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Goal of the Talk

Present an efficient unique decoding algorithm for Ta-Shma's binary codes \
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Goal of the Talk

e Notation and Context (=~ 25%)
@ Direct Sum and Ta-Shma's Codes (= 25%)
@ Our Decoding Techniques (= 50%)
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Coding Theory Concepts

A binary code is a subset C C Fj \
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Coding Theory Concepts

A binary code is a subset C C Fj \

M codewords of C

I3
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Coding Theory Concepts

Two Fundamental Properties

Distance
The distance A(C) of C is

A(C)= min Az, 2),

z,z/e€C: z#2z2’

where A(z,Z') is the (normalized) Hamming distance.
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Coding Theory Concepts

Two Fundamental Properties

Distance
The distance A(C) of C is

A(C) = . Zlengi:nz;ﬂéz/ A(z,Z),

where A(z,Z') is the (normalized) Hamming distance.

Fraction of information symbols % aka the rate r(C) of C
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Error Model

°
° Unbounded memory
\ Unbounded computational power
Can change symbols arbitrarily
< pn symbol changes where p € [0,1)
A~
Q Adversary O
/‘\ l Noisy Channel /‘\
Alice Bob

4/27
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Error Model

How large can we take p € [0,1)7 \
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Error Model

How large can we take p € [0,1)7 Information theoretically, any
p € [0,A(C)/2) is valid for unique decoding
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Error Model

Error Model

This adversarial error model was introduced by Hamming in 1950

Figure: Richard W. Hamming (source: mathshistory.st-andrews.ac.uk).
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Tension between Rate and Distance of a Code

o Increasing the rate r(C) may reduce the distance A(C)

o Increasing the distance A(C) may reduce the rate r(C)
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Tension between Rate and Distance of a Code

M codewords of C

lx\\fﬁfiy.

I3

Lower rate r(C)
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Tension between Rate and Distance of a Code

M codewords of C
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Tension between Rate and Distance of a Code

W codewords of C W codewords of C
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Lower rate r(C) Higher rate r(C)
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Coding Theory Concepts

What is the best trade-off between rate r(C) and distance A(C)?
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Coding Theory Concepts

Gilbert'52,Varshamov'57 (abridged)

For every distance p € (0,1/2), there exists C of size 2" /Vol(Ball(p)), or
equivalently r(C) =~ 1 — Ha(p)
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Coding Theory Concepts

Gilbert'52,Varshamov'57 (abridged)

For every distance p € (0,1/2), there exists C of size 2" /Vol(Ball(p)), or
equivalently r(C) ~ 1 — Ha(p)

F3
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Coding Theory Concepts

Why is the Gilbert—Varshamov bound interesting?
The Gilbert—Varshamov (GV) bound is “nearly” optimal
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Coding Theory Concepts

Gilbert—Varshamov existential bound

rate r(C)
1

GV

0 1/2 distance A(C)



Coding Theory Concepts

McEliece—-Rodemich—Rumsey—Welch'77 impossibility bound

rate r(C)
1

GV

0 1/2 distance A(C)



Coding Theory Concepts

rate r(C)

distance 3 — € (this talk)

0 s 1/2 distance A(C)
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Coding Theory Concepts

For distance 1/2 — ¢

o rate Q(€?) is achievable (Gilbert—Varshamov bound)
o rate better than O(e? log(1/¢)) is impossible (McEliece et al.)
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Coding Theory Concepts

For distance 1/2 — ¢

e rate Q(e?) is achievable (Gilbert—Varshamov bound)
o rate better than O(e?log(1/¢)) is impossible (McEliece et al.)

Ta-Shma's Codes (60 years later!)
First explicit binary codes near the GV are due to Ta-Shma'l7

@ these codes have distance 1/2 — ¢/2 (actually e-balanced), and
o rate Q(e2To(1),
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Coding Theory Concepts

Ta-Shma's Codes (60 years later!)

