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Motivation and Background

Goal of the Talk

Goal

Present a new unique decoding result for a family of binary codes
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Motivation and Background

Goal of the Talk

Outline

Discuss basic properties of codes to give context (≈ 75%)
State the new unique decoding result (≈ 10%)
Mention the techniques involved (≈ 15%)
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A code is a subset C ⊆ Σn
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codewords of C
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Suppose we have a set of messagesM of size |C|.

Decoding Binary Codes



Decoding Binary Codes

Motivation and Background

Coding Theory Concepts

Message Set

Suppose we have a set of messagesM of size |C|.

Encoding Map

EncC : M→ C bijection.
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. . .

M

C

EncC

· · ·
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It will be convenient to takeM = Σm (for some m ≤ n).

Encoding Map

EncC : Σm → C ⊆ Σn bijection.

Rate

Fraction of information symbols m
n aka the rate r(C) of C.
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Rate

Fraction of information symbols m
n aka the rate r(C) of C.

EncC

∈ Σm

∈ Σn

r(C) = m
n
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Σn

codewords of C

Lower rate r(C)
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Σn

codewords of C

Higher rate r(C)
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Easy to construct high-rate codes

Take m = n and EncC : Σm → Σn to be the identity.
Rate r(C) of C is m/n = 1 (as large as possible).
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Easy to construct high-rate codes

Take m = n and EncC : Σm → Σn to be the identity.
Rate r(C) of C is m/n = 1 (as large as possible).

Issue

There are messages m1 6= m2 s.t. EncC(m1) and EncC(m2) differ in
exactly one symbol. If EncC(m1) is corrupted to x̃ in one symbol,
then x̃ may be the same as EncC(m2).

0 0

0 0

0 0

0 1

· · ·

· · ·

EncC(m2)

EncC(m1)
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Issue

There are messages m1 6= m2 s.t. EncC(m1) and EncC(m2) differ in
exactly one symbol. If EncC(m1) is corrupted to x̃ in one symbol,
then x̃ may be the same as EncC(m2).

0 0

0 0

0 0

0 1

· · ·

· · ·

EncC(m2)

EncC(m1)

Solution

Require EncC(m1) and EncC(m2) to differ in many positions for
every m1 6= m2.
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Hamming Distance

The Hamming distance between z , z ′ ∈ Σn is

∆(z , z ′) := |{i | zi 6= z ′i }|.
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Hamming Distance

The Hamming distance between z , z ′ ∈ Σn is

∆(z , z ′) := |{i | zi 6= z ′i }|.

Minimum Distance of a Code

The distance ∆(C) of C is

∆(C) := min
z,z ′∈C : z 6=z ′

∆(z , z ′).
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Σn

∆(C)

codewords of C
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Easy to construct high-distance codes

Take m = 1 and EncC : Σ→ Σn to be the replication map, namely,

EncC(σ) = σ · · ·σ︸ ︷︷ ︸
n times

,

for σ ∈ Σ.
∆(C) = n (as large as possible).
Rate of C is 1/n→ 0 as n→∞ (vanishing rate).
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Tension

Increasing the rate r(C) may reduce the distance ∆(C)

Increasing the distance ∆(C) may reduce the rate r(C)
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Σn

codewords of C

Lower rate r(C)

∆(C)
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Σn

codewords of C

Higher rate r(C)

∆(C)
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Question

What is the best trade-off between rate r(C) and distance ∆(C)?
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Question

What is the best trade-off between rate r(C) and distance ∆(C)?

Applications

Optimally storing data robustly against corruptions
Optimally communicating via a noisy channel

Noisy Channel

Alice Bob
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Applications

Optimally storing data robustly against corruptions
Optimally communicating via a noisy channel

Noisy Channel

Alice Bob

Question

What do we mean by “optimally”?
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Question

What do we mean by “optimally”?

To answer the question above we need to define an error model

Error Model

What is the error model?
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Noisy Channel

Alice Bob

∈M

EncC

∈ C

z1
z2

zn

Alice encodes her message and sends z1, . . . , zn, one symbol at a time, to Bob
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Noisy Channel

Alice Bob

∈M

EncC

∈ C

z1
z2

zn

Infinite memory
Infinite computational power

Adversary

Can change symbols arbitrarily
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Issue

Adversary is too powerful. For instance, adversary can map all code
words to 00 . . . 0︸ ︷︷ ︸

n
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Noisy Channel

Alice Bob

∈M

EncC

∈ C

z1
z2

zn

Infinite memory
Infinite computational power

Adversary

Can change symbols arbitrarily
≤ pn symbol changes where p ∈ (0, 1)
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Question

How large can we take p ∈ [0, 1) to be?
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Question

How large can we take p ∈ [0, 1) to be? In theory, any
p ∈ [0,∆(C)/2) is valid for unique decoding.

