
Near-linear Time Decoding of Ta-Shma’s Codes via
Splittable Regularity

Fernando Granha Jeronimo
(UChicago)

joint work with

Shashank Srivastava (TTIC) and
Madhur Tulsiani (TTIC)

STOC 2021

Decoding Binary Codes 1 / 1

Goal of the Talk

Goal
Present a near-linear time decoding algorithm for Ta-Shma’s codes

Decoding Binary Codes 2 / 1

Goal of the Talk

Goal
Present a near-linear time decoding algorithm for Ta-Shma’s codes

Weak Regularity Technique

Decoding Binary Codes 2 / 1

Coding Theory Concepts

Code
A binary code is a subset C ⊆ Fn

2

Fn
2

codewords of C

Decoding Binary Codes 3 / 1

Coding Theory Concepts

Two fundamental parameters

Distance
The distance ∆(C) of C is ∆(C) := minz,z ′∈C : z 6=z ′ ∆(z , z ′)

Decoding Binary Codes 3 / 1

Coding Theory Concepts

Two fundamental parameters

Distance
The distance ∆(C) of C is ∆(C) := minz,z ′∈C : z 6=z ′ ∆(z , z ′)

Rate

The rate r(C) of C is log2(|C|)
n (the fraction of information symbols)

Decoding Binary Codes 3 / 1

Tension between Rate and Distance of a Code

Tension
Higher rate r(C), lower distance ∆(C)

Higher distance ∆(C), lower rate r(C)

Decoding Binary Codes 4 / 1

Tension between Rate and Distance of a Code

Fn
2

codewords of C

Lower rate r(C)

∆(C)

Fn
2

codewords of C

Higher rate r(C)

∆(C)

Decoding Binary Codes 4 / 1

Coding Theory Concepts

Question
What is the best trade-off between rate r(C) and distance ∆(C)?

Decoding Binary Codes 5 / 1

Coding Theory Concepts

Gilbert–Varshamov existential bound (Gilbert’52,Varshamov’57)

distance ∆(C)0 1/2

rate r(C)

GV

1

Decoding Binary Codes 6 / 1

Coding Theory Concepts

McEliece–Rodemich–Rumsey–Welch’77 impossibility bound

distance ∆(C)0 1/2

rate r(C)

GV

1

Decoding Binary Codes 6 / 1

Coding Theory Concepts

distance ∆(C)0 1/2

rate r(C)

GV

1

distance 1
2 − ε (this talk)

Decoding Binary Codes 6 / 1

Coding Theory Concepts

Why is the Gilbert–Varshamov bound interesting?
The Gilbert–Varshamov (GV) bound is “nearly” optimal

For distance 1/2− ε
rate Ω(ε2) is achievable (Gilbert–Varshamov bound)
rate better than O(ε2 log(1/ε)) is impossible (McEliece et al.)

Decoding Binary Codes 6 / 1

Coding Theory Concepts

For distance 1/2− ε
rate Ω(ε2) is achievable (Gilbert–Varshamov bound)
rate better than O(ε2 log(1/ε)) is impossible (McEliece et al.)

Ta-Shma’s Codes (60 years later!)
First explicit binary codes near the GV bound are due to Ta-Shma’17 with

distance 1/2− ε/2 (actually ε-balanced), and
rate Ω(ε2+o(1)).

Decoding Binary Codes 6 / 1

Coding Theory Concepts

Ta-Shma’s Codes (60 years later!)
First explicit binary codes near the GV bound are due to Ta-Shma’17 with

distance 1/2− ε/2 (actually ε-balanced), and
rate Ω(ε2+o(1)).

Question
How efficiently can we decode Ta-Shma codes?

Decoding Binary Codes 6 / 1

Coding Theory Concepts

Question
How efficiently can we decode Ta-Shma codes?

Theorem (this talk)
Ta-Shma’s codes are near-linear time unique decodable

Decoding Binary Codes 6 / 1

Our Contribution

Theorem (Near-linear Time Decoding)

For every ε > 0, ∃ explicit binary linear Ta-Shma codes CN,ε ⊆ FN
2 with

1 distance at least 1/2− ε/2 (actually ε-balanced),
2 rate Ω(ε2+o(1)), and
3 a unique decoding algorithm with running time Õε(N).

Decoding Binary Codes 7 / 1

Our Contribution

Pseudorandomness approach

Theorem (Near-linear Time Decoding)

For every ε > 0, ∃ explicit binary linear Ta-Shma codes CN,ε ⊆ FN
2 with

1 distance at least 1/2− ε/2 (actually ε-balanced),
2 rate Ω(ε2+o(1)), and
3 a unique decoding algorithm with running time Õε(N).

