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Goal of the Talk

Goal
Present an efficient unique decoding algorithm for Ta-Shma’s binary codes
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Goal of the Talk

Outline
Notation and Context (≈ 25%)
Direct Sum and Ta-Shma’s Codes (≈ 25%)
Our Decoding Techniques (≈ 50%)
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Coding Theory Concepts

Code
A binary code is a subset C ⊆ Fn

2
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Coding Theory Concepts

Two Fundamental Properties

Distance
The distance ∆(C) of C is

∆(C) := min
z,z ′∈C : z 6=z ′

∆(z , z ′),

where ∆(z , z ′) is the (normalized) Hamming distance.
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Coding Theory Concepts

Two Fundamental Properties

Distance
The distance ∆(C) of C is

∆(C) := min
z,z ′∈C : z 6=z ′

∆(z , z ′),

where ∆(z , z ′) is the (normalized) Hamming distance.

Rate

Fraction of information symbols log2(|C|)
n aka the rate r(C) of C
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Error Model

Noisy Channel

Alice Bob

∈ C

z1
z2

zn

Unbounded memory
Unbounded computational power

Adversary

Can change symbols arbitrarily
≤ pn symbol changes where p ∈ [0, 1)
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Error Model

Question
How large can we take p ∈ [0, 1)?
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Error Model

Question
How large can we take p ∈ [0, 1)? Information theoretically, any
p ∈ [0,∆(C)/2) is valid for unique decoding

∆(C)

z

z ′

∆(C)/2

∆(C)/2

z̃

z̃ ′
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Error Model

Error Model
This adversarial error model was introduced by Hamming in 1950

Figure: Richard W. Hamming (source: mathshistory.st-andrews.ac.uk).
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Tension between Rate and Distance of a Code

Tension
Increasing the rate r(C) may reduce the distance ∆(C)

Increasing the distance ∆(C) may reduce the rate r(C)
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Tension between Rate and Distance of a Code

Fn
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codewords of C

Lower rate r(C)

∆(C)
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Coding Theory Concepts

Question
What is the best trade-off between rate r(C) and distance ∆(C)?
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Coding Theory Concepts

Gilbert’52,Varshamov’57 (abridged)
For every distance ρ ∈ (0, 1/2), there exists C of size 2n/Vol(Ball(ρ)), or
equivalently r(C) ≈ 1− H2(ρ)
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Coding Theory Concepts

Gilbert’52,Varshamov’57 (abridged)
For every distance ρ ∈ (0, 1/2), there exists C of size 2n/Vol(Ball(ρ)), or
equivalently r(C) ≈ 1− H2(ρ)

Fn
2

∆(C)

z ′

z

∆(C)/2

∆(C)/2
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Coding Theory Concepts

Why is the Gilbert–Varshamov bound interesting?
The Gilbert–Varshamov (GV) bound is “nearly” optimal
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Coding Theory Concepts

Gilbert–Varshamov existential bound

distance ∆(C)0 1/2

rate r(C)

GV

1
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Coding Theory Concepts

McEliece–Rodemich–Rumsey–Welch’77 impossibility bound

distance ∆(C)0 1/2

rate r(C)

GV

1
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Coding Theory Concepts

distance ∆(C)0 1/2

rate r(C)

GV

1

distance 1
2 − ε (this talk)
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Coding Theory Concepts

For distance 1/2− ε
rate Ω(ε2) is achievable (Gilbert–Varshamov bound)
rate better than O(ε2 log(1/ε)) is impossible (McEliece et al.)
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Coding Theory Concepts

For distance 1/2− ε
rate Ω(ε2) is achievable (Gilbert–Varshamov bound)
rate better than O(ε2 log(1/ε)) is impossible (McEliece et al.)

Ta-Shma’s Codes (60 years later!)
First explicit binary codes near the GV are due to Ta-Shma’17

these codes have distance 1/2− ε/2 (actually ε-balanced), and
rate Ω(ε2+o(1)).
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Coding Theory Concepts

Ta-Shma’s Codes (60 years later!)
First explicit binary codes near the GV are due to Ta-Shma’17

these codes have distance 1/2− ε/2 (actually ε-balanced), and
rate Ω(ε2+o(1)).

