh random choice).

Accept if more than a θ fraction the SwapTests accept.

6.1 Analysis

We first prove Lemma 6.4, the completeness. In particular, we show that for whichever test
the protocol chooses, it accepts with probability at least 0.99 when val(I) ≥ 1− δ.

For faithful proofs, the symmetry test passes with probability 1, and the sparsity test
accepts with probability at least, by Theorem 4.9, 1 − exp(−Θ(εk)). The validity test
accepts with probability at least 1− exp(−Θ(qν2k)) by Theorem 4.10. The way we choose
our parameters guarantees that the accept probability is at least 0.99.

Finally, when the UG instance has a value of at least 1− δ, then there is valid labeling
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|ψ⟩ ∈ V, such that

E
r∈[d]

⟨ψ |Πrψ⟩ ≥ 1− δ.

Analogous to our analysis in Section 5, we have

E
r∈[d]

[⟨ψ |Πrψ⟩2] ≥
(

E
r∈[d]

[⟨ψ |Πrψ⟩]
)2

≥ (1− δ)2.

Therefore the labeling test accepts with probability at least 1/2 + (1 − δ)2/2 ≥ 1 − δ.
By Chernoff bound, with probability at least 1 − exp(−Θ(λ2k)) ≥ 0.99 for our choice of
parameters.

Now, we have proved the completeness. Next, we prove Lemma 6.5, the soundness, for
which the following analysis on the labeling test will complete the last missing piece.

Lemma 6.7 (Labeling test). Suppose val(I) ≤ η. Given ε-tilted states Ψ such that any repre-
sentative state |ψ⟩ satisfies D(|ψ⟩,V) and ε sufficiently small (for example, D(|ψ⟩,V) ≤ λ/8
and ε ≤ λ2/256). Then the labeling test accepts Ψ with probability at most exp(−Θ(λ2k)).

Proof. For any valid labelings |ψ̃⟩ ∈ V,

val(I) ≥ E
r∈[d]

⟨ψ̃,Πrψ̃⟩ ≥ E
r∈[d]

[⟨ψ̃,Πrψ̃⟩2].

Therefore the probability that SwapTest accepts |ψ̃⟩ is at most 1/2 + η/2. Let |ψ⟩, |ϕ⟩ be
two representative states from Ψ. Suppose that for some |ψ̃⟩ ∈ V, D(|ψ⟩, |ψ̃⟩) ≤ D. By
Fact 3.4,

D(|ψ⟩ ⊗ |ϕ⟩, |ψ̃⟩ ⊗ |ψ̃⟩) ≤
√
D2 + (D +

√
ε)2 ≤ 2(D +

√
ε).

It then follows by Fact 3.5 that the labeling test accepts |ψ1⟩ ⊗ |ψ2⟩ for two representative
states in Ψ with probability at most 1/2 + η/2 + 4(D +

√
ε). When we partition Ψ into

two subsets Ψ1 and Ψ2, then with probability at least 1 − 2ε the states we pick from Ψ1

and Ψ2 are both representative states of Ψ. By Chernoff bound, with probability at most
exp(−Θ((λ− 4D− 4

√
ε− 3ε)2k)) = exp(−Θ(λ2k)), the SwapTests accept more than θ− 3ε

fraction within the 1 − 2ε good pairs. Since 2ε ≤ 3ε(1 − 2ε) for sufficiently small ε, in
total, the swap tests accept more than θ fraction of the pairs with probability at most
exp(−Θ(λ2k)).

With all the above preparations, we are now ready prove the soundness lemma.

Proof of Lemma 6.5. Consider the following events.
E1 : Ψ and Γ are ε-tilted states;
E2 : D(Ψ,S1/q) ≤ O(ε1/24q1/3);
E3 : D(Ψ,V) ≤ O(ε1/48q2/3).

If E1 is not true, then the symmetry test accepts with probability at most exp(−ε2k) <
0.01 by Theorem 4.4 for k = Ω(1/ε2). Thus the probability that the protocol accepts is at
most 3/4 + 0.01 < 7/8.
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Conditioning on E1, if E2 does not hold, then the sparsity test accepts with probability
at most exp(−εk) < 0.01 for k = Ω(1/ε) by Theorem 4.9. In total, the protocol accepts
with a probability less than 7/8.

Conditioning on E1 and E2, by Theorem 4.10, if E3 does not hold, then the validity
test accepts with probability at most exp(−Θ(q5/3ε1/12k)) < 0.01. Therefore, the protocol
accepts with probability less than 7/8 again.

Finally, conditioning on E1 and E3, by Lemma 6.7, the labeling test accepts with probabil-
ity at most exp(−Θ(λ2k)) if ε1/48q2/3 = O(λ) and ε = O(λ2). By our choice of parameters,
the protocol accepts with probability at most 7/8.

6.2 Regularization—NP ⊆ QMA+
log(2)

Due to the works [KMS17, KMS18, DKK+18b, DKK+18a], it is known that the (1/2, η)-
GapUG problem is NP-hard. An optimistic reader would happily conclude that NP ⊆
QMA+

log(2). This is indeed the case, with a small caveat though: In our previous discussion,
we assumed the graph instance to be regular. However, when we convert a general graph
into a regular one, the value of the game will change. We address this issue here.

Theorem 6.8 (Regularization [Din07]). For any general unique games instance I, there is
a new unique games instance I′ that is polynomial time constructible such that

val(I) ≥ 1

2
=⇒ val(I′) ≥ 1− 1

2(d+ 1)
, (6.1)

val(I) ≤ η =⇒ val(I′) ≤ 1− 1− η

d+ 1
. (6.2)

The regularization process follows closely that of Dinur’s treatment [Din07]. Define a
new graph G′ = (V ′, E′), such that

V ′ = {(v, e) ∈ V × E : v is incident to e}

E′ = E′′ ∪
⋃
v∈V

Ev,

where E′′ = {((v, e), (u, e)) : (v, u) = e ∈ E} and Ev is the set of edges in the d-regular
expander graph Gv = (Vv = {(v, e) ∈ V ′}, Ev), for some constant d, whose Cheeger constant
is at least 2.11 In words, we replace every vertex v with a cluster of vertices of size equal
to the number of edges that v is incident to in G. Within each cluster, the vertices are
connected based on expander graphs. For every edge, e = (u, v) in the original graph,
connect the vertex (u, e) with vertex (v, e) in the new graph. The constraints f ′ on E′′ will
be like that of fe on E. In particular, f ′((u,e),(v,e)) = f(u,v). Further, the constraints on edges
Ev will be the equality constraints, which can be represented as a bijective map. This new
UG instance I′ satisfies that described in Theorem 6.8. Therefore, for the regular graph,
(1− 1

2(d+1) , 1−
1−η
d+1 )-GapUG problem is NP-hard.

We verify the above claim. First note that in the new graph G′, the number of edges
blows up by a factor of d+ 1. This is because

|E′| = |V ′|(d+ 1)/2 = |E|(d+ 1).

11A random graph Gv would be good, and various explicit constructions are known. We refer interested
readers to the wonderful survey on this topic [HLW06].
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Now for (6.1), a faithful prover will assign the label of a vertex v in G to the vertices of
the form (v, e). Then the number of unsatisfied constraints is unchanged, but the fraction
decreases by a factor of d+ 1.