First explicit binary codes near the GV are due to Ta-Shma'l7
@ these codes have distance 1/2 — ¢/2 (actually e-balanced), and
o rate Q(e2to()),

It was an open question whether Ta-Shma's codes admit efficient decoding
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Coding Theory Concepts

It was an open question whether Ta-Shma's codes admit efficient decoding l

Theorem (this work)

Ta-Shma's codes are polynomial time unique decodable
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Our Contribution

Theorem (Unique Decoding)

For every € > 0, 3 explicit binary linear Ta-Shma codes Cy . g C FY with
Q distance at least 1/2 — ¢/2 (actually e-balanced),
Q rate Q(e**7) where 8 = O(1/(logy(1/€))/®), and
© a unique decoding algorithm with running time N95(1).
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Our Contribution

Theorem (Unique Decoding)

For every € > 0, 3 explicit binary linear Ta-Shma codes Cy . g C FY with
Q distance at least 1/2 — ¢/2 (actually e-balanced),
Q rate Q(¢?1P) where B = O(1/(logy(1/€))Y/®), and
© a unique decoding algorithm with running time N9.5(1).

Furthermore, if instead we take 3 > 0 to be an arbitrary constant, the
running time becomes (log(1/€))°®) - NOs() (fixed polynomial time).
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Our Contribution

Theorem (Gentle List Decoding)

For every € > 0, 3 explicit binary linear Ta-Shma codes Cn . g C FY with
@ distance at least 1/2 — €/2 (actually e-balanced),
Q rate Q(e**7) where 8 = O(1/(logy(1/€))Y/®), and

© a list decoding algorithm that decodes within radius
1/2 — 27O((og2(1/D®) jpy time NOes(D).,
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Related Work

All based on code concatenation starting from larger alphabet codes

Theorem (Guruswami-Indyk’'04)

Efficiently decodable non-explicit binary codes at the Gilbert—Varshamov
bound
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Related Work

All based on code concatenation starting from larger alphabet codes

Theorem (Guruswami-Indyk’'04)

Efficiently decodable non-explicit binary codes at the Gilbert—Varshamov
bound

Theorem (Hemenway—Ron-Zewi—Wootters'17)

Near-linear time decodable non-explicit binary codes at the
Gilbert—Varshamov bound
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Related Work

All based on code concatenation starting from larger alphabet codes

Theorem (Guruswami—Rudra'06)

There are explicit binary codes list decodable from radius 1/2 — € and rate
Q(€®) (Zyablov bound)
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Related Work

All based on code concatenation starting from larger alphabet codes

Theorem (Guruswami—Rudra’06)

There are explicit binary codes list decodable from radius 1/2 — € and rate
Q(€®) (Zyablov bound)

GR’06 results can now also be obtained from some later capacity achieving
codes
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Towards Ta-Shma's Codes

Expander Graphs and Codes
Expanders can amplify the distance of a not so great base code Cy
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Expansion and Distance Amplification
Fix a bipartite graph between [n] and W(k) C [n]¥. Let z € Co C FF3.

Direct Sum

/Dzl Dz z5 Dz

[z1]

B

%3] 21D 2B 24Dz

& [

z5
Dzzﬂéaﬂézsﬂézn

(] z W(k)

DZ3’:‘BZk$Zn—1GBZn

E

DZI:H%ZKEBZSEBZn—l
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Expansion and Distance Amplification
Fix a bipartite graph between [n] and W(k) C [n]¥. Let z € Co C FF3.

Direct Sum

/D 2102DzDz
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22|
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Z4 D
|25
DZ2EBZ4EBZséan
(] z W (k)
rate loss factor n/|W (k)]
distance amplification needs to be worth this loss
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Expansion and Distance Amplification

Fix a bipartite graph between [n] and W(k) C [n]¥. Let z € Co C FF3.

Direct Sum

/D 21020z z
[21]
B
143 21022020z
2] [
Z5
DZZ@ZA@ZSEBZn
(] z W (k)
rate loss factor n/|W (k)]
distance amplification needs to be worth this loss
DZSEBZk@zn—l D zp
H

DZL:G)ZMDZS@Z"A

Alon—Brooks—Naor—Naor—Roth & Alon—-Edmonds—Luby style distance



Expansion and Distance Amplification

Let z € F§ and W(k) C [n]%. The direct sum of zis y € ]F\ZN(k) defined as

Wityoik) = Zin D - D Ziy

for every (i1,...,ix) € W(k). We denote y = dsumyyx)(2).
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Expansion and Distance Amplification

Bias
o Let z € 5. Define bias(z) =|E;c[(—1)7|.
o Let C C F5. Define bias(C) := max,¢c\ (0} bias(z).