Decoding Binary Codes 7 / 1

Previous Efficient Decoder for Ta-Shma’s Codes

Sum-of-Squares SDP hierarchy approach (SOS approach)

Theorem (J-Quintana-Srivastava-Tulsiani’20)

Ta-Shma’s codes are unique decodable in NOε(1) time

Decoding Binary Codes 8 / 1

Towards Ta-Shma’s Codes

Expander Graphs and Codes
Expanders can amplify the distance of a not so great base code C0

Decoding Binary Codes 9 / 1

Expansion and Distance Amplification

Fix a bipartite graph between [n] and W ⊆ [n]k . Let z ∈ Fn
2.

z
...

... ...
...

z2 ⊕ z4 ⊕ z5 ⊕ zn

z1 ⊕ z2 ⊕ z5 ⊕ zi

z1 ⊕ z2 ⊕ z4 ⊕ zj

z3 ⊕ zk ⊕ zn−1 ⊕ zn

z4 ⊕ z` ⊕ zs ⊕ zn−1

Direct Sum

[n] W

z1
z2
z3

zn

z4
z5

Decoding Binary Codes 10 / 1

Expansion and Distance Amplification

Fix a bipartite graph between [n] and W ⊆ [n]k . Let z ∈ Fn
2.

z
...

... ...
...

z2 ⊕ z4 ⊕ z5 ⊕ zn

z1 ⊕ z2 ⊕ z5 ⊕ zi

z1 ⊕ z2 ⊕ z4 ⊕ zj

z3 ⊕ zk ⊕ zn−1 ⊕ zn

z4 ⊕ z` ⊕ zs ⊕ zn−1

Direct Sum

[n] W

rate loss factor n/|W |
distance amplification needs to be worth this loss

z1
z2
z3

zn

z4
z5

Decoding Binary Codes 10 / 1

Expansion and Distance Amplification

Fix a bipartite graph between [n] and W ⊆ [n]k . Let z ∈ Fn
2.

z
...

... ...
...

z2 ⊕ z4 ⊕ z5 ⊕ zn

z1 ⊕ z2 ⊕ z5 ⊕ zi

z1 ⊕ z2 ⊕ z4 ⊕ zj

z3 ⊕ zk ⊕ zn−1 ⊕ zn

z4 ⊕ z` ⊕ zs ⊕ zn−1

Direct Sum

[n] W

rate loss factor n/|W |
distance amplification needs to be worth this loss

z1
z2
z3

zn

z4
z5

Alon–Brooks–Naor–Naor–Roth & Alon–Edmonds–Luby style distance amplification
Decoding Binary Codes 10 / 1

Expansion and Distance Amplification

Direct Sum
Let z ∈ Fn

2 and W ⊆ [n]k . The direct sum of z is y ∈ FW
2 defined as

y(i1,...,ik) = zi1 ⊕ · · · ⊕ zik ,

for every (i1, . . . , ik) ∈W . We denote y = dsumW (z).

z
...

... ...
...

z2 ⊕ z4 ⊕ z5 ⊕ zn

z1 ⊕ z2 ⊕ z5 ⊕ zi

z1 ⊕ z2 ⊕ z4 ⊕ zj

z3 ⊕ zk ⊕ zn−1 ⊕ zn

z4 ⊕ z` ⊕ zs ⊕ zn−1

[n] W

z1
z2
z3

zn

z4
z5

Decoding Binary Codes 10 / 1

Expansion and Distance Amplification

Bias
Let z ∈ Fn

2. Define bias(z) :=|IEi∈[n](−1)zi |
bias(C) = maxz∈C\0 bias(z)

If bias(C) ≤ ε, then ∆(C) ≥ 1/2− ε/2 (assuming C linear)

Decoding Binary Codes 11 / 1

Expansion and Distance Amplification

Bias
Let z ∈ Fn

2. Define bias(z) :=|IEi∈[n](−1)zi |
bias(C) = maxz∈C\0 bias(z)

If bias(C) ≤ ε, then ∆(C) ≥ 1/2− ε/2 (assuming C linear)

bias(00 . . . 0︸ ︷︷ ︸
n

) = bias(11 . . . 1︸ ︷︷ ︸
n

) = 1

bias(0 . . . 0︸ ︷︷ ︸
n/2

1 . . . 1︸ ︷︷ ︸
n/2

) = 0

Decoding Binary Codes 11 / 1

Expansion and Distance Amplification

Bias
Let z ∈ Fn

2. Define bias(z) :=|IEi∈[n](−1)zi |
bias(C) = maxz∈C\0 bias(z)

If bias(C) ≤ ε, then ∆(C) ≥ 1/2− ε/2 (assuming C linear)

Definition (Parity Sampler, c.f. Ta-Shma’17)

Let W ⊆ [n]k . We say that dsumW is (ε0, ε)-parity sampler iff

(∀z ∈ Fn
2) (bias(z) ≤ ε0 =⇒ bias(dsumW (z)) ≤ ε) .