Issue
It was an open question whether Ta-Shma’s codes admit efficient decoding
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Coding Theory Concepts

Issue
It was an open question whether Ta-Shma’s codes admit efficient decoding

Theorem (this work)
Ta-Shma’s codes are polynomial time unique decodable
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Our Contribution

Theorem (Unique Decoding)

For every ε > 0, ∃ explicit binary linear Ta-Shma codes CN,ε,β ⊆ FN
2 with

1 distance at least 1/2− ε/2 (actually ε-balanced),
2 rate Ω(ε2+β) where β = O(1/(log2(1/ε))1/6), and
3 a unique decoding algorithm with running time NOε,β(1).
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Our Contribution

Theorem (Unique Decoding)

For every ε > 0, ∃ explicit binary linear Ta-Shma codes CN,ε,β ⊆ FN
2 with

1 distance at least 1/2− ε/2 (actually ε-balanced),
2 rate Ω(ε2+β) where β = O(1/(log2(1/ε))1/6), and
3 a unique decoding algorithm with running time NOε,β(1).

Furthermore, if instead we take β > 0 to be an arbitrary constant, the
running time becomes (log(1/ε))O(1) · NOβ(1) (fixed polynomial time).
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Our Contribution

Theorem (Gentle List Decoding)

For every ε > 0, ∃ explicit binary linear Ta-Shma codes CN,ε,β ⊆ FN
2 with

1 distance at least 1/2− ε/2 (actually ε-balanced),
2 rate Ω(ε2+β) where β = O(1/(log2(1/ε))1/6), and
3 a list decoding algorithm that decodes within radius

1/2− 2−Θ((log2(1/ε))1/6) in time NOε,β(1).
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Related Work

All based on code concatenation starting from larger alphabet codes

Theorem (Guruswami–Indyk’04)
Efficiently decodable non-explicit binary codes at the Gilbert–Varshamov
bound
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Related Work

All based on code concatenation starting from larger alphabet codes

Theorem (Guruswami–Indyk’04)
Efficiently decodable non-explicit binary codes at the Gilbert–Varshamov
bound

Theorem (Hemenway–Ron-Zewi–Wootters’17)
Near-linear time decodable non-explicit binary codes at the
Gilbert–Varshamov bound
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Related Work

All based on code concatenation starting from larger alphabet codes

Theorem (Guruswami–Rudra’06)
There are explicit binary codes list decodable from radius 1/2− ε and rate
Ω(ε3) (Zyablov bound)
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Related Work

All based on code concatenation starting from larger alphabet codes

Theorem (Guruswami–Rudra’06)
There are explicit binary codes list decodable from radius 1/2− ε and rate
Ω(ε3) (Zyablov bound)

GR’06 results can now also be obtained from some later capacity achieving
codes
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Towards Ta-Shma’s Codes

Expander Graphs and Codes
Expanders can amplify the distance of a not so great base code C0
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Expansion and Distance Amplification

Fix a bipartite graph between [n] and W (k) ⊆ [n]k . Let z ∈ C0 ⊆ Fn
2.

z
...

... ...
...

z2 ⊕ z4 ⊕ z5 ⊕ zn

z1 ⊕ z2 ⊕ z5 ⊕ zi

z1 ⊕ z2 ⊕ z4 ⊕ zj

z3 ⊕ zk ⊕ zn−1 ⊕ zn

z4 ⊕ z` ⊕ zs ⊕ zn−1

Direct Sum

[n] W (k)

z1
z2
z3

zn

z4
z5

Decoding Binary Codes 11 / 27



Expansion and Distance Amplification

Fix a bipartite graph between [n] and W (k) ⊆ [n]k . Let z ∈ C0 ⊆ Fn
2.

z
...