∆(C)

z

z ′

∆(C)/2

∆(C)/2

z̃

z̃ ′
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Error Model

We will consider this adversarial error model also known as
Hamming model.

Figure: Richard W. Hamming (source: mathshistory.st-andrews.ac.uk).
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What do we mean by optimal storage/communication?

If we want to be robust against a p fraction of adversarial errors,
what is the best possible rate (equivalently the least amount of
redundancy needed)?
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Code Parameters

We have seen the role of distance and rate
What about the role of the alphabet size?
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Large Alphabet Issue

Many information systems are inherent binary
Naively “binarifying” a code may ruin its distance guarantee

Naively convert each symbol to binary

∈ Σn

{0, 1}n log2(|Σ|)

σ1 σn

0 1 · · · 1 1 1 1 · · · 1 0

Large alphabet Σ

Symbol corruptions are more likely now
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Many information systems are inherent binary
Naively “binarifying” a code may ruin its distance guarantee

Naively convert each symbol to binary

∈ Σn

{0, 1}n log2(|Σ|)

σ1 σn

0 1 · · · 1 1 1 1 · · · 1 0

Large alphabet Σ

Symbol corruptions are more likely now
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Use a binary code (i.e., Σ = F2 = {0, 1}) from the start
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Solution

Use a binary code (i.e., Σ = F2 = {0, 1}) from the start

Issue

Binary codes are not that well understood (more on it shortly)
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Use the probabilistic method as an yardstick for binary codes

Random Construction

We will construct a random linear binary code and observe its rate
vs distance trade-off
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Digression: Linear Binary Code

A linear binary code C has EncC as a linear operator G : Fm
2 → Fn

2
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Digression: Linear Binary Code

A linear binary code C has EncC as a linear operator G : Fm
2 → Fn

2

Fact

If C ⊆ Fn
2 is linear, then ∆(C) = minz∈C\{0}|{i : zi = 1}|/n
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Take G ∈ Fn×m
2 uniformly at random, that is,

G =

g1,1 . . . g1,m
...

. . .
...

gn,1 . . . gn,m


where each gi ,j is uniform in F2.
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Let x ∈ Fm
2 be a non-zero vector and j∗ = max{j : xi = 1} . Then

Gx =
∑

j : xj=1

g1,j
...

gn,j

 =
∑

j : xj=1,j<j∗

g1,j
...

gn,j

 +

g1,j∗
...

gn,j∗


Hence, (Gx)i ’s are uniformly and independently distributed in F2.
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Set Xi = 1 [(Gx)i = 1] and X =
∑n

i=1 Xi .
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Set Xi = 1 [(Gx)i = 1] and X =
∑n

i=1 Xi .
Note that IEX = n/2. By the Chernoff bound,

Pr[|X− IEX| > βn] ≤ exp(−O(β2n)).
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Set Xi = 1 [(Gx)i = 1] and X =
∑n

i=1 Xi .
Note that IEX = n/2. By the Chernoff bound,

Pr[|X− IEX| > βn] ≤ exp(−O(β2n)).

By union bound,

Pr
G

[∆(C) < 1/2− β] = Pr
G

[∃x ∈ Fm
2 \ {0} : ||Gx || < 1/2− β]
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Set Xi = 1 [(Gx)i = 1] and X =
∑n

i=1 Xi .
Note that IEX = n/2. By the Chernoff bound,

Pr[|X− IEX| > βn] ≤ exp(−O(β2n)).

By union bound,

Pr
G

[∆(C) < 1/2− β] = Pr
G

[∃x ∈ Fm
2 \ {0} : ||Gx || < 1/2− β]

≤ 2m · exp(−O(β2n)),
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Set Xi = 1 [(Gx)i = 1] and X =
∑n

i=1 Xi .
Note that IEX = n/2. By the Chernoff bound,

Pr[|X− IEX| > βn] ≤ exp(−O(β2n)).

By union bound,

Pr
G

[∆(C) < 1/2− β] = Pr
G

[∃x ∈ Fm
2 \ {0} : ||Gx || < 1/2− β]

≤ 2m · exp(−O(β2n)),

which vanishes for n = Θ(m/β2), i.e., r(C) = Θ(β2).
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Theorem (Gilbert–Varshamov Bound 1950’s (asymptotic version))

There are binary codes of distance 1/2− β and rate Θ(β2).
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Theorem (Gilbert–Varshamov Bound 1950’s (asymptotic version))

There are binary codes of distance 1/2− β and rate Θ(β2).