Decoding Binary Codes 11 / 1

Explicit Constructions of Parity Samplers

Solution (Alon and Rozenman–Wigderson)

Take W ⊆ [n]k to be the collection of all length-(k − 1) walks on a sparse
expander graph G = (V = [n],E)

Decoding Binary Codes 12 / 1

Explicit Constructions of Parity Samplers

Solution (Alon and Rozenman–Wigderson)

Take W ⊆ [n]k to be the collection of all length-(k − 1) walks on a sparse
expander graph G = (V = [n],E)

Solution (good but not near optimal)

This yields codes of distance 1/2− ε and rate Ω(ε4+o(1))

Decoding Binary Codes 12 / 1

Explicit Constructions of Parity Samplers

Solution of Ta-Shma’17
Take W ⊆ [n]k to be a carefully chosen collection of length-(k − 1) walks
on a structured sparse expander graph G = (V = [n],E)

Decoding Binary Codes 13 / 1

Explicit Constructions of Parity Samplers

Solution of Ta-Shma’17
Take W ⊆ [n]k to be a carefully chosen collection of length-(k − 1) walks
on a structured sparse expander graph G = (V = [n],E)

Solution (near optimal)

This yields codes of distance 1/2− ε and rate Ω(ε2+o(1))

Decoding Binary Codes 13 / 1

General Techniques for Decoding

Decoding Direct Sum
What does decoding look like for direct sum?

Decoding Binary Codes 14 / 1

Decoding by Solving a k-CSP

Setup (informal)
C0 ⊆ Fn

2 is a code of small distance
W ⊆ [n]k for direct sum
C = dsumW (C0) is a code of large distance

Decoding Binary Codes 15 / 1

Decoding by Solving a k-CSP

Suppose y∗ ∈ C is corrupted into some ỹ ∈ FW
2 in the unique decoding ball

centered at y∗.

z

...
...

...
...

z2 ⊕ z4 ⊕ z5 ⊕ zn = ỹ (2,4,5,n)

z1 ⊕ z2 ⊕ z5 ⊕ zi = ỹ (1,2,5,i)

z1 ⊕ z2 ⊕ z4 ⊕ zj = ỹ (1,2,4,j)

z3 ⊕ zk ⊕ zn−1 ⊕ zn = ỹ (3,k,n−1,n)

z4 ⊕ z` ⊕ zs ⊕ zn−1 = ỹ (4,`,s,n−1)

k-XOR

[n]
ỹ

W

Decoding Binary Codes 15 / 1

Decoding by Solving a k-CSP

Unique Decoding Scenario: k-XOR like
Unique decoding ỹ amounts to solving

arg max
z∈C0

IE(i1,...,ik)∈W 1[zi1 ⊕ · · · ⊕ zik = ỹ (i1,...,ik)].

Decoding Binary Codes 15 / 1

Decoding by Solving a k-CSP

Unique Decoding Scenario: k-XOR like
Unique decoding ỹ amounts to solving

arg max
z∈C0

IE(i1,...,ik)∈W 1[zi1 ⊕ · · · ⊕ zik = ỹ (i1,...,ik)].

A Relaxation
Suppose that we can find z̃ ∈ Fn

2 (rather than in C0) satisfying

IE(i1,...,ik)∈W 1[z̃ i1 ⊕ · · · ⊕ z̃ ik = ỹ (i1,...,ik)] ≈ OPT.

Decoding Binary Codes 15 / 1

Decoding by Solving a k-CSP

Say y∗ = dsum(z∗) for some z∗ ∈ C0

Claim (Informal)
If the parity sampler is strong enough, then z̃ lies in the unique decoding
ball centered at z∗ ∈ C0.

z∗

∆(C0)/2
z̃

Decoding Binary Codes 16 / 1

Decoding by Solving a k-CSP

z∗

∆(C0)/2
z̃

Moral
Find approx. optimal solution z̃ ∈ Fn

2 (rather than in C0) is enough
Use unique decoder of C0 to correct z̃ into z∗

Decoding Binary Codes 16 / 1

What do we have so far?

k-CSP Decoding

Decoding Binary Codes 17 / 1

What do we have so far?