For (6.2), let ℓ′ be the labeling that the adversarial prover chooses. Let ℓ be the labeling
on V induced by ℓ′ such that for any v ∈ G, ℓ(v) is chosen to be the majority labeling of
{(v, e) : e ∼ v} (break ties arbitrarily). For any e = (u, v) ∈ E that is not satisfied by ℓ,
either both ℓ′((u, e)) = ℓ(u) and ℓ′((v, e)) = ℓ(v), then the edge ((u, e), (v, e)) is not satisfied.
Or, one of the vertices (u, e), (v, e) is not labeled by the majority label. The following lemma
proves that within any cluster, the number of unsatisfied constraints is at least the number
of vertices with minority labels. Therefore, the total number of unsatisfied constraints in G′

with ℓ′ is at least that of G with labeling ℓ.

Lemma 6.9. Suppose the d-regular graph G = (V,E) has Cheeger constant at least 2 and ℓ
be some labeling ℓ : V → Σ. Let q denote the majority label on V , and let uneq(G) denote
the number of edges (u, v) in G such that ℓ(v) ̸= ℓ(u). Then

uneq(G) ≥ |{v ∈ V : ℓ(v) ̸= q}|.

Proof. The vertex set is partitioned by the labeling ℓ into, say, m subsets V1, V2, . . . , Vm.
Let n1 ≥ n2 ≥ . . . ≥ nm be the number of vertices in each subset.

If n1 ≥ n/2, then statement holds by the expansion property of G:

uneq(G) ≥ E(V1, V 1) ≥ 2|V 1|.

If n1 < n/2, we bound the number of edges within each subset:

1

2

∑
i∈{1,...,m}

E(Vi, Vi) ≤
∑

i∈{1,...,m}

(d|Vi| − 2|Vi|)/2

=
dn

2
− n,

where the first inequality uses the expansion property of G as |Vi| < n/2. Therefore
uneq(G) ≥ n ≥ |V 1|.

We verify that for any η < 1/4(d+ 1),(
1− 1

2(d+ 1)

)2

> 1− 1− η

d+ 1
.

Therefore, by Theorem 6.3, we have

Theorem 6.10. With constant completeness and soundness gap, NP ⊆ QMA+
log(2).

One can work with various other approaches to prove the above theorem. For example,
one can work with the 3COLOR problem, or work with the PCP characterization of NP.
Looking ahead, to take advantage of the PCP characterization will be the approach we take
to show NEXP = QMA+(2).
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7 NEXP = QMA+(2)

In this section, we scale up our previous result to NEXP = QMA+(2). The direction that
QMA+(2) ⊆ NEXP follows the same trivial argument that QMA(2) ⊆ NEXP—guess the
quantum proofs. Our focus will be on the other direction. The starting point would be
a PCP for NEXP. For the moment, we abstract things out and focus on the constraints
satisfaction problem (CSP) with the understanding that the CSP system will come from the
corresponding PCP.

Definition 7.1. An (N,R, q,Σ)-CSP system C on N variables with values in Σ consists of
a set (possibly a multi-set) of R constraints {C1, C2, . . . , CR}, and the arity of each constraint
is exactly q. The value of C, denoted val(C), is the maximum fraction of the satisfiable
constraints over all possible assignment σ : [N ] → Σ. The (1, δ)-GapCSP problem is to
distinguish whether a given system C is such that (Yes) val(C) = 1 or (No) val(C) ≤ δ.

For any CSP system C, we think of a bipartite graph GC where the left vertices are
the constraints and the right vertices are the variables. Whenever a constraint queries a
variable there is an edge in the graph between the corresponding vertices. For any j ∈ [R],
let AdjC(j) denote the list of variables that Cj queries; and for any i ∈ [N ], let AdjV (i)
denote the list of constraints that query variable i. An efficient CSP system C should satisfy
that for any j ∈ [R], there is an algorithm that compute Cj in time poly log(NR). For our
purpose, we require stronger properties, which we refer to as double explicitness.

Definition 7.2 (T (N,R)-doubly explicit CSP). For any (family of) (N,R, q,Σ)-CSP sys-
tem C, and T : Z × Z → Z some nondecreasing function, we say that C is T (N,R)-doubly
explicit if the following are computable in time O(T (N,R)):

(i) The cardinality of AdjC(j) for any j ∈ [R] and the cardinality of AdjV (i) for any
i ∈ [N ].

(ii) Adjglobal→local
C : [R] × [N ] → [q], such that AdjC(j, i) = ι if i is ιth variable that Cj

queries.12

(iii) Adjlocal→global
C : [R]× [q] → [N ], such that AdjC(j, ι) is the ιth variable that Cj queries.

(iv) Adjglobal→local
V : [N ] × [R] → [R], such that Adjglobal→local

V (i, j) = ι if ι is the index of
constraint j in AdjV (i).

(v) Adjlocal→global
V : [N ] × [R] → [R] such that for any i ∈ [N ] and ι ∈ [|AdjV (i)|], let

j = Adjlocal→global
V (i, ι), then ιth constraints in AdjV (i) is Cj.

We will only be interested in (poly log(NR))-doubly explicit CSPs. Therefore we omit
T with the understanding that T (N,R) = poly log(NR).

Another property we require is the uniformity, defined below.

Definition 7.3 (T -Strongly uniform CSP). For any (N,R, q,Σ)-CSP system C and T ∈ Z,
we say that C is T -strongly uniform if the variable set [N ] can be partitioned into at most T
subsets V1∪V2∪· · ·∪VT , such that the cardinality of AdjV (i) for any variable i only depends
on which subset it belongs to. Furthermore, let τ : [N ] → [T ], such that τ(i) = j if i ∈ Vj .
Then τ(i) can be computed in time poly log(NR).

12If Cj does not query i, we don’t care about the value of Adjglobal→local
C . Similarly for Adjglobal→local

V .
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Given some (N,R, q, {0, 1})-CSP system C that is T -strongly uniform for some constant
T and is strongly explicit. Then it is NEXP-hard to decide whether val(C) = 1 or val(C) < δ
for some absolute constant δ. This CSP C comes from the efficient PCP for NEXP with the
related property. Although not all PCP satisfies doubly explicitness or uniformity, there is
existing PCP construction that enjoys these properties. We discuss the PCP in more detail
and prove the related properties in Appendix A.

Theorem 7.4 (PCP for NEXP). There is a PCP system for a NEXP-complete problem, in
which the verifier tosses poly(n) random bits and makes a constant number of queries to the
proof Π such that if the input is a “Yes” instance, then the verifier always accept; if the input
is a “no” instance, then the verifier accepts with probability at most δ for some constant δ.
Furthermore, this PCP is doubly explicit and T -strongly uniform for some constant T .

This PCP gives rise to a (1, δ)-GapCSP instances for some (N = 2poly(n), R = 2poly(n), q =
O(1), {0, 1})-CSP system that are T -strongly uniform for some constant T and poly log(NR)-
doubly explicit. In the remainder of the section, our goal is to prove the following theorem:

Theorem 7.5. For any constant strongly uniform and doubly explicit (N,R, q,Σ)-CSP sys-
tem C, there is a QMA+(2) protocol that solves the (1, δ)-GapCSP problem for C with con-
stant soundness and completeness gap.