... ...
...

z2 ⊕ z4 ⊕ z5 ⊕ zn

z1 ⊕ z2 ⊕ z5 ⊕ zi

z1 ⊕ z2 ⊕ z4 ⊕ zj
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Direct Sum
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rate loss factor n/|W (k)|

distance amplification needs to be worth this loss
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Expansion and Distance Amplification

Fix a bipartite graph between [n] and W (k) ⊆ [n]k . Let z ∈ C0 ⊆ Fn
2.

z
...

... ...
...

z2 ⊕ z4 ⊕ z5 ⊕ zn

z1 ⊕ z2 ⊕ z5 ⊕ zi

z1 ⊕ z2 ⊕ z4 ⊕ zj

z3 ⊕ zk ⊕ zn−1 ⊕ zn

z4 ⊕ z` ⊕ zs ⊕ zn−1

Direct Sum

[n] W (k)

rate loss factor n/|W (k)|

distance amplification needs to be worth this loss

z1
z2
z3

zn

z4
z5

Alon–Brooks–Naor–Naor–Roth & Alon–Edmonds–Luby style distance
amplification Decoding Binary Codes 11 / 27



Expansion and Distance Amplification

Direct Sum

Let z ∈ Fn
2 and W (k) ⊆ [n]k . The direct sum of z is y ∈ FW(k)

2 defined as

y(i1,...,ik ) = zi1 ⊕ · · · ⊕ zik ,

for every (i1, . . . , ik) ∈W (k). We denote y = dsumW (k)(z).
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Expansion and Distance Amplification

Bias
Let z ∈ Fn

2. Define bias(z) :=|IEi∈[n](−1)zi |.
Let C ⊆ Fn

2. Define bias(C) := maxz∈C\{0} bias(z).

Definition (Parity Sampler, c.f. Ta-Shma’17)

Let W ⊆ [n]k . We say that dsumW is (ε0, ε)-parity sampler iff

(∀z ∈ Fn
2) (bias(z) ≤ ε0 =⇒ bias(dsumW (z)) ≤ ε) .
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Expanders and Distance Amplification

Parity Samplers

Where to look for good parity samplers W (k) ⊆ [n]k?
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Expanders and Distance Amplification

A Dream Parity Sampler

Let z ∈ Fn
2 with bias(z) ≤ β0 < 1. Let W (k) = [n]k . Then

bias
(
dsumW (k)(z)

)
≤ |IEi∈[n](−1)zi |k ≤ βk0 .

Decoding Binary Codes 13 / 27



Expanders and Distance Amplification

A Dream Parity Sampler

Let z ∈ Fn
2 with bias(z) ≤ β0 < 1. Let W (k) = [n]k . Then

bias
(
dsumW (k)(z)

)
≤ |IEi∈[n](−1)zi |k ≤ βk0 .

Issue: Vanishing Rate

W (k) is "too dense” so distance amplified code has rate ≤ 1/nk−1
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Expanders and Distance Amplification

Another Dream Parity Sampler

Sample a uniformly random W (k) ⊆ [n]k of size Θε0(n/ε2).
Then w.h.p. dsumW is (ε0, ε)-parity sampler.
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Expanders and Distance Amplification

Another Dream Parity Sampler

Sample a uniformly random W (k) ⊆ [n]k of size Θε0(n/ε2).
Then w.h.p. dsumW is (ε0, ε)-parity sampler.

Issue: Non-explicit
Now W (k) has near optimal size but it is non-explicit
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Expanders and Distance Amplification

Solution 1 (good but not near optimal)

Take W (k) ⊆ [n]k to be the collection of all length-(k − 1) walks on a
sparse expander graph G = (V = [n],E )
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Expanders and Distance Amplification

Solution 1 (good but not near optimal)

Take W (k) ⊆ [n]k to be the collection of all length-(k − 1) walks on a
sparse expander graph G = (V = [n],E )

Solution 1 (good but not near optimal)

This solution yields codes of distance 1/2− ε and rate Ω(ε4+o(1))
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Expanders and Distance Amplification

Solution 1 (good but not near optimal)