Why can we efficiently approximate these k-CSPs?

k-CSP Decoding

Decoding Binary Codes 17 / 1

What do we have so far?

Why can we efficiently approximate these k-CSPs?

k-CSP Decoding

high-dimensional expansion

+

Decoding Binary Codes 17 / 1

A Notion of High-dimensional Expansion

Let W ⊆ [n]k . Define W [a, b] for 1 ≤ a ≤ b ≤ k as

W [a, b] = {(ia, . . . , ib) | (i1, . . . , ik) ∈W }.

Decoding Binary Codes 18 / 1

A Notion of High-dimensional Expansion

W [a, a′]

W [a′ + 1, b]

1(ia,...,ib)∈W [a,b](ia, . . . , ia′)

(ia′+1, . . . , ib)

Sa,a′,b

.

ia ia′ ia′+1 ib

ia+1 ia′+2

W [a, b] = {(ia, . . . , ib) | (i1, . . . , ik) ∈W }

Decoding Binary Codes 18 / 1

A Notion of High-dimensional Expansion

Definition (Splittability (informal) Mossel’10)

A collection W ⊆ [n]k is said to be τ -splittable, if k = 1 or for every
1 ≤ a ≤ a′ < b ≤ k :

1 The (normalized) matrix Sa,a′,b ∈ RW [a,a′]×W [a′+1,b] defined as
Sa,a′,b(w ,w ′) = 1ww ′∈W [a,b] satisfy σ2(Sa,a′,b) ≤ τ

W [a, a′]

W [a′ + 1, b]

1(ia,...,ib)∈W [a,b](ia, . . . , ia′)

(ia′+1, . . . , ib)

Sa,a′,b

Decoding Binary Codes 18 / 1

A Notion of High-dimensional Expansion

Example of τ -splittable structures

Lemma (Alev–J–Quintana–Srivastava–Tulsiani’20)

The collection W ⊆ [n]k of all walks on τ -two-sided spectral expander
graph G = (V = [n],E) is τ -splittable

Decoding Binary Codes 18 / 1

A Notion of High-dimensional Expansion

Example of τ -splittable structures

Lemma (J–Quintana–Srivastava–Tulsiani’20)

A simple modification of Ta-Shma’s parity sampler W ⊆ [n]k is τ -splittable

Decoding Binary Codes 18 / 1

Previous Approach via Sum-of-Squares

k-CSP Decoding

high-dimensional expansion

+

Sum-of-Squares

Decoding Binary Codes 19 / 1

Previous Approach via Sum-of-Squares

Using the Sum-of-Squares (SOS) semi-definite programming hierarchy:

Theorem (Alev–J–Tulsiani’19 (informal))

Instances of k-XOR supported on expanding (τ -splittable) tuples W ⊆ [n]k

can be efficiently approximated

(building on Barak–Raghavendra–Steurer’11)

Decoding Binary Codes 19 / 1

Previous Approach via Sum-of-Squares

Using the Sum-of-Squares (SOS) semi-definite programming hierarchy:

Theorem (Alev–J–Tulsiani’19)

Let W ⊆ [n]k be τ -splittable. Suppose I is a k-XOR instance on W . If
τ ≤ poly(δ/2k), then we can find a solution z ∈ Fn

2 satisfying

OPT(I)− δ,

fraction of the constraints of I in time npoly(2
k/δ).

(building on Barak–Raghavendra–Steurer’11)

Decoding Binary Codes 19 / 1

Pseudorandomness Approach

k-CSP Decoding

high-dimensional expansion

+

Pseudorandomness

Decoding Binary Codes 20 / 1

Pseudorandomness Approach

Using pseudorandomness techniques (weak regularity decompositions):

Theorem (J–Srivastava–Tulsiani’20)

Let W ⊆ [n]k be τ -splittable. Suppose I is a k-XOR instance on W . If
τ ≤ poly(δ/k), then we can find a solution z ∈ Fn

2 satisfying

OPT(I)− δ,

fraction of the constraints of I in time Õδ(|W |).