Question

Can we do better?
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Theorem (Gilbert–Varshamov Bound 1950’s (asymptotic version))

There are binary codes of distance 1/2− β and rate Θ(β2).

Question

Can we do better?

We do not know, but certainly not by much!

Theorem (LP Bound MRRW 1977)

Binary codes of distance 1/2− β can have rate at most
O(β2 log(1/β)) (if any).

Decoding Binary Codes



Decoding Binary Codes

Motivation and Background

Coding Theory Concepts

Theorem (Gilbert–Varshamov Bound 1950’s (asymptotic version))

There are binary codes of distance 1/2− β and rate Θ(β2).

Guessing...

The Gilbert–Varshamov is quite old and optimal (rate vs distance)
binary codes are quite fundamental so this part of coding theory
should be well established by now.
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Guessing...

The Gilbert–Varshamov is quite old and optimal (rate vs distance)
binary codes are quite fundamental so this part of coding theory
should be well established by now.

Guess is not correct

Binary codes are not that well understood (specially compared to
larger alphabet codes). We lack:

explicit constructions,
decoding algorithmic tools, and
tighter impossibility results.
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Wait, aren’t we essentially done?

Random linear codes achieve the Gilbert–Varshamov bound thereby
having a nearly optimal rate vs distance trade-off.
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Wait, aren’t we essentially done?

Random linear codes achieve the Gilbert–Varshamov bound thereby
having a nearly optimal rate vs distance trade-off.

Quite Far

Decoding random linear code is likely to be hard. Known
algorithms run in time 2Ω(n).
Given G ∈ Fn×m

2 sampled uniformly, how do we certify
∆(C) ≥ 1/2− β? (in principle ∆(C) can be small)
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Quest for Explicit Construction

A code C ⊆ Σn is explicit if the encoding EncC(·) can be computed
in time poly(n, |Σ|).

Advantage: avoid the issue of not knowing ∆(C)
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Adversarial Error Regime (Hamming model)

Holy Grail of Coding Theory

Code C is over small alphabet Σ (ideally binary)
Code C is explicit
Code C achieves optimal parameters
Code C is efficiently decodable

Decoding Binary Codes



Decoding Binary Codes

Motivation and Background

Context

Previous Results

We take a detour through the state-of-the-art techniques.
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Larger Alphabets

Binary Alphabet

Reed–Solomon Codes

Algebraic Geometry Codes

Folded Reed-Solomon Codes

Powerful Algebraic Decoding Techniques

List Decoding Capacity

Ta-Shma Codes

Expander Codes

Adversarial Error Regime (Hamming model)
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Context

“Binarifying” codes (a second approach) via
code concatenation of C and C0

EncC : M→ Σn

∈M

z1 z2 z3 zn

EncC0(z1) EncC0(z2) EncC0(z3) EncC0(zn)

∈ Σn

EncC0 : Σ→ Fk
2

∈ Fnk
2
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Context

Larger Alphabets

Binary Alphabet

Adversarial Error Regime (Hamming)

Reed–Solomon Codes

Algebraic Geometry Codes

Folded Reed-Solomon Codes

Powerful Algebraic Decoding Techniques

List Decoding Capacity

Code Concatenation

Popular approach: obtain results by concatenating with binary codes
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In this line of code concatenation, the closest results to our work
are:

Theorem (Guruswami–Indyk’04)

There are efficiently decodable non-explicit codes at the
Gilbert–Varshamov bound
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Context

In this line of code concatenation, the closest results to our work
are:

Theorem (Guruswami–Indyk’04)

There are efficiently decodable non-explicit codes at the
Gilbert–Varshamov bound

Theorem (Guruswami–Rudra’06)

There are explicit binary codes list decodable from radius 1/2− β
and rate Ω(β3) (at the Zyablov bound)
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Context

In this line of code concatenation, the closest results to our work
are:

Theorem (Guruswami–Indyk’04)

There are efficiently decodable non-explicit codes at the
Gilbert–Varshamov bound

Theorem (Guruswami–Rudra’06)

There are explicit binary codes list decodable from radius 1/2− β
and rate Ω(β3) (at the Zyablov bound)
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Possible Issue

Is our lack knowledge a result of the relatively few “genuinely”
binary techniques?
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A “genuinely” binary technique was discovered leading to the
following breakthrough result

Theorem (Ta-Shma 2017)

For every β > 0, there are explict codes near the
Gilbert–Varshamov bound, namely, codes C with

distance ∆(C) ≥ 1/2− β, and
rate r(C) = Ω(β2+ε),

where ε→ 0 as β → 0.
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Ta-Shma’s codes score highly on the holy grail scale