\

Definition (Parity Sampler, c.f. Ta-Shma'17)

Let W C [n]k. We say that dsumyy is (e, €)-parity sampler iff

(Vz € F3) (bias(z) < eg = bias(dsumy/(z)) < ¢).
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Expanders and Distance Amplification

Parity Samplers
Where to look for good parity samplers W (k) C [n]*?
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Expanders and Distance Amplification

A Dream Parity Sampler
Let z € F4 with bias(z) < By < 1. Let W(k) = [n]¥. Then

bias (dsumW(k)(z)) S ’E,-e[n](—].)z"’k S ,36(
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Expanders and Distance Amplification

A Dream Parity Sampler
Let z € F4 with bias(z) < By < 1. Let W(k) = [n]X. Then

bias (dsumW(k)(z)) < |Ei€[n](—1)zi|k < ﬁg

Issue: Vanishing Rate

W (k) is "too dense” so distance amplified code has rate < 1/nk~!
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Expanders and Distance Amplification

Another Dream Parity Sampler

Sample a uniformly random W(k) C [n] of size ©,(n/€).
Then w.h.p. dsumyy is (eg, €)-parity sampler.
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Expanders and Distance Amplification

Another Dream Parity Sampler

Sample a uniformly random W(k) C [n]* of size ©,(n/€?).
Then w.h.p. dsumyy is (eg, €)-parity sampler.

Issue: Non-explicit

Now W(k) has near optimal size but it is non-explicit
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Expanders and Distance Amplification

Solution 1 (good but not near optimal)

Take W(k) C [n]* to be the collection of all length-(k — 1) walks on a
sparse expander graph G = (V = [n], E)
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Expanders and Distance Amplification

Solution 1 (good but not near optimal)

Take W(k) C [n]* to be the collection of all length-(k — 1) walks on a
sparse expander graph G = (V = [n], E)

Solution 1 (good but not near optimal)

This solution yields codes of distance 1/2 — ¢ and rate Q(e*°(1))
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Expanders and Distance Amplification

Solution 1 (good but not near optimal)

Take W/(k) C [n]* to be the collection of all length-(k — 1) walks on a
sparse expander graph G = (V = [n], E)

(suggested by Rozenman—Wigderson and analyzed by Ta-Shma'17)

Solution 1 (good but not near optimal)

This solution yields codes of distance 1/2 — ¢ and rate Q(e*°(1))
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Expanders and Distance Amplification

Solution 2 (near optimal) Ta-Shma'17

Take W(k) C [n]¥ to be a carefully chosen collection of length-(k — 1)
walks on a sparse expander graph G = (V = [n], E)

Decoding Binary Codes 14 /27



Expanders and Distance Amplification

Solution 2 (near optimal) Ta-Shma'17

Take W(k) C [n]* to be a carefully chosen collection of length-(k — 1)
walks on a sparse expander graph G = (V = [n], E)

Solution 2 (near optimal) Ta-Shma'17

This solution yields codes of distance 1/2 — ¢ and rate Q(e2°(1))
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Expanders and Distance Amplification

Solution 2 (near optimal) Ta-Shma'17

Take W/(k) C [n]* to be a carefully chosen collection of length-(k — 1)
walks on a sparse expander graph G = (V = [n], E)

(beautiful breakthrough of Ta-Shma'1l7 based on

generalizations of the Zig-Zag product Reingold—Vadhan-Wigderson)

Solution 2 (near optimal) Ta-Shma'17

This solution yields codes of distance 1/2 — € and rate Q(e2°(1))
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Bird's-eye view of Unique Decoding

Decoding Direct Sum
What does decoding look like for direct sum?
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Bird's-eye view of Unique Decoding

@ Co C FJ an ep-balanced code with A(Cp) =1/2 — €p/2
o W = W(k) C [n]* for direct sum
@ C =dsumy(Cp) an e-balanced code with A(C) =1/2 —¢/2
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Bird's-eye view of Unique Decoding

Suppose y* € C is corrupted into some y € F5 in the unique decoding ball
centered at y*.

k-XOR

e 218D 25D 2 = J(125.)