Decoding Binary Codes 20 / 1

Weak Regularity Decomposition: Notation

Cut Matrix

Decoding Binary Codes 21 / 1

Weak Regularity Decomposition: Dense Graphs

We recall Frieze and Kannan’96 approach.
Let A be the adjacency matrix of a dense graph G = ([n],E). Suppose we
have A ≈

∑L
`=1 c` · 1S`1 ⊗ 1S`2 such that

max
S,T⊆[n]

∣∣∣∣∣〈A−
L∑
`=1

c` · 1S`1 ⊗ 1S`2 , 1S ⊗ 1T 〉

∣∣∣∣∣ ≤ δ · n2,
and L = O(1/δ2).

Decoding Binary Codes 22 / 1

Weak Regularity Decomposition: Dense Graphs

Frieze and Kannan use
∑L

`=1 c` · 1S`1 ⊗ 1S`2 to approximate the maximum
cut value of G within additive error δ · n2

|E (S , S)| = 〈A, 1S ⊗ 1S〉 ≈ 〈
L∑
`=1

c` · 1S`1 ⊗ 1S`2 , 1S ⊗ 1S〉,

=
L∑
`=1

c` · |S`1 ∩ S ||S`2 ∩ S |,

Decoding Binary Codes 22 / 1

Weak Regularity Decomposition: Dense Graphs

|E (S , S)| ≈
∑L

`=1 c` · |S`1 ∩ S ||S`2 ∩ S |

Venn diagram of sets S`1, S
`
2 for ` ∈ [L]

[n]

Decoding Binary Codes 22 / 1

Weak Regularity Decomposition: Dense Graphs

|E (S , S)| ≈
∑L

`=1 c` · |S`1 ∩ S ||S`2 ∩ S |

Venn diagram of sets S`1, S
`
2 for ` ∈ [L]

[n]

A1

A2

A3

A4

A5A6

A7

A8

A9

A10

A11

A12

exp(L) = exp(1/δ2) atoms A1,A2, . . .

Decoding Binary Codes 22 / 1

Weak Regularity Decomposition: Dense Graphs

|E (S , S)| ≈
∑L

`=1 c` · |S`1 ∩ S ||S`2 ∩ S |

Venn diagram of sets S`1, S
`
2 for ` ∈ [L]

[n]

exp(L) = exp(1/δ2) atoms A1,A2, . . .

η1

η2

η3
η4

η5η6

η7

η8
η9

η10

η11

η12

ηj =
|Aj∩S |
|Aj | for atom Aj

Decoding Binary Codes 22 / 1

Weak Regularity Decomposition: Dense Graphs

|E (S , S)| ≈
∑L

`=1 c` · |S`1 ∩ S ||S`2 ∩ S |

Venn diagram of sets S`1, S
`
2 for ` ∈ [L]

[n]

exp(L) = exp(1/δ2) atoms A1,A2, . . .

η1

η2

η3
η4

η5η6

η7

η8
η9

η10

η11

η12

ηj =
|Aj∩S |
|Aj | for atom Aj

S

Decoding Binary Codes 22 / 1

Weak Regularity Decomposition: Dense Graphs

|E (S , S)| ≈
∑L

`=1 c` · |S`1 ∩ S ||S`2 ∩ S |

Venn diagram of sets S`1, S
`
2 for ` ∈ [L]

[n]

exp(L) = exp(1/δ2) atoms A1,A2, . . .

η1

η2

η3
η4

η5η6

η7

η8
η9

η10

η11

η12

ηj =
|Aj∩S |
|Aj | for atom Aj

S

To find best S brute-force over a fine enough discretization of ηj ’s

Decoding Binary Codes 22 / 1

Weak Regularity Decomposition: Sparse Graphs

Theorem (Oveis Gharan and Trevisan’13)
Expander graphs admit efficient weak regularity decompositions, so
MaxCut can be approximated on them

(their result also holds for low threshold rank graphs)

Decoding Binary Codes 23 / 1

Weak Regularity Decomposition: Sparse Tensors

Sparse Tensors on Splittable Structures

Let W ⊆ [n]k and g : W → [−1, 1]. We want to find
g ≈

∑L
`=1 c` · 1S`1 ⊗ · · · ⊗ 1S`k such that

max
S1,...,Sk⊆[n]

∣∣∣∣∣〈g −
L∑
`=1

c` · 1S`1 ⊗ · · · ⊗ 1S`k , 1S1 ⊗ · · · ⊗ 1Sk 〉

∣∣∣∣∣ ≤ δ · |W |,
and L = O(1/δ2).