Take W (k) ⊆ [n]k to be the collection of all length-(k − 1) walks on a
sparse expander graph G = (V = [n],E )
(suggested by Rozenman–Wigderson and analyzed by Ta-Shma’17)

Solution 1 (good but not near optimal)

This solution yields codes of distance 1/2− ε and rate Ω(ε4+o(1))
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Expanders and Distance Amplification

Solution 2 (near optimal) Ta-Shma’17

Take W (k) ⊆ [n]k to be a carefully chosen collection of length-(k − 1)
walks on a sparse expander graph G = (V = [n],E )
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Solution 2 (near optimal) Ta-Shma’17

Take W (k) ⊆ [n]k to be a carefully chosen collection of length-(k − 1)
walks on a sparse expander graph G = (V = [n],E )

Solution 2 (near optimal) Ta-Shma’17

This solution yields codes of distance 1/2− ε and rate Ω(ε2+o(1))
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Expanders and Distance Amplification

Solution 2 (near optimal) Ta-Shma’17

Take W (k) ⊆ [n]k to be a carefully chosen collection of length-(k − 1)
walks on a sparse expander graph G = (V = [n],E )
(beautiful breakthrough of Ta-Shma’17 based on
generalizations of the Zig-Zag product Reingold–Vadhan-Wigderson)

Solution 2 (near optimal) Ta-Shma’17

This solution yields codes of distance 1/2− ε and rate Ω(ε2+o(1))
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Bird’s-eye view of Unique Decoding

Decoding Direct Sum
What does decoding look like for direct sum?
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Bird’s-eye view of Unique Decoding

Setup
C0 ⊆ Fn

2 an ε0-balanced code with ∆(C0) = 1/2− ε0/2
W = W (k) ⊆ [n]k for direct sum
C = dsumW (C0) an ε-balanced code with ∆(C) = 1/2− ε/2
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Bird’s-eye view of Unique Decoding

Suppose y∗ ∈ C is corrupted into some ỹ ∈ FW
2 in the unique decoding ball

centered at y∗.

z

...
...

...
...

z2 ⊕ z4 ⊕ z5 ⊕ zn = ỹ (2,4,5,n)

z1 ⊕ z2 ⊕ z5 ⊕ zi = ỹ (1,2,5,i)

z1 ⊕ z2 ⊕ z4 ⊕ zj = ỹ (1,2,4,j)

z3 ⊕ zk ⊕ zn−1 ⊕ zn = ỹ (3,k,n−1,n)

z4 ⊕ z` ⊕ zs ⊕ zn−1 = ỹ (4,`,s,n−1)

k-XOR

[n]
ỹ

W
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Bird’s-eye view of Unique Decoding

Unique Decoding Scenario: k-XOR
Unique decoding ỹ amounts to solving

arg max
z∈C0

IE(i1,...,ik )∈W1[zi1 ⊕ · · · ⊕ zik = ỹ (i1,...,ik )],

which is a MAX k-XOR instance I with the additional constraint that the
solution z must lie in C0.
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Bird’s-eye view of Unique Decoding

Let z∗ ∈ C0 be s.t. y∗ = dsumW (z∗).

Optimal Value
Since ỹ is in the unique decoding ball centered at y∗, we have

IE(i1,...,ik )∈W1[z∗i1 ⊕ · · · ⊕ z∗ik 6= ỹ (i1,...,ik )] = ∆(y∗, ỹ) < ∆(C)/2

Thus,

OPT(I) ≥ IE(i1,...,ik )∈W1[z∗i1 ⊕ · · · ⊕ z∗ik = ỹ (i1,...,ik )] > 1−∆(C)/2
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Bird’s-eye view of Unique Decoding