Theorem 7.4 together with Theorem 7.5 imply that

Theorem 7.6. NEXP ⊆ QMA+(2) with constant completeness and soundness gap.

In the next three subsections, we prove Theorem 7.5.

7.1 Explicit Regularization

The first step towards proving Theorem 7.5 is regularization just like in Theorem 6.8. The
main technical issue is that everything happening in the previous case needs to be efficient
for the exponentially large expander graphs. Fortunately, explicit constructions of expander
graphs are very well-studied.

Theorem 7.7 (Explicit regular expander graphs [Lub11, Alo21]). There is some constant
d, for which we have the following explicit constructions on expander graphs with Cheeger
constant at least 2:

(i) For any n, there is a d-regular expander graph on n vertices.
(ii) For any prime p > 17, there exists a d-regular expander graph on n = p(p2−1) vertices.

Furthermore, the graph G can be decomposed into d matchings π1, π2, . . . , πd, such that
given i ∈ [n] and j ∈ [d], there is a poly log(n)-time algorithm ΠG : [n] × [d] → [n],
such that

ΠG(i, j) = πj(i).

For both constructions, given i ∈ [n], the neighbors of i can be listed in time poly log(n).

For the second construction of expander graphs in the above theorem, we also need the
following theorem about primes in short intervals.
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Theorem 7.8 (Primes in short intervals [Che10]). There is some absolute constant n0, such
that for any integer n > n0, there is a prime between the interval [n− 4n2/3, n].

With the above tools at our disposal, we discuss the explicit regularization for this
exponentially large CSP C. Replace the variable i with a cluster of variables labeled (i, ι) for
ι ∈ [ni], where ni = |AdjV (i)|. If ni < n0 for some absolute constant n0 (this can be a larger
constant than that in Theorem 7.8), then we can simply use the expander graph provided
by Theorem 7.7 (i). For ni ≥ n0, we use the expander graph provided by Theorem 7.7 (ii).
In particular, let pi be some prime such that

pi ∈ [⌊n1/3i ⌋ − 4⌊n1/3i ⌋2/3, ⌊n1/3i ⌋].

The existence of pi is guaranteed by Theorem 7.8. Let n′i := pi(p
2
i − 1) ∈ [n − O(n8/9), n],

and let

V ′
i = {(i, j) : j ≤ n′i},
V ′′
i = {(i, j) : n′i < j ≤ ni}.

Depending on n0, |V ′′
i | ≤ ηni for η = η(n0). As we set n0 to be a large enough constant,

η is arbitrarily small. Connect the vertices in V ′
i by a d-regular expander graph Gi, whose

existence is guaranteed by Theorem 7.7 (ii). For all vertices in V ′′
i , add d self-loops. Associate

these edges with equality constraints. Let C′ denote the new CSP instance. Recall that q is
the number of variables queried by each constraint in C

Claim 7.9. If val(C) = 1, then val(C′) = 1. If val(C) = δ < 1, then the total number of
unsatisfied constraints in C′ is at least (1− δ − qη)R.

Proof. The analysis is similar to that of Theorem 6.8. If val(C) = 1, then just assign the
same label to all variables in V ′

i and V ′′
i based on the correct label for C. If val(C) < 1,

whenever some constraints Ci ∈ C is not satisfied by the majority labeling for the queried
variables, then either (1) Ci is still not satisfied in C′ for the corresponding constraint or
(2) at least one of the queried variables is not colored by the majority label. The difference
in the current case from that of Theorem 6.8 is that all the variables from V ′′

i can have
arbitrary values without hurting any equality constraints. Since |V ′′

i | ≤ ηni for any i ∈ [N ],
in total∣∣∣∣∣∣

⋃
i∈[N ]

V ′′
i

∣∣∣∣∣∣ ≤ η
∑
i∈[N ]

ni = ηqR.

Therefore the total number of unsatisfied constraints is at least (1− δ − qη)R.

7.2 The Protocol

Let n1, n2, . . . , nT be the cardinalities of AdjV (i1),AdjV (i2), . . .AdjV (iT ) where i1, i2, . . . , iT
are arbitrary variables from V1, V2, . . . , VT , respectively. Let H = CR ⊗ Cq|Σ| ⊗ CN ⊗ C|Σ|.
The first register is the constraint register. The second register is used it encode the values
of the q variables queried by the constraint stored in the first register. The third register
is the variable register to store the variable name. The last register is used to store to the
value of the variable in the third register.
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Algorithm 7.10: Protocol for strongly uniform and doubly explicit CSP
Let ε be some small enough constant, and k some large enough constant.
Prover provides:

(i) T primes p1, p2, . . . , pT , such that pi ∈ [⌊n1/3i ⌋ − 4⌊n1/3i ⌋2/3, ⌊n1/3i ⌋].
(ii) Ψ := 2k copies of the state∑

j∈[R]

|j⟩|vj⟩, ∀j ∈ [R], vj ∈ Σq.

(iii) Φ := 2k copies of the state∑
j∈[R]

|j⟩
∑

v∈Σq :v ̸=vj

|v⟩√
|Σ|q − 1

.

Verifier:
(i) Test if p1, p2, . . . , pT are primes satisfying the size constraints, reject if not.
(ii) Symmetry test on Ψ and Φ.
(iii) Sparsity test II on (Ψ,Φ) with target sparsity |Σ|−1 and precision ε
(iv) Validity test on Ψ.
(v) Constraints test Ψ.

We pause and explain what the prover is sending. Any state in Ψ, is a superposition of
|j⟩|vj⟩, which should indicate that the q variables with order listed in AdjC(j) queried by
Cj have value vj,1, vj,2, . . . , vj,q, respectively.

In the constraints test, the verifier will apply the regularization step discussed in Sec-
tion 7.1 implicitly. Define the operator A acting on H = CR ⊗ Cq|Σ| ⊗ CN ⊗ C|Σ| such
that

A : |j⟩|v⟩|0⟩|0⟩ 7→ 1
√
q

q∑
ι=1

|j⟩|v⟩|iι⟩|vι⟩,

where xi1 , xi2 , . . . , xiq are the variables listed in AdjC(j). In words, given the constraints j,
and the values v to the variables that j queries, we put the third and fourth register (the
variable register) into the superposition of the variables in AdjC(j) together with their value
based on v. For any k ∈ [d], let Mk be the operator such that:

Mk : |j⟩|v⟩|i⟩|v′⟩ 7→ |j′⟩|v⟩|i⟩|v′⟩,

where

j′ =

{
Adjlocal→global

V (i,ΠGi(ι, k)), ι ≤ n′i,

j, otherwise,
(7.1)

ι = Adjglobal→local
V (i, j).

In words, for any variable i ∈ [N ], we have decomposed V ′
i into dmatchings, and for variables

in V ′′
i , they are matched with themselves. Given k ∈ d, Mk maps the constraint j of variable

i into the other constraint j′ paired with j in the kth matching. Finally let B acting on
CR ⊗ Cq|Σ| ⊗ C2 be such that

B : |j⟩|v⟩|0⟩ 7→ |j⟩|v⟩|Cj(v)⟩.
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So B checks if the value v satisfies the constraints Cj .