Decoding Binary Codes 24 / 1

Weak Regularity Decomposition: Sparse Tensors

Sparse Tensors on Splittable Structures

Let W ⊆ [n]k τ -splittable and g : W → [−1, 1]. If τ ≤ poly(δ/k), there
exists

∑L
`=1 c` · 1S`1 ⊗ · · · ⊗ 1S`k such that

max
S1,...,Sk⊆[n]

∣∣∣∣∣〈g −
L∑
`=1

c` · 1S`1 ⊗ · · · ⊗ 1S`k , 1S1 ⊗ · · · ⊗ 1Sk 〉

∣∣∣∣∣ ≤ δ · |W |,
and L = O(1/δ2).

Decoding Binary Codes 24 / 1

Weak Regularity Decomposition: Sparse Tensors

Similar strategy works for k-CSPs (FK’96 and even to list decoding JST’21)

Venn diagram of sets S`1, . . . ,S
`
k for ` ∈ [L]

[n]

exp(kL) = exp(k/δ2) atoms A1,A2, . . .

η1

η2

η3
η4

η5η6

η7

η8
η9

η10

η11

η12

ηj =
|Aj∩S |
|Aj | for atom Aj

S

Decoding Binary Codes 24 / 1

Weak Regularity Decomposition: Sparse Tensors

Existential regularity decomposition for splittable tensors

Showing the existence of
∑L

`=1 c` · 1S`1 ⊗ · · · ⊗ 1S`k ≈ g is not too hard

Reingold, Trevisan, Tulsiani and Vadhan [RTTV’08,TTV’09]

Decoding Binary Codes 24 / 1

Weak Regularity Decomposition: Sparse Tensors

CUT⊗k = {±1S1 ⊗ · · · ⊗ 1Sk | S1, . . . ,Sk ⊆ [n]}
Let µ be a probability measure on W

1: function ExistentialWeakRegularityDecomposition(g : W → [−1, 1])
2: h ← 0
3: while ∃f ∈ CUT⊗k : 〈g − h, f 〉µ ≥ δ do
4: h ← h + δ · f
5: end while
6: return h
7: end function

Decoding Binary Codes 25 / 1

Weak Regularity Decomposition: Sparse Tensors

1: function ExistentialWeakRegularityDecomposition(g : W → [−1, 1])
2: h ← 0
3: while ∃f ∈ CUT⊗k : 〈g − h, f 〉µ ≥ δ do
4: h ← h + δ · f
5: end while
6: return h
7: end function

Claim: ‖g − h‖2µ decreases by δ2 at each iteration

〈g − h − δ · f , g − h − δ · f 〉µ = 〈g − h, g − h〉µ − 2δ〈g − h, f 〉µ + δ2〈f , f 〉µ

Decoding Binary Codes 25 / 1

Weak Regularity Decomposition: Sparse Tensors

1: function ExistentialWeakRegularityDecomposition(g : W → [−1, 1])
2: h ← 0
3: while ∃f ∈ CUT⊗k : 〈g − h, f 〉µ ≥ δ do
4: h ← h + δ · f
5: end while
6: return h
7: end function

Claim: ‖g − h‖2µ decreases by δ2 at each iteration

〈g − h − δ · f , g − h − δ · f 〉µ = 〈g − h, g − h〉µ − 2δ 〈g − h, f 〉µ︸ ︷︷ ︸
≥δ

+δ2 〈f , f 〉µ︸ ︷︷ ︸
≤1

Decoding Binary Codes 25 / 1

Weak Regularity Decomposition: Sparse Tensors

1: function ExistentialWeakRegularityDecomposition(g : W → [−1, 1])
2: h ← 0
3: while ∃f ∈ CUT⊗k : 〈g − h, f 〉µ ≥ δ do
4: h ← h + δ · f
5: end while
6: return h
7: end function

Claim: ‖g − h‖2µ decreases by δ2 at each iteration

〈g − h − δ · f , g − h − δ · f 〉µ = 〈g − h, g − h〉µ − 2δ 〈g − h, f 〉µ︸ ︷︷ ︸
≥δ

+δ2 〈f , f 〉µ︸ ︷︷ ︸
≤1

≤ 〈g − h, g − h〉µ − δ2

Decoding Binary Codes 25 / 1

Weak Regularity Decomposition: Sparse Tensors

Near-linear time regularity decomposition for splittable tensors
The more challenging steps are related to algorithmically finding a
decomposition

∑L
`=1 c` · 1S`1 ⊗ · · · ⊗ 1S`k ≈ g in time Õδ(|W |) (and also

proving list decoding)

Decoding Binary Codes 26 / 1

Weak Regularity Decomposition: Sparse Tensors

Near-linear time regularity decomposition for splittable tensors
The more challenging steps are related to algorithmically finding a
decomposition