D 210202 Dz = J124))

20D 24 ® 25 D Zn = J(2.45,n)
(1 2 []

HREEEREEE

] 23 2k D Zn-1 © Zn = J(3,kn-1,n)

1 [

D 24 D20 D 2Zs D Zn-1 = J(a,0,5,0-1)
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Bird's-eye view of Unique Decoding

Unique Decoding Scenario: k-XOR

Unique decoding ¥ amounts to solving

argmaxEq, iyewllzy @ @ 2y = V(i)
z€Co

which is a MAX k-XOR instance J with the additional constraint that the
solution z must lie in Cp.
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Bird's-eye view of Unique Decoding

Let z* € Cp be s.t. y* = dsumpy(z*).

Optimal Value

Since y is in the unique decoding ball centered at y*, we have

E(fl,...,l'k)EWl[Z*l']_ b---D Z*fk # )7(i1,...,ik)] = A(y*7.)7) < A(C)/2
Thus,

OPT(J) > E(,...iewllz*y @ ---© 2%, = J(iy,..in]l > 1= A(C)/2

v
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Bird's-eye view of Unique Decoding

Optimal Solution

Suppose that we can find Z € ] (rather than in Cp) satisfying
E(il,...,ik)ewl[fil S D2z = )7(,‘1,,,,,,',()] =O0PT(J)>1-A(C)/2

Thus, A(dsumy/(2),7) < A(C)/2

Decoding Binary Codes 16 /27



Bird's-eye view of Unique Decoding

By triangle inequality,

A(dsumyy(2),dsump/(z¥)) < A(dsump(2),y) +
A(y,dsumpy (27)) < A(C) =1/2 —¢€/2,

implying
bias(dsump/ (Z) & dsumpy(z*)) = bias(dsumy/ (Z & z*)) > €

“Nontrivial bias”
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Bird's-eye view of Unique Decoding

If dsumyy is a “strong enough” parity sampler, then either Z or Z @ 1 lie in
the unique decoding ball of Cy centered at z*.
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Bird's-eye view of Unique Decoding

If dsump is a (1/2 + €0/2, €)-parity sampler, then either Z or Z @ 1 lie in
the unique decoding ball of Cq centered at z*.
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Bird's-eye view of Unique Decoding

e Find solution Z € FJ (rather than in Cp) is enough

@ Use unique decoder of Cy to correct Z into z*
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Bird's-eye view of Unique Decoding

Need to resolve the following assumption.

Optimal Solution

Suppose that we can find Z € FJ (rather than Z € Cp) satisfying

E(il,-..,ik)EW]'[Zfl DD Zik = )7(1-17“.,,-[()] = OPT(j)
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Bird's-eye view of Unique Decoding

Need to resolve the following assumption.

Optimal Solution

Suppose that we can find Z € FJ (rather than Z € Cp) satisfying

Eq, . iyewllZy ® - © 2 = ¥(i,...iy] = OPT(J)

Possible issue?
MAX k-XOR is NP-hard, right?
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Bird's-eye view of Unique Decoding

Possible issue?
MAX k-XOR is NP-hard, right?

Right, it can be NP-hard in general. However, for some expanding instances we
can find an approximate solution (and that is enough).
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Bird's-eye view of Unique Decoding

Using the Sum-of-Squares (SOS) semi-definite programming hierarchy:

Theorem (Alev—J—-Quintana—Srivastava—Tulsiani'20)

Let W (k) C [n]* be o-splittable (notion of tuple expansion). Suppose J is
a k-XOR instance on W(k). If o < poly(~/2"), then we can find a
solution z € F} satisfying

fraction of the constraints of J in time nPoY("/7).

(building on Alev—J-Tulsiani’19 which builds on Barak—Raghavendra—Steurer'11)
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Bird's-eye view of Unique Decoding

Let W(k) C [n]¥. Define W([a, b] for 1 < a< b < k as

W(a, b] = {(in, ... i) | (i1, ..., ik) € W(K)}.
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Bird's-eye view of Unique Decoding

Let W(k) C [n]*. Define W[a, b] for 1 <a < b < k as

Wia, b] = {(ias ... ib) | (i1, .., ik) € W(K)}.