Claim 7.11. A,B,Mk can be implemented by BQP circuits.

Proof. First, consider the implementation of A. Let H ′ = H ⊗ Cq, where the new register
will be some working space. Take the following sequence of manipulations:

(i) Get a superposition on the last register:

|j⟩|v⟩|0⟩|0⟩|0⟩ 7→ 1
√
q

q∑
ι=1

|j⟩|v⟩|0⟩|0⟩|ι⟩.

(ii) From the second and the last register, compute vι and set the fourth register accord-
ingly:

|j⟩|v⟩|0⟩|0⟩|ι⟩ 7→ |j⟩|v⟩|0⟩|vι⟩|ι⟩.

(iii) Compute Adjlocal→global
C (j, ι), and put it in the third register:

|j⟩|v⟩|0⟩|vι⟩|ι⟩ 7→ |j⟩|v⟩|Adjlocal→global
C (j, ι)⟩|vι⟩|ι⟩.

(iv) Set the last register to 0:

|j⟩|v⟩|i⟩|vι⟩|ι⟩ 7→ |j⟩|v⟩|i⟩|vι⟩|0⟩.

The final step is valid because it is the inverse of the following operation

|j⟩|v⟩|i⟩|vι⟩|0⟩ 7→ |j⟩|v⟩|i⟩|vι⟩|Adjglobal→local
C (j, i)⟩.

Since Adjglobal→local
C and Adjlocal→global

C can be computed efficiently classically due to the
explicitness of C, the above steps are efficient.

The situation for Mk is similar. Consider H ′ = H ⊗ CR. Do the following:
(i) Based on constraint j and variable i, and k, compute j′ as in (7.1), put j′ in the

working space.

|j⟩|v⟩|i⟩|vi⟩|0⟩ 7→ |j⟩|v⟩|i⟩|vi⟩|j′⟩.

(ii) Set the first register to be 0.

|j⟩|v⟩|i⟩|vi⟩|j′⟩ 7→ |0⟩|v⟩|i⟩|vi⟩|j′⟩.

(iii) Swap the contents of the first and the last registers.
The second step is a valid step because it is the inverse of the first operation (acting on
a different order of the registers). Since Adjlocal→global

V , Adjglobal→local
V and ΠGi are effi-

cient classically due to the explicitness of our CSP system and expander graphs provided
in Theorem 7.7, Mk is efficient.

B can be implemented efficiently because each constraint can be verified in polynomial
time classically.
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With the above preparation, we now describe the constraints test.
Constraints test
Input: Ψ0,Ψ1, each is a set of k states for some large constant k.
Pair the states in Ψ and Φ. Extend each state with the working space initialized to be
|0⟩|0⟩, so that each state is from the space H.
For each pair |ψ⟩ and |ϕ⟩, with probability 2d/(2d + 1) take the consistency check, with
the remaining probability take the inner constraints test

(i) Consistency check

- Apply A to |ϕ⟩ and |ψ⟩.
- Apply Mk to |ϕ⟩ for a uniformly random k ∈ [d].
- SwapTest on |ψ⟩ and |ϕ⟩.

(ii) Inner constraints test

- Apply B to |ψ⟩
- Measure the third register, Accept if 1 is observed.

Accepts if more than θ fraction of the pairs get accepted, where

θ = 1− 1− δ

4(2d+ 1)
.

7.3 Analysis

Lemma 7.12 (constraints test). Suppose val(C) = 1, then a faithful prover passes the
constraints test with probability 1. On the other hand, if val(C) ≤ δ, then on any two valid pair
of states |ψ⟩ and |ϕ⟩, the constraints test rejects with probability at least (1− δ)/(2(2d+1)).

Proof. Let s1 be the fraction of |j⟩|v⟩ such that Cj(v) = 0, and let s2 be the fraction of
unsatisfied edges coming from the expander graphs implicitly used in the consistency test,
then by Claim 7.9, we have:

s1 + s2 ≥ (1− δ − qη)R.

The consistency test partitions all pairs of the same variable in different constraints
into d matching. Let λ1, λ2, . . . , λd denotes the fraction of inconsistency pairs in matching
1, 2, . . . , d, respectively. Analogous to the previous analysis, the probability the SwapTest
accepts is

E
i∈[d]

[
1 + (1− λi)

2

2

]
≤ 1− 1

2
E
i∈[d]

λi = 1− s2
2dR

.

In the inner constraints test, 1 is observed with probability 1 − s1/R. Therefore, in total
the reject probability is at least

1

2d+ 1
· s1
R

+
2d

2d+ 1
· s2
2dR

≥ 1− δ − qη

2d+ 1
.

By picking the suitable n0, we make sure qη < (1 − δ)/2, thus the reject probability is at
least (1− δ)/(4d+ 2).
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Proof of Theorem 7.5. The completeness in Theorem 7.5 is completely analoguous to the
analysis in Theorem 6.3. The soundness in Theorem 7.5 is also similar to the previous
analysis. If Ψ supplied by the prover is not an ε-tilted state or is far from V, then the
symmetry test, sparsity test, and validity test will catch it. Therefore, we can assume that
essentially all states in Ψ are close to some state |ψ⟩ ∈ V. By choosing ε small enough and
the size of Ψ sufficiently large, by Lemma 7.12 and Chernoff bound, the fraction of accepted
states in the constraints test will be less than θ with high probability in the constraints
test.
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A Doubly Explicit PCP for NEXP

In this section, we describe a PCP for NEXP, which is doubly explicit and satisfies the
strong uniformity property. This will imply the following theorem immediately.

Theorem A.1 (Doubly explicit PCP for NEXP). There is some absolute constant κ < 1 and
natural number q, such that it is NEXP-hard to decide (1, κ)-GapCSP for (N = 2poly(n), R =
2poly(n), q, {0, 1})-CSP systems that are poly log(NR)-doubly explicit.

44



The outer PCP follows closely that of [Har04, Chapter 5], the inner PCP (of proximity)
is the Hadamard code based PCP [ALM+98]. Our focus is the double explicitness, therefore
the analysis on correctness will be omitted. The interested readers are referred to Harsha’s
thesis [Har04].

A.1 A NEXP-Complete Problem—Succinct SAT

The starting point is a NEXP-complete problem—the succinct SAT problem [PY86]. A
succinct SAT instance is an encoding of some circuit M : {0, 1}3n × {0, 1}3 → {0, 1},
succSAT(M) = 1 if and only if

∃x ∈ {0, 1}2n , ∀(i1, i2, i3, σ) ∈ {0, 1}3n × {0, 1}3, s.t.

¬M(i1, i2, i3, σ) ∨

 3∨
j=1

(σj ⊕ xij )

 .

M(i1, i2, i3, σ) determines whether there is a clause consists of variables xi1 , xi2 , xi3 , and σ
indicates in the clause whether the variable is negated. For example, σ1 = 1 would indicate
the corresponding literal being ¬xi1 , while σ1 = 0 would indicate the literal being xi1 . The
size of the circuit M should be at most poly(n).