Optimal Solution
Suppose that we can find z̃ ∈ Fn

2 (rather than in C0) satisfying

IE(i1,...,ik )∈W1[z̃ i1 ⊕ · · · ⊕ z̃ ik = ỹ (i1,...,ik )] = OPT(I) > 1−∆(C)/2

Thus, ∆(dsumW (z̃), ỹ) < ∆(C)/2

Decoding Binary Codes 16 / 27



Bird’s-eye view of Unique Decoding

By triangle inequality,

∆(dsumW (z̃), dsumW (z∗)) ≤ ∆(dsumW (z̃), ỹ) +

∆(ỹ , dsumW (z∗)) < ∆(C) = 1/2− ε/2,

implying

bias(dsumW (z̃)⊕ dsumW (z∗)) = bias(dsumW (z̃ ⊕ z∗)) > ε

“Nontrivial bias”
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Bird’s-eye view of Unique Decoding

Claim
If dsumW is a “strong enough” parity sampler, then either z̃ or z̃ ⊕ 1 lie in
the unique decoding ball of C0 centered at z∗.
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Bird’s-eye view of Unique Decoding

Claim
If dsumW is a (1/2 + ε0/2, ε)-parity sampler, then either z̃ or z̃ ⊕ 1 lie in
the unique decoding ball of C0 centered at z∗.
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Bird’s-eye view of Unique Decoding

Moral
Find solution z̃ ∈ Fn

2 (rather than in C0) is enough
Use unique decoder of C0 to correct z̃ into z∗
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Bird’s-eye view of Unique Decoding

Need to resolve the following assumption.

Optimal Solution
Suppose that we can find z̃ ∈ Fn

2 (rather than z̃ ∈ C0) satisfying

IE(i1,...,ik )∈W1[z̃ i1 ⊕ · · · ⊕ z̃ ik = ỹ (i1,...,ik )] = OPT(I)
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Bird’s-eye view of Unique Decoding

Need to resolve the following assumption.

Optimal Solution
Suppose that we can find z̃ ∈ Fn

2 (rather than z̃ ∈ C0) satisfying

IE(i1,...,ik )∈W1[z̃ i1 ⊕ · · · ⊕ z̃ ik = ỹ (i1,...,ik )] = OPT(I)

Possible issue?
MAX k-XOR is NP-hard, right?
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Bird’s-eye view of Unique Decoding

Possible issue?
MAX k-XOR is NP-hard, right?

Not an issue
Right, it can be NP-hard in general. However, for some expanding instances we
can find an approximate solution (and that is enough).
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Bird’s-eye view of Unique Decoding

Using the Sum-of-Squares (SOS) semi-definite programming hierarchy:

Theorem (Alev–J–Quintana–Srivastava–Tulsiani’20)

Let W (k) ⊆ [n]k be σ-splittable (notion of tuple expansion). Suppose I is
a k-XOR instance on W (k). If σ ≤ poly(γ/2k), then we can find a
solution z ∈ Fn

2 satisfying
OPT(I)− γ,

fraction of the constraints of I in time npoly(2k/γ).

(building on Alev–J–Tulsiani’19 which builds on Barak–Raghavendra–Steurer’11)
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Bird’s-eye view of Unique Decoding

Let W (k) ⊆ [n]k . Define W [a, b] for 1 ≤ a ≤ b ≤ k as

W [a, b] = {(ia, . . . , ib) | (i1, . . . , ik) ∈W (k)}.
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Bird’s-eye view of Unique Decoding

Let W (k) ⊆ [n]k . Define W [a, b] for 1 ≤ a ≤ b ≤ k as

W [a, b] = {(ia, . . . , ib) | (i1, . . . , ik) ∈W (k)}.

Definition (Splittability (informal))

A collection W (k) ⊆ [n]k is said to be σ-splittable, if k = 1 (base case) or
there exists k ′ ∈ [k − 1] such that:

1 The matrix S ∈ RW [1,k ′]×W [k ′+1,k] defined by
S(w ,w ′) = 1ww ′ ∈W has normalized second singular value at most
σ (where ww ′ denotes the concatenated tuple).

2 The collections W [1, k ′] and W [k ′ + 1, k] are σ-splittable.
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Bird’s-eye view of Unique Decoding

Lemma (AJQST’20)

The collection W (k) ⊆ [n]k of all walks on σ-two-sided spectral expander
graph G = (V = [n],E ) is σ-splittable.