Definition (Splittability (informal))

A collection W(k) C [n]* is said to be o-splittable, if k = 1 (base case) or
there exists k” € [k — 1] such that:

©Q The matrix S € RWILKTIXWIK+LAl defined by

S(w,w’) = 1ww' € W has normalized second singular value at most
o (where ww' denotes the concatenated tuple).

@ The collections W[1, k'] and W[k’ + 1, k] are o-splittable.
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Bird's-eye view of Unique Decoding

Lemma (AJQST'20)

The collection W (k) C [n]* of all walks on o-two-sided spectral expander
graph G = (V = [n], E) is o-splittable.
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Bird's-eye view of Unique Decoding

What about the code parameters?
What parameters do we get putting these pieces together?
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Bird's-eye view of Unique Decoding

Well... Our parameters in AJQST'20...

With this approach we obtain binary codes with
o distance 1/2 — ¢
o rate ©(2~(°8(1/))*) « poly(e)

@ polynomial time unique decoding algorithm
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Bird's-eye view of Unique Decoding

Leveraging Unique Decoding to List Decoding AJQST 20

Maximizing an entropic function W while “solving” the Sum-of-Squares
program of unique decoding yields a list decoding algorithm

(independently used by Raghavendra—Yau & Karmalkar—Klivans—Kothari to ML)
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Bird's-eye view of Unique Decoding

Well... Again our parameters in AJQST 20...

With this entropic approach we obtain binary codes with
o list decoding radius 1/2 — ¢
o rate ©(2~(°8(1/))*) « poly(e)

@ polynomial time list decoding algorithm
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Bird's-eye view of Unique Decoding

On one side
There is this refined near optimal code construction of Ta-Shma

On the other side
There is this far from optimal parameter hungry decoding machinery
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Bird's-eye view of Unique Decoding

What are the techniques?
We will just mention the techniques at a very high-level
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Bird's-eye view of Unique Decoding

Splittability

First, we modify Ta-Shma's direct sum construction W/(k) to make it
splittable so that our decoding tools can be used
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Techniques

Unique decoding
via SOS
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Techniques

A few extra words about SOS
Sum-of-Squares (SOS)

Sum-of-Squares is a semi-definite programming hierarchy

@ It generalizes linear programming

@ It captures the state-of-the-art approximation guarantees for many
problems (MAX-CUT and other CSPs)

@ Roughly speaking, level d of SOS runs in time n°(9) where n is the
number of variables )

23 /27
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Techniques

Unique decoding
Unique Decoding via SOS

Problem
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Techniques

First Hammer Effect

As in AJQST'20, we can only decode explicit binary codes C satisfying
e A(C)>1/2—¢, and

o rate r(C) = 27Pollog(1/€) « €2+°(1) (not even polynomial rate)
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Bird's-eye view of Unique Decoding

List decoding via SOS

Unique decoding
via SOS
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Bird's-eye view of Unique Decoding

Killing a Fly With a Bazooka

Use list decoding to perform unique decoding!
Also considered in some previous work (e.g. Guruswami-Indyk'04).
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Bird's-eye view of Unique Decoding

List decoding via SOS

Unique decoding
via SOS

Unique Decoding

Problem
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Bird's-eye view of Unique Decoding

Second Hammer Effect
Some parameters are better but r(C) still not even polynomial
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Bird's-eye view of Unique Decoding

Code Cascading
(Recursion)
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Bird's-eye view of Unique Decoding

Ta-Shma's walks admit a recursive structure. In short,
o walks over walks are larger walks,
@ walks over larger walks are even larger walks,
@ walks over even larger walks are...

@ and so on...
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Bird's-eye view of Unique Decoding

Taking advantage of this recursive structure we can define a sequence of

codes. Decoding takes places between consecutive levels and requires much
weaker parameters now.

dsum; dsum;
C |—| C |— -+ —|Cia Ci

€ €1 €1 € €§g =€

Figure: Code cascading: recursive construction of codes.
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Bird's-eye view of Unique Decoding

Some form of cascading was present in the work of Guruswami-Indyk'01 to
the so-called direct product. The details here and in their setting are quite
different.
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Bird's-eye view of Unique Decoding

List decoding via SOS

Code Cascading

(Recursion) Unique decoding

via SOS
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Bird's-eye view of Unique Decoding

Second and Third Hammers Effect
Decode Ta-Shma's codes with nearly optimal rate
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That's all.

Thank youl
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