Integrating Cook-Levin’s reduction, one can conclude that there is a polynomial-size 3-
CNF formula Φ : {0, 1}3n×{0, 1}3×{0, 1}t for t = nO(1) constructing from M in polynomial
time, such that

succSAT(M) = 1

⇐⇒ ∃x ∈ {0, 1}2n , ∀(i1, i2, i3, σ, w) ∈ {0, 1}3n × {0, 1}3 × {0, 1}t, s.t.

¬Φ(i1, i2, i3, σ, w) ∨

 3∨
j=1

(σj ⊕ xij )

 .

Abbreviate (i1, i2, i3, σ, w) by y ∈ {0, 1}3n+3+t, and let A : {0, 1}n → {0, 1} be the polyno-
mial of degree at most n such that A(i) = xi for i ∈ {0, 1}n. Using standard arithmetization,
there is a polynomial P : {0, 1}3n+3+t+3 → {0, 1} with degP = O(size|Φ|) = poly(n), such
that

¬Φ(i1, i2, i3, σ, w) ∨

 3∨
j=1

(σj ⊕A(ij))

 ⇐⇒ P (y,A(i1), A(i2), A(i3)) = 0.

This polynomial P can be computed from M in polynomial time.

A.2 A Robust Outer PCP for NEXP with poly(n) Queries

Based on the above discussion, a prover needs to provide A : {0, 1}n → {0, 1} which is
supposedly a polynomial of degree at most n, representing a satisfying assignment. To
assist the verifier, the prover will in reality provide the extended version of A : Fn → F for
some large finite field F with |F| = poly(n). The verifier will carry a low-degree test on A
to make sure that A is close to some polynomial of degree at most n. The low-degree test
is described below.
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Low-degree test
Input: Oracle A : Fn → F

(i) Sample a random line by sampling random a, b ∈ Fn.
(ii) Query A(at+ b) for all t ∈ F.

Accept if A(at+ b) is a polynomial of t with degree at most n.

Conditioning on A being close to a low-degree polynomial, P (y,A(i1), A(i2), A(i3)) is
close to a polynomial P0 : F3n+3+t → F of degree at most d = O(degA · degP ) = poly(n).
Let m = 3n+ 3 + t. The goal is to test if P0 vanishes on {0, 1}m. To accomplish this goal,
the prover should provide the following auxiliary polynomials

Q1, Q2, . . . , Qm, P1, P2, . . . , Pm : Fm → F

satisfying that for i ∈ [m]

Pi−1 ≡ ZiQi + P i,

Pm ≡ 0,

where Zi is a polynomial such that Zi(x) = 0 if and only if xi ∈ {0, 1}, for example,

Zi(x) = (xi − 1)xi.

These auxiliary polynomials will be bundled together in the oracle Π : Fm → F2m, such that
for any x ∈ Fm, Π(x) is supposed to equal (P1(x), P2(x), . . . , Pm(x), Q1(x), . . . , Qm(x)).
Once the prover provide the auxiliary proof P0 and Π, the verifier will take the following
test that check whether P0 vanishes on {0, 1}n.
Zero subcube test
Input: Oracle P0 : Fm → F,Π : Fm → F2m

(i) Sample a random line by sampling a, b ∈ Fm
(ii) Query all points in the line La,b = {t ∈ F : at+ b} on Π and P0.
(iii) Reject if Pi−1 ̸= ZiQi + Pi for any i ∈ [m] or Pm ̸= 0 on any point in La,b.
(iv) Reject if Pi(at+ b) is not a polynomial on t with degree at most d, Qi(at+ b) is not

a polynomial of degree at most d− 2.
Accept.

The combined PCP will be the following

Algorithm A.2: Robust PCP for succSAT

Input: A : Fn → F,Π : Fm → F2m, P0 : Fm → F
Take one of the following tests uniformly at random.

(i) Low-degree test on A.
(ii) Zero test on P0 and Π.
(iii) Consistency test: Sample a random line L by sampling random a, b ∈ Fm. Reject if

P0(y) ̸= P (y,A(i1), A(i2), A(i3)) for any point y ∈ L.
Accept if all tests accept.

Theorem A.3 (Robust PCP [Har04, Lemma 5.4.4]). For some large enough field F with size
poly(n). If the succinct SAT instance M is satisfiable, then the test accepts with probability
1. Otherwise, the test satisfies the robust soundness: If succSAT(M) = 0, then for some
constant δ ∈ (0, 1], with probability at least δ, the test rejects; Furthermore, the variables
queried have values δ/C far away from any satisfying assignment for some absolute constant
C.
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We establish the uniformity and the double explicitness property for the outer PCP.
The uniformity is very straightforward from the specifications of the PCP protocol.

Claim A.4 (Uniformity of the outer PCP). For any variable v in the proof A ◦Π ◦ P0, the
size of the AdjV (v) depends only on which of the following parts v lies in: A, P0, or Π.

To clarify, variables in the above claim have large and different alphabets. For example,
a variable in A has alphabet F, a variable in Π would have alphabet F2m. Toward the
end, we will switch to the binary representation. But this is not an issue since the size
of each variable is known and at most polynomially large (since the alphabet is at most
exponentially large). The index of variables using a large alphabet and the index of the bit
variables can be computed efficiently.

Given the randomness

r = (r0, a, b) ∈ ({0} × Fn × Fn) ∪ ({1, 2} × Fm × Fm),

it is very efficient to compute the variables to query since only some elementary operations
are required to compute the points on the line determined by a, b. Moreover, given any
variable, we can also compute the randomness with which the test queries the corresponding
variable. To see this, we first record a related simple fact.

Claim A.5. Given some n ∈ Z and finite field F with size polynomial in n. For any p ∈ Fn,
let

Ln,p = {(a, b) ∈ F2n : at+ b = p for some t ∈ F}

be the set of lines that pass point p. There is a natural order on Ln,p (i.e., the alphabetical
order), such that the following can be computed in time poly(n):

(i) Given any (a, b) ∈ Ln,p, output the index of (a, b) in Ln,p;
(ii) Given any index ι ∈ [|Ln,p|], output the line (a, b) with index ι in Ln,p.

Proof. (i) For (a, b) = (0, p), this is the line with the first index that passes point p. For any
a ̸= 0 ∈ Fn and t ∈ F, there is a unique b ∈ Fn such that at+ b = p. Therefore, given (a, b),
it is easy to compute the lines (a′, b) containing p with a′ < a. Now for all t ∈ F, we can list
all the b′ such that at+ b′ = p. This gives us the exact index of the given pair (a, b).

(ii) Given an index ι ∈ [|Ln,p|]. If ι = 1, we can determine that (a, b) = (0, p). Otherwise,
determine a by setting a to be ⌊(ι − 2)/|F|⌋ + 2. Then run over t ∈ F, we find the correct
b.

Claim A.6 (Double explicitness of the outer PCP). For any variable v in A, or in P0 or in
Π. There is a list AdjV (v) of randomness r with which the outer PCP queries the variable
v. The following are computable in time polynomial in n.

(i) Given any r ∈ AdjV (v), output the index ι of r in AdjV (v).
(ii) Given any ι ∈ [|AdjV (v)|], output the ιth randomness in AdjV (v).