Decoding Binary Codes 19 / 27



Bird’s-eye view of Unique Decoding

What about the code parameters?
What parameters do we get putting these pieces together?
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Bird’s-eye view of Unique Decoding

Well... Our parameters in AJQST’20...
With this approach we obtain binary codes with

distance 1/2− ε
rate Θ(2−(log(1/ε))2)� poly(ε)

polynomial time unique decoding algorithm

Decoding Binary Codes 20 / 27



Bird’s-eye view of Unique Decoding

Leveraging Unique Decoding to List Decoding AJQST’20
Maximizing an entropic function Ψ while “solving” the Sum-of-Squares
program of unique decoding yields a list decoding algorithm

(independently used by Raghavendra–Yau & Karmalkar–Klivans–Kothari to ML)
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Bird’s-eye view of Unique Decoding

Well... Again our parameters in AJQST’20...
With this entropic approach we obtain binary codes with

list decoding radius 1/2− ε
rate Θ(2−(log(1/ε))2)� poly(ε)

polynomial time list decoding algorithm
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Bird’s-eye view of Unique Decoding

On one side
There is this refined near optimal code construction of Ta-Shma

On the other side
There is this far from optimal parameter hungry decoding machinery
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Bird’s-eye view of Unique Decoding

What are the techniques?
We will just mention the techniques at a very high-level
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Bird’s-eye view of Unique Decoding

Splittability
First, we modify Ta-Shma’s direct sum construction W (k) to make it
splittable so that our decoding tools can be used
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Techniques

Unique decoding
via SOS
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Techniques

A few extra words about SOS

Sum-of-Squares (SOS)
Sum-of-Squares is a semi-definite programming hierarchy

It generalizes linear programming
It captures the state-of-the-art approximation guarantees for many
problems (MAX-CUT and other CSPs)
Roughly speaking, level d of SOS runs in time nO(d) where n is the
number of variables
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Techniques

Unique decoding
via SOSUnique Decoding

Problem
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Techniques

First Hammer Effect
As in AJQST’20, we can only decode explicit binary codes C satisfying

∆(C) ≥ 1/2− ε, and
rate r(C) = 2−polylog(1/ε) � ε2+o(1) (not even polynomial rate)
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Bird’s-eye view of Unique Decoding

Unique decoding
via SOS

List decoding via SOS
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Bird’s-eye view of Unique Decoding

Killing a Fly With a Bazooka
Use list decoding to perform unique decoding!
Also considered in some previous work (e.g. Guruswami–Indyk’04).
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Bird’s-eye view of Unique Decoding

Unique Decoding
Problem

Unique decoding
via SOS

List decoding via SOS
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Bird’s-eye view of Unique Decoding

Second Hammer Effect
Some parameters are better but r(C) still not even polynomial

Decoding Binary Codes 24 / 27



Bird’s-eye view of Unique Decoding

Code Cascading
(Recursion)
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Bird’s-eye view of Unique Decoding

Ta-Shma’s walks admit a recursive structure. In short,
walks over walks are larger walks,
walks over larger walks are even larger walks,
walks over even larger walks are...
and so on...
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Bird’s-eye view of Unique Decoding

Taking advantage of this recursive structure we can define a sequence of
codes. Decoding takes places between consecutive levels and requires much
weaker parameters now.

C0 C1 Ci−1 Ci C`· · · · · ·
dsum1 dsumi

ε0 ε1 εi−1 εi ε` = ε

Figure: Code cascading: recursive construction of codes.
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Bird’s-eye view of Unique Decoding

Remark
Some form of cascading was present in the work of Guruswami–Indyk’01 to
the so-called direct product. The details here and in their setting are quite
different.
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Bird’s-eye view of Unique Decoding

Unique Decoding
Problem

Unique decoding
via SOS

List decoding via SOS

Code Cascading
(Recursion)
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Bird’s-eye view of Unique Decoding

Second and Third Hammers Effect
Decode Ta-Shma’s codes with nearly optimal rate
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That’s all.

Thank you!
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