Holy Grail of Coding Theory

Code C is over binary alphabet Σ

Code C is explicit (only explicit construction in this regime)
Code C achieves near optimal parameters
Code C is efficiently decodable (not known)
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Missing Piece

It was left open whether Ta-Shma’s codes can be efficiently decoded
leaving the possibility of this being a computationally hard task

Decoding Binary Codes



Decoding Binary Codes

Motivation and Background

Context

Missing Piece

It was left open whether Ta-Shma’s codes can be efficiently decoded
leaving the possibility of this being a computationally hard task

Striking Reality

In this adversarial regime, we are not storing/transmitting data as
efficiently as it is theoretically possible because we do not know
explicit efficiently decodable (near) optimal binary codes.

What is the energy cost of this inefficiency?
What is the storage cost of this inefficiency?
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Main Result

Disclaimer

The next result was not thoroughly peer reviewed
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Theorem (Main Result Informal)

Ta-Shma’s codes can be efficiently decoded
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Main Result

More precisely, we have:

Theorem (Main Result)

For every β > 0, there are explict Ta-Shma codes near the
Gilbert–Varshamov bound, namely, codes C with

distance ∆(C) ≥ 1/2− β, and
rate r(C) = Ω(β2+ε),

C is uniquely decodable in time n(1/β)O(1)
,

where ε→ 0 as β → 0.
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Main Result

More precisely, we have:

Theorem (Main Result)

For every β > 0, there are explict Ta-Shma codes near the
Gilbert–Varshamov bound, namely, codes C with

distance ∆(C) ≥ 1/2− β, and
rate r(C) = Ω(β2+ε),

C is uniquely decodable in time n(1/β)O(1)
,

where ε→ 0 as β → 0. Furthermore, if ε > 0 is a constant,
then unique decoding takes time poly(n/β).
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Adversarial Error Regime (Hamming model)

Holy Grail of Coding Theory

Code C is over binary alphabet Σ

Code C is explicit
Code C achieves near optimal parameters
Code C is efficiently decodable
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Main Result

Question

Are we “nearly” done now?
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Main Result

Question

Are we “nearly” done now?

Not really

Albeit polynomial time, the decoding algorithm might be too slow
for practical use

Figure: (source: wikipedia.org).
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Techniques

Bird’s-eye view of Techniques

What are the techniques?

We will just mention the techniques at a very high-level
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Techniques

Unique decoding
via SoS
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Techniques

Sum-of-Squares (SoS)

Sum-of-Squares is a semi-definite programming hierarchy
It generalizes linear programming
Captures the state-of-the-art results for many problems
(MAX-CUT and other CSPs)
Level d of SoS runs in time nO(d) where n is the number of
variables
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Techniques

Unique decoding
via SoSUnique Decoding

Problem
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Techniques

First Hammer Effect

Can decode explicit binary codes C satisfying
∆(C) ≥ 1/2− β, and
rate r(C) = 2−polylog(1/β) � β2+ε (not even polynomial rate)

Decoding Binary Codes



Decoding Binary Codes

Techniques

Bird’s-eye view of Techniques

Unique decoding
via SoS

List decoding via SoS
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Bird’s-eye view of Techniques

z̃

List decoding radius

1/2− η

z ∈ C

z (2) ∈ C

z (3) ∈ C

. . .
z (m) ∈ C

Unique decoding radius
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Bird’s-eye view of Techniques

Unique Decoding
Problem

Unique decoding
via SoS

List decoding via SoS
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Bird’s-eye view of Techniques

Second Hammer Effect

Some parameters are better but r(C) still not even polynomial
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Bird’s-eye view of Techniques

Code Cascading
(Recursion)
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Bird’s-eye view of Techniques

C0 C1 Ci−1 Ci C`· · · · · ·
lift1 lifti

β0 β1 βi−1 βi β`

Figure: Code cascading: recursive construction of codes.
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Bird’s-eye view of Techniques

Unique Decoding
Problem

Unique decoding
via SoS

List decoding via SoS

Code Cascading
(Recursion)
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Bird’s-eye view of Techniques

Second and Third Hammers Effect

Decode Ta-Shma’s codes with nearly optimal rate

Decoding Binary Codes



Decoding Binary Codes

Techniques

Open Problems

A central open problem in coding theory [Guruswami’10]

Extended Holy Grail of Coding Theory

Code C is over binary alphabet Σ

Code C is explicit
Code C achieves optimal parameters
Code C is efficiently list decodable
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Techniques

That’s all.

Thank you!
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