Proof. We simply carefully check all the variables and tests.
Case 1: For any point p ∈ Fm, consider the variable P0(p). P0(p) can be queried in

the zero subcube tests and the consistency test. In either case, P0(p) is queried when the
sampled line passes p. Therefore, double explicitness holds by Claim A.5.
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Case 2: For any point p ∈ Fm, consider the variable Π(p), which is queried only in the
zero subcube test. Again, Π(p) is queried only when the sampled line passes p, so double
explicitness follows from Claim A.5.

Case 3: For any point p ∈ Fn corresponding to the variable A(p). In this case, A(p)
can be queried in the low-degree test and the consistency test. In the low-degree test, the
situation is completely covered by Claim A.5. Furthermore, we know that there are exactly
m0 = |F|2n possible (a, b) that queries p. So we ignore the low-degree test, this offsets the
index ι in AdjV (v) for r = (r0, a, b) with r0 ̸= 0 by m0. So in the remainder of the proof,
we handle the consistency test.

(i) For string y ∈ Fm, focus on the coordinates I1, I2, I3 that correspond to variables
i1, i2 and i3, respectively. Fix some arbitrary a ∈ Fm, count the b that satisfies any of the
following

(a|I1 , b|I1) ∈ Ln,p, (1)

(a|I2 , b|I2) ∈ Ln,p, (2)

(a|I3 , b|I3) ∈ Ln,p. (3)

Recall that Ln,p is the set of the lines that pass the point p in Fn. For I ∈ {I1, I2, I3},
if a|I ̸= 0, the number of b|I in Ln,p is |F|; if a|I = 0, then there is only one b|I . In any
case, there are at most polynomially many different assignments to bI1 , bI2 , bI3 to satisfy (1),
(2) or (3) depending only on how many 0s in a|I1 , aI2 , aI3 . The other coordinates can be
set arbitrarily. Therefore, even if we don’t know a exactly, but only the number of 0s in
I1, I2, I3, we can still compute the number of bs such that (a, b) queries A(p). Let

Ck(a) =

a′ < a :
∑
i∈[3]

1
[
a′|Ii = 0

]
= k

 .

For any fixed a, note that Ck(a) can be computed efficiently. Since k decides

|{b′ ∈ Fm : (a′, b′) queries A(p)}|,

for any a′ ∈ Ck(a), we can compute the total number of (a′, b′) in consistency check that
queries A(p) for a′ < a.

Now fix some b, such that p lies in line (a, b) restricted to I1, I2 or I3. Count b′ < b such
that (a, b′) queries A(p). We can do this because we can count the following efficiently

Bk = {b′ < b : (a|Ik , b
′|Ik) ∈ Ln,p}, k = 1, 2, 3.

Bjk = {b′ < b : (a|Ij , b′|Ij ), (a|Ik , b
′|Ik) ∈ Ln,p}, 1 ≤ j < k ≤ 3.

B123 = {b′ < b : (a|I1 , b′|I1), (a|I2 , b′|I2), (a|I3 , b′|I3) ∈ Ln,p}.

The reason is that for a fixed a, the arbitrary combination of (1), (2) and (3) restricts b′

on the corresponding locations (e.g. b′|I1 , or b′|I1∪I2 ,...) with at most polynomially many
assignments (in particular at most |F|3). For each of the assignments, it is easy to count
the number of assignments on the unrestricted coordinates such that b′ < b. Finally, using
the inclusion-exclusion principle, we know exactly the number of (a, b′) that queries A(p)
for b′ < b. This tells us the index ι of (a, b) for variable A(p).

(ii) Now given the index ι, we first fix the value of a. To do so, we start by fixing the
coordinates before I1, I2, I3. Then we decide if aI1 is 0. If not we can decide the value of aI1 ,
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and so on. After we fix the value of a, we decide the value of b|I1 . For any assignment σ to
b|I1 , we can count the total number of assignments of b such that (a, b) queries A(p). This
number only depends on whether (a|I1 , b|I1) ∈ Ln,p under the given assignment σ. Since
there are only polynomially many assignments σ making (a|I1 , b|I1) ∈ Ln,p, we can decide
the value of b|I1 . Analogously, we can decide the value of b|I2 and b|I3 , and finally all the
other coordinates.

A.3 The Hadamard Inner PCP

The standard approach to reduce the number of queries in a PCP system is to compose
the outer PCP with a query-efficient inner PCP. In the case of NEXP, the task is much
easier. Simply note that once the randomness r is fixed, then there is a polynomial-time
Turing machine Mr that verifies if the variables to query, again depending on r, satisfies the
corresponding test. This verification can also be “verified” using the following well-known
Hadamard code based PCP.

Theorem A.7 (cf. [ALM+98]). For any constant δ > 0, there is a PCP of proximity
for any NP problem with poly(n) number of random bits, query complexity O(1), perfect
completeness, and robust soundness δ: for any input δ-far from satisfying the circuit, the
test rejects with probability at least O(δ).

For the purpose of showing the double explicitness property, we briefly go over the
construction of this PCP. For any Turing machine M runs in time poly(|x|) on input x,
whether M(x) = 1 can be reduced to the problem of deciding the existence of a solution to
a system of polynomially many quadratic equations in F2.

Theorem A.8 (NP-completeness of quadratic equations). Given any Turing machine M
that runs in time t = poly(m) on input x of length m. There is a polynomial time reduction
A that runs in time poly(m) on x, and outputs A ∈ {0, 1}ℓ×n2

, b ∈ {0, 1}ℓ for n, ℓ = poly(m),
such that

(i) If M(x) = 1, then for some x′ ∈ {0, 1}n that x′ ≻ x and A(x′ ⊗ x′) = b,
(ii) If M(x) = 0, for any x′ ∈ {0, 1}n that x′ ≻ x, A(x′ ⊗ x′) ̸= b.

Furthermore, the rows of A are linearly independent.

Here x′ ≻ x means that x is a prefix of x′.

Proof. The correctness is standard. The focus is to show that A has linearly independent
rows. Start from the Cook-Levin’s reduction. Consider the computational tableau T ∈
{0, 1, 0̇, 1̇,⊥}t×t, where 0̇ and 1̇ denote that the header is pointing to the current cell and ⊥
denotes the empty cell. We can encode 0, 1, 0̇, 1̇,⊥ using the binary alphabet by for example,
000, 001, 010, 011, 111, respectively. We interpret {0, 1} as elements in F2. Therefore, each
symbol is encoded using three variables. By Cook-Levin’s reduction, there is a 3SAT formula
Ψ on variables associated with T . The way we encode the symbols guarantees that the input
x to M is a substring of the input x′ to Ψ. By rearranging, we can make sure x is a prefix
of x′. We make Ψ to have fan-in 2 by adding intermediate gates. In particular, for every
internal gate, associate a new variable. Then for every gate z that takes two variables x
and y as its input (when the input, say x, is negated, simply replace x with 1− x), add the
equation based on the operation of z, as below:
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(i) If z = x ∧ y, add the equation: xy + z = 0,
(ii) If z = x ∨ y, add the equation: z + x+ y + xy = 0.