∑L
`=1 c` · 1S`1 ⊗ · · · ⊗ 1S`k ≈ g in time Õδ(|W |) (and also

proving list decoding)

We will give a (simplified) high-level description of the algorithmic ideas

Decoding Binary Codes 26 / 1

Weak Regularity Decomposition: Algorithmic Ideas

Iteratively “Splitting” the function g : W ⊆ [n]k → [−1, 1]

At step 1, find h1 =
∑L

`=1 c` · 1S`1 ⊗ 1T ` ≈ g

where S`1 ⊆ [n], T ` ⊆ [n]k−1

Decoding Binary Codes 27 / 1

Weak Regularity Decomposition: Algorithmic Ideas

Iteratively “Splitting” the function g : W ⊆ [n]k → [−1, 1]

At step 1, find h1 =
∑L

`=1 c` · 1S`1 ⊗ 1T ` ≈ g

where S`1 ⊆ [n], T ` ⊆ [n]k−1

At step 2, find h2 =
∑L

`=1 c` · 1S`1 ⊗ 1S`2 ⊗ 1T ` ≈ h1

where S`1,S
`
2 ⊆ [n], T ` ⊆ [n]k−2

(The sets and L change at each step and splittability is being crucially used)Decoding Binary Codes 27 / 1

Weak Regularity Decomposition: Algorithmic Ideas

Iteratively “Splitting” the function g : W ⊆ [n]k → [−1, 1]

At step 1, find h1 =
∑L

`=1 c` · 1S`1 ⊗ 1T ` ≈ g

where S`1 ⊆ [n], T ` ⊆ [n]k−1

At step 2, find h2 =
∑L

`=1 c` · 1S`1 ⊗ 1S`2 ⊗ 1T ` ≈ h1

where S`1,S
`
2 ⊆ [n], T ` ⊆ [n]k−2

...

At step k − 1, find hk−1 =
∑L

`=1 c` · 1S`1 ⊗ · · · ⊗ 1S`k ≈ hk−2

where S`1, . . . ,S
`
k ⊆ [n]

(The sets and L change at each step and splittability is being crucially used)

Decoding Binary Codes 27 / 1

Weak Regularity Decomposition: Algorithmic Ideas

Suppose we are at the begining of the sth step and we have

hs−1 =
L∑
`=1

c` · 1S`1 ⊗ · · · ⊗ 1S`s−1
⊗ 1T ` ,

where S`1, . . . ,S
`
s−1 ⊆ [n], T ` ⊆ [n]k−(s−1)

Decoding Binary Codes 28 / 1

Weak Regularity Decomposition: Algorithmic Ideas

Suppose we are at the begining of the sth step and we have

hs−1 =
L∑
`=1

c` · 1S`1 ⊗ · · · ⊗ 1S`s−1
⊗ 1T ` ,

where S`1, . . . ,S
`
s−1 ⊆ [n], T ` ⊆ [n]k−(s−1)

1: function WeakRegularityDecomposition(g = hs−1)
2: h ← 0
3: while ∃f = ±1S′

1
⊗ · · · ⊗ 1S′

s
⊗ 1T ′ , S ′i ⊆ [n],T ′ ⊆ [n]k−s : 〈g − h, f 〉 ≥ δ do

4: h ← h + δ · f
5: end while
6: return h
7: end function

Decoding Binary Codes 28 / 1

Weak Regularity Decomposition: Algorithmic Ideas

1: function WeakRegularityDecomposition(g = hs−1)
2: h ← 0
3: while ∃f = ±1S′

1
⊗ · · · ⊗ 1S′

s
⊗ 1T ′ , S ′i ⊆ [n],T ′ ⊆ [n]k−s : 〈g − h, f 〉 ≥ δ do

4: h ← h + δ · f
5: end while
6: return h
7: end function

Can we make the red step efficient?

Decoding Binary Codes 28 / 1

Weak Regularity Decomposition: Algorithmic Ideas

1: function WeakRegularityDecomposition(g = hs−1)
2: h ← 0
3: while ∃f = ±1S′

1
⊗ · · · ⊗ 1S′

s
⊗ 1T ′ , S ′i ⊆ [n],T ′ ⊆ [n]k−s : 〈g − h, f 〉 ≥ δ do

4: h ← h + δ · f
5: end while
6: return h
7: end function

Can we make the red step efficient?
Difficulty: How can we find sets S ′1, . . . ,S

′
s ⊆ [n], T ′ ⊆ [n]k−s?