For the top gate z, add equation z = 1. For variables associated with the first row in the
tableau T , add the corresponding equation to ensure things like the header is pointing to
the first cell; the cells after the input x is empty; etc. These equations are only enforced on
the “inputs” to the formula Ψ, and for each such variable, there is only one such equation.
Note that for any internal gate z in the formula, they only show up in two equations. One
that verifies the inputs variables are consistent with z. The other verifies that when z is fed
into an upper gate, the values are consistent. In the first case, there is always the term z.
In the second case, there is always the term zy for some other variable y.

We show that the equations introduced above result in a matrix A with linearly inde-
pendent rows. Take an arbitrary equation that corresponds to some gate z in the formula,
where we introduced a term z. If z is not the top gate, then to eliminate the term z we
must include the equation corresponding to the gate z′ that takes z as an input, which will
introduce the term zy for some y. This term zy is not removable. If z is the top gate, then
the equation itself already introduces a term xy for some gate x and y, which is not remov-
able. One remaining case is when the equation is z = 1 or z = 0 for some z, an input to the
formula. In this case, to remove the variable z, the only way is to look for any internal gate
that takes z as an input. However, once we take variables associated with internal gates, we
are back to the first case.

Algorithm A.9: Hadamard PCP for some polynomial-time Turing machine M

Convert M into a system of quadratic equation A : {0, 1}ℓ×n2
, b ∈ {0, 1}ℓ. Let x ∈ {0, 1}m

be the input to M .
Prover provides the proof consists of Y ∈ Fn2 , Z ∈ Fn2

2 such that for some solution x′ ∈
{0, 1}n to A(x′ ⊗ x′) = b that extends x, i.e., x′ ≻ x, and satisfy

Y (y) = ⟨y, x′⟩,
Z(z) = ⟨z, x′ ⊗ x′⟩.

Verifier checks the following
(i) (Linearity test for Y ) Sample random y, y′ ∈ {0, 1}n, test if ⟨y, x′⟩ + ⟨y′, x′⟩ = ⟨y +

y′, x′⟩.
(ii) (Linearity test for Z) Sample random z ∈ {0, 1}n×n, z′ ∈ {0, 1}n×n, test if ⟨z, x′ ⊗

x′⟩+ ⟨z′, x′ ⊗ x′⟩ = ⟨z + z′, x′ ⊗ x′⟩.
(iii) (Consistency test on Y and Z) Sample w,w′ ∈ {0, 1}n, test if ⟨w, x′⟩⟨w′, x′⟩ = ⟨w ⊗

w′, x′ ⊗ x′⟩.
(iv) (Equation test) Sample u ∈ {0, 1}ℓ, test if ⟨ATu, x′ ⊗ x′⟩ = ⟨ATu, b⟩.
(v) (Proximity test) Sample i ∈ [m] and v ∈ {0, 1}n, test if ⟨v+ ei, x′⟩+ ⟨v, x′⟩ = ⟨ei, x′⟩.

Accept only if all tests pass.

We make a few remarks here. First, for our purpose, we don’t really worry about the
optimal query complexity as long as the total number of queries is a constant number.
Second, note that by repeating the test multiple of times, we can detect any proximity
parameter. If the above PCP is doubly explicit, it remains doubly explicit repeating constant
number of times. Finally, actually the prover only provides x′m+1x

′
m+2 · · ·x′n, since the first

m bits are part of the input.
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Next, we establish the uniformity and double explicitness of the inner PCP. For unifor-
mity, we can classify the variables in the proof of the Hadamard PCP described above into
constantly different types based on:

(i) The input x to M , in another word, Y (ei) for i ∈ [m] form one type of variables.
(ii) For Y (a) for a ̸∈ {ei : i ∈ [m]}, form another type of variables.
(iii) For Z(a), depending on whether a ∈ {0, 1}n ⊗ {0, 1}n, and whether ∃u ∈ {0, 1}ℓ such

that ATu = a, {Z(a) : a ∈ {0, 1}n2} are decomposed into four different types of
variables.

Claim A.10 (Uniformity of inner PCP). There are six types of variables for the inner
PCP as listed above. For any two variable v1, v2 that belong to the same type, |AdjV (v1)| =
|AdjV (v2)|. Furthermore, |AdjV (v1)| can be computed efficiently.

Proof. By inspection.

Claim A.11 (Double explicitness of inner PCP). Fix any variable a which can be either
some Y (y) for y ∈ Fn, or Z(z) for z ∈ Fn2. Let AdjV (a) be the list of randomness r =
(y, y′, z, z′, w, w′, u, i, v) that queries a. The following are computable in time poly(n):

(i) Given any r ∈ AdjV (a), output the index ι of r in AdjV (a).
(ii) Given an index ι, output the ιth random string r in AdjV (a).

Proof. We carefully examine all the cases. Let U = {0, 1}2n+2n2+2n+ℓ × [m]×{0, 1}n, given
any r ∈ U , decompose r = r1r2 · · · r8r9, such that (r1, r2, . . . , r9) corresponds to (y, y′, z, z′,
w, w′, u, i, v) in the Hadamard PCP.

Case 1: Suppose that a ∈ Fn corresponds to the variable Y (a). Y (a) can be queried in
linearity test for Y , consistency test and proximity test. Then

AdjV (a) = E1(a) ∪ E2(a) ∪ E12(a) ∪ E5(a) ∪ E6(a) ∪ E′
8(a) ∪ E9(a) ∪ E89(a),

Ei(a) := {r ∈ U : ri = a}, i ∈ {1, 2, 5, 6, 9},
E12(a) := {r ∈ U : r1 + r2 = a},
E′

8(a) := {r ∈ U : er8 = a},
E89(a) := {r ∈ U : r9 + er8 = a}.

Now given any proper prefix p for some r ∈ U such that

p ∈ {ε, r1, r1r2, . . . , r1r2r3r4r5r6r7r8},

where ε stands for the empty string. let

AdjV (a)|p,r := AdjV (a) ∩ {ps ∈ U : ps < r}.

We want to compute the cardinality of AdjV (a)|p,r. Suppose the prefix p already implies a
query on Y (a), then the suffix s can be anything that makes ps < r. If the prefix p does
not imply a query on Y (a), we consider all the following sets.

Ei(a, p, r) := {r′ < r : r′i = a, p ≺ r′}, i ∈ {1, 2, 5, 6, 9},
E12(a, p, r) := {r′ < r : r′1 + r′2 = a, p ≺ r′},
E′

8(a, p, r) := {r′ < r : er′8 = a, p ≺ r′},
E89(a, p, r) := {r′ < r : r′9 + er′8 = a, p ≺ r′}.
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We claim that we can compute the cardinality of the intersection for an arbitrary combi-
nation of the above sets. If this is indeed the case, the cardinality of AdjV (a)|p,r can be
computed efficiently using the inclusion-exclusion principle. First, for r′ ∈ Ei, r

′
i is fixed

to be a. For E′
8, |E′

8| is nonzero only if a = ei for some i ∈ [m]. In that case, it fixes
the value of r′8. For E89, there are at most m possible ways of setting r′8 and r′9. When we
consider the intersection of an arbitrary combination of the above sets, we are restricting the
corresponding coordinates to at most m possible assignments, which we can list efficiently.
For each assignment, it is easy to count the number of assignments to the unrestricted co-
ordinates that are consistent with p and smaller than r. Finally, we take E12 into account.
If p already fixes r′1, then it determines r′2. Otherwise, for every possible r′1, there is one
corresponding r′2. When taking intersections with other sets, the corresponding coordinates
I are restricted to at most m possible assignments. We can exhaust the assignments to I,
and for all r′1 < r1, the unrestricted coordinates can have arbitrary values. For the single
special case r′1 = r1, depending on whether r′2 < r2 or r′2 = r2 or r′2 > r2, we can also count
efficiently the number of assignments to the other coordinates such that r′ < r.

The above discussion helps us establish the double explicitness for Y (a). In particular,
(i) given any r ∈ U , by computing the cardinality of AdjV (a)|p,r for p = ε, we can compute
the index ι of r in AdjV (a). (ii) Suppose we are given the index ι. For any prefix p, we
can efficiently compute |AdjV (a)|p,r|, by setting r = 12n+2n2+2n+ℓ ◦m ◦ 1n. The cardinality
only depends on whether p already queries Y (a), the length of p, and a. Therefore, we can
compute the ιth randomness in AdjV (a) by gradually determine r1, r2, . . . , r9.

Case 2: Suppose a ∈ Fn2 corresponds to some Z(a). Z(a) can be queried in linearity
test for Z, consistency test and equation test. Then

AdjV (a) = E3(a) ∪ E4(a) ∪ E34(a) ∪ E56(a) ∪ E7(a),

Ei(a) := {r ∈ U : ri = a}, i ∈ {3, 4, 7},
E34(a) := {r ∈ U : r3 + r4 = a},
E56(a) := {r ∈ U : r5 ⊗ r6 = a},
E7(a) := {r ∈ U : AT r = a}.

Analogous to case 1, we also consider the version AdjV (a)|p,r, Ei(a, p, r), Eij(a, p, r) that are
consistent with some prefix p. The cardinality of Ei(a, p, r) can be computed just like in
case 1. The cardinality of E56 is nonzero only when a is a tensor product of some w,w′, and
a completely determines w and w′. For E7, we need to solve the following linear equation
such that

ATu = a.

Since the rows of A are independent, there is at most one solution for the above equation.
This can be found in polynomial time using, for example, Gaussian elimination. All in
all, when considering the intersection of an arbitrary combination of the above sets, we are
restricting a few coordinates to at most 1 possible assignment. It is easy to count the number
of assignments on the other unrestricted coordinates that are consistent with the prefix p
and smaller than r. To take E34 into account, this is completely analogous to what happens
in case 1. Therefore, we can compute AdjV (a)|p,r efficiently.

Now it follows the same argument as in case 1, given any r ∈ U , we can compute
the index ι of r in AdjV (a) and given any index ι we can compute the corresponding ιth
randomness r.
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A.4 The PCP Composition

The final PCP for the succinct SAT problem will be the composition of the outer PCP
and the inner PCP. In particular, for any succinct SAT instance M , let s = size(M). The
prover should provide the proof Πouter for the outer PCP. The outer PCP verifier samples the
randomness r ∈ {0, 1}poly(s). Depending on r, some polynomial-time verification Mr will be
invoked to verify a set of variables Ir in Πouter, denoted by Πouter|Ir . Mr can be converted into
a quadratic equation instance (Ar, br) in time poly(s). The prover will provide for all possible
randomness r, a proof Πinner

r . Now the inner PCP will verify Πouter|Ir ◦ Πinner
r . Sample the

randomness r′ ∈ {0, 1}poly(s) for the inner PCP. Based on r′, there is a polynomial-time
verification M inner

r′ that verifies Πouter|Ir ◦Πinner
r .

The prover will arrange the proofs as a concatenation of Πouter ◦ Πinner
0 ◦ Πinner

1 ◦ · · · .
Note that there are exactly m0 = |F|2n random strings for the low-degree tests in the outer
PCP. These tests correspond to the same verification procedure, therefore the inner PCPs
have the same structure. Following the low-degree tests are the zero tests corresponding to
the next m1 = |F|2m random strings. Finally, the remaining are m2 = |F|2m consistency
tests. We know exactly the size of |Πinner

r | for each r. Therefore for any variable v, it
can be computed efficiently whether v lies in Πouter or Πinner

r , and in the latter case, we
can computer r in polynomial time. So when we talk about a variable v, we suppose the
information is provided.

Theorem A.12. The composed PCP is doubly explicit.

Proof. Fix some variable v, there are two cases. First, if v ̸∈ Πouter. This case is straight-
forward: v is queried only if the random string r for the outer PCP is correct. Then the
double explicitness for v follows the double explicitness of the inner PCP.

Second, if v ∈ Πouter. Now given r, r′ the random strings for the outer and inner PCPs,
respectively. From the double explicitness of the outer PCP, we know the index ι of the r ∈
AdjouterV (v). From which, we can compute the cardinality of R = {(s, s′) ∈ AdjV (v) : s < r}.
This is because by ι we know exactly the cardinality of Ri = {s ∈ AdjouterV (v) : s < r} ∩ Ti
for i ∈ {1, 2, 3}, where T1, T2, T3 are the sets of random strings for the outer PCP that invoke
the low-degree tests, zero tests, and consistency tests, respectively. Due to the uniformity
of the inner PCP, for any s ∈ Ri, the size of the adjacency list of v for the inner PCP is the
same. Denote ni be the size of adjacency list of v for any s ∈ Ri, we have

|R| =
3∑
i=1

ni · |Ri|.

Now by the double explicitness of the inner PCP, we get the index ι′ of r′. The index of
(r, r′) for the composed PCP is therefore |R| + ι′. On the other hand, let some index ι be
given. Since we can compute ni, it is easy to fix r. Then the double explicitness of the inner
PCP will determine r′.

The above argument establishes the double explicitness on adjacency list AdjV . The
explicitness of AdjC is straightforward. Given the random string r, r′, fully determined by
r the outer PCP queries a line in one of three tests, the points on which are efficient to list.
Look inside the corresponding inner PCP, by r′ we can efficiently output the corresponding
locations to query. Since we can efficiently output the list of variables that (r, r′) queries, it
shows the explicitness on the adjacency list AdjC .
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The uniformity of the inner PCP and outer PCP together implies the uniformity of the
composed PCP.

Theorem A.13. In the composed PCP, there are only a constant number of different types
[N = 2poly(s)] = V1 ∪ V2 ∪ · · · ∪ Vk of variables in the sense that the size of AdjV (v) only
depends on which type the variable v is.

Proof. First, consider any variable v ̸∈ Πouter. There are only 3 different kinds of inner
PCP depending on whether the outer PCP invokes the low-degree test, zero subcube test,
or consistency test. For each test, by the uniformity of the inner PCP, there are 5 different
types of variables. In total, there are 15 different types of variables. Consider any variable
v ∈ Πouter. (Note that when we discuss the outer PCP, we are using a large alphabet. Here,
a variable has a binary value. So we split one variable from the outer PCP into polynomially
many.) By the uniformity of the outer PCP, which and how many of the low-degree tests,
zero tests, and consistency tests are only depending on whether v belongs to A,P0 or Π.
For any v that belongs to the same type, the uniformity of the inner PCP tells us that the
total number of constraints that queries v is fixed.
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