Decoding Binary Codes 28 / 1

Weak Regularity Decomposition: Algorithmic Ideas

1: function WeakRegularityDecomposition(g = hs−1)
2: h ← 0
3: while ∃f = ±1S′

1
⊗ · · · ⊗ 1S′

s
⊗ 1T ′ , S ′i ⊆ [n],T ′ ⊆ [n]k−s : 〈g − h, f 〉 ≥ δ do

4: h ← h + δ · f
5: end while
6: return h
7: end function

Can we make the red step efficient?
Suppose Merlin tells us (all but the last two sets)

S ′1, . . . ,S
′
s−1 ⊆ [n]

Decoding Binary Codes 28 / 1

Weak Regularity Decomposition: Algorithmic Ideas

We still need to find S ′s ⊆ [n] and T ′ ⊆ [n]k−s

max
S ′s ,T

′
|〈

L∑
`=1

c` · 1S`1 ⊗ · · · ⊗ 1S`s−1
⊗ 1T ` , 1S ′1 ⊗ · · · ⊗ 1S ′s ⊗ 1T ′〉|

Decoding Binary Codes 29 / 1

Weak Regularity Decomposition: Algorithmic Ideas

We still need to find S ′s ⊆ [n] and T ′ ⊆ [n]k−s

max
S ′s ,T

′
|〈

L∑
`=1

c` · 1S`1 ⊗ · · · ⊗ 1S`s−1
⊗ 1T ` , 1S ′1 ⊗ · · · ⊗ 1S ′s ⊗ 1T ′〉| =

max
S ′s ,T

′
|

L∑
`=1

c`

s−1∏
i=1

〈1S`i , 1S ′i 〉︸ ︷︷ ︸
γ`

〈1`T , 1S ′s ⊗ 1T ′〉||

Decoding Binary Codes 29 / 1

Weak Regularity Decomposition: Algorithmic Ideas

We still need to find S ′s ⊆ [n] and T ′ ⊆ [n]k−s

max
S ′s ,T

′
|〈

L∑
`=1

c` · 1S`1 ⊗ · · · ⊗ 1S`s−1
⊗ 1T ` , 1S ′1 ⊗ · · · ⊗ 1S ′s ⊗ 1T ′〉| =

max
S ′s ,T

′
|

L∑
`=1

c`

s−1∏
i=1

〈1S`i , 1S ′i 〉︸ ︷︷ ︸
γ`

〈1`T , 1S ′s ⊗ 1T ′〉| =

max
S ′s ,T

′
|〈

L∑
`=1

γ` · 1`T︸ ︷︷ ︸
M

, 1S ′s ⊗ 1T ′〉|

Decoding Binary Codes 29 / 1

Weak Regularity Decomposition: Algorithmic Ideas

max
S ′s ,T

′
|〈M, 1S ′s ⊗ 1T ′〉|

Good News 1
The problem above is the well-known CUT norm optimization which has an
SDP-based approximation algorithm by Alon–Naor’04

Decoding Binary Codes 30 / 1

Weak Regularity Decomposition: Algorithmic Ideas

max
S ′s ,T

′
|〈M, 1S ′s ⊗ 1T ′〉|

Good News 1
The problem above is the well-known CUT norm optimization which has an
SDP-based approximation algorithm by Alon–Naor’04

Good News 2
M is an n × nk−s matrix, but it is very sparse in our case (Oε(n) non-zero
entries). We can use near-linear time SDP solvers such as Arora–Kale’06

Decoding Binary Codes 30 / 1

Weak Regularity Decomposition: Algorithmic Ideas

Question
Do we really need Merlin to tell us S ′1, . . . ,S

′
s−1?

Decoding Binary Codes 31 / 1

Weak Regularity Decomposition: Algorithmic Ideas

Question
Do we really need Merlin to tell us S ′1, . . . ,S

′
s−1?

Good News 3
No! Arthur is enough!

Decoding Binary Codes 31 / 1

Weak Regularity Decomposition: Algorithmic Ideas

We have a low-complexity set system, so we can (approximately) generate
S ′1, . . . ,S

′
s−1 ourselves!

Venn diagram of sets S`1, . . . ,S
`
s−1 for ` ∈ [L]

[n]

exp((s − 1)L) ≤ exp(k/δ2) atoms A1,A2, . . .

η1

η2

η3
η4

η5η6

η7

η8
η9

η10

η11

η12

S ′i

Decoding Binary Codes 31 / 1

That’s all.

Thank you!

Decoding Binary Codes 32 / 1

Questions?

Decoding Binary Codes 32 / 1

