Near-linear Time Decoding of Ta-Shma's Codes via Splittable Regularity

Fernando Granha Jeronimo (UChicago)

joint work with

Shashank Srivastava (TTIC) and Madhur Tulsiani (TTIC)

STOC 2021

Goal of the Talk

Goal

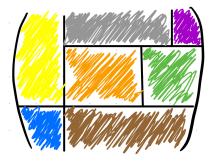
Present a near-linear time decoding algorithm for Ta-Shma's codes

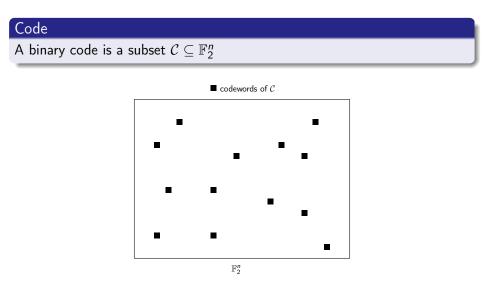
Goal of the Talk

Goal

Present a near-linear time decoding algorithm for Ta-Shma's codes

Weak Regularity Technique





Two fundamental parameters

Distance

The distance $\Delta(\mathcal{C})$ of \mathcal{C} is $\Delta(\mathcal{C}) \coloneqq \min_{z,z' \in \mathcal{C} \colon z \neq z'} \Delta(z,z')$

Two fundamental parameters

Distance

The distance
$$\Delta(\mathcal{C})$$
 of \mathcal{C} is $\Delta(\mathcal{C}) \coloneqq \min_{z,z' \in \mathcal{C} \colon z \neq z'} \Delta(z,z')$

Rate

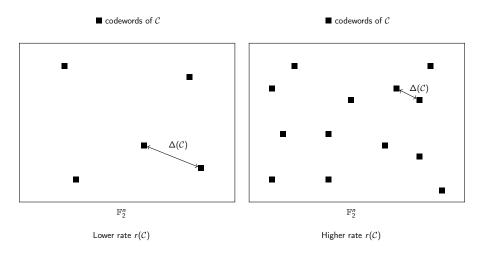
The rate $r(\mathcal{C})$ of \mathcal{C} is $\frac{\log_2(|\mathcal{C}|)}{n}$ (the fraction of information symbols)

Tension between Rate and Distance of a Code

Tension

- Higher rate $r(\mathcal{C})$, lower distance $\Delta(\mathcal{C})$
- Higher distance $\Delta(\mathcal{C})$, lower rate $r(\mathcal{C})$

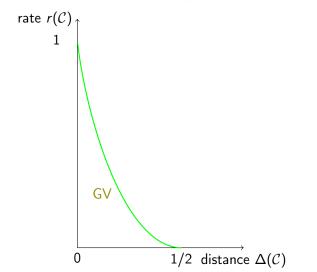
Tension between Rate and Distance of a Code



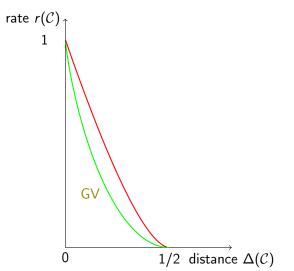
Question

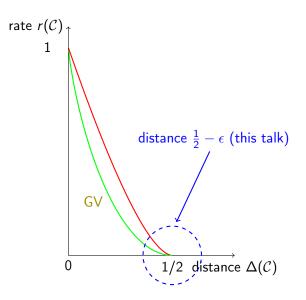
What is the best trade-off between rate $r(\mathcal{C})$ and distance $\Delta(\mathcal{C})$?

Gilbert-Varshamov existential bound (Gilbert'52, Varshamov'57)



McEliece-Rodemich-Rumsey-Welch'77 impossibility bound





Why is the Gilbert-Varshamov bound interesting?

The Gilbert-Varshamov (GV) bound is "nearly" optimal

For distance $1/2 - \epsilon$

- rate $\Omega(\epsilon^2)$ is achievable (Gilbert–Varshamov bound)
- rate better than $O(\epsilon^2 \log(1/\epsilon))$ is impossible (McEliece *et al.*)

For distance $1/2 - \epsilon$

- rate $\Omega(\epsilon^2)$ is achievable (Gilbert–Varshamov bound)
- rate better than $O(\epsilon^2 \log(1/\epsilon))$ is impossible (McEliece *et al.*)

Ta-Shma's Codes (60 years later!)

First explicit binary codes near the GV bound are due to Ta-Shma'17 with

- distance $1/2 \epsilon/2$ (actually ϵ -balanced), and
- rate $\Omega(\epsilon^{2+o(1)})$.

Ta-Shma's Codes (60 years later!)

First explicit binary codes near the GV bound are due to Ta-Shma'17 with

- distance $1/2 \epsilon/2$ (actually ϵ -balanced), and
- rate $\Omega(\epsilon^{2+o(1)})$.

Question

How efficiently can we decode Ta-Shma codes?

Question

How efficiently can we decode Ta-Shma codes?

Theorem (this talk)

Ta-Shma's codes are near-linear time unique decodable

Our Contribution

Theorem (Near-linear Time Decoding)

For every $\epsilon > 0$, \exists explicit binary linear Ta-Shma codes $C_{N,\epsilon} \subseteq \mathbb{F}_2^N$ with

- distance at least $1/2 \epsilon/2$ (actually ϵ -balanced),
- 2 rate $\Omega(\epsilon^{2+o(1)})$, and
- **③** a unique decoding algorithm with running time $O_{\epsilon}(N)$.

Our Contribution

Pseudorandomness approach

Theorem (Near-linear Time Decoding)

For every $\epsilon > 0$, \exists explicit binary linear Ta-Shma codes $C_{N,\epsilon} \subseteq \mathbb{F}_2^N$ with

- distance at least $1/2 \epsilon/2$ (actually ϵ -balanced),
- **2** rate $\Omega(\epsilon^{2+o(1)})$, and
- **③** a unique decoding algorithm with running time $\widetilde{O}_{\epsilon}(N)$.

Previous Efficient Decoder for Ta-Shma's Codes

Sum-of-Squares SDP hierarchy approach (SOS approach)

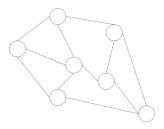
Theorem (J-Quintana-Srivastava-Tulsiani'20)

Ta-Shma's codes are unique decodable in $N^{O_{\epsilon}(1)}$ time

Towards Ta-Shma's Codes

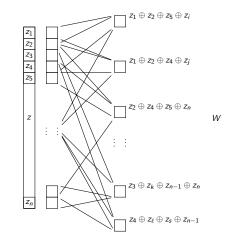
Expander Graphs and Codes

Expanders can amplify the distance of a not so great base code \mathcal{C}_{0}



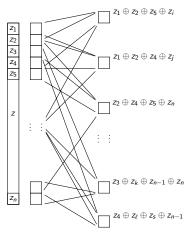
[*n*]

Fix a bipartite graph between [n] and $W \subseteq [n]^k$. Let $z \in \mathbb{F}_2^n$.



Direct Sum

Fix a bipartite graph between [n] and $W \subseteq [n]^k$. Let $z \in \mathbb{F}_2^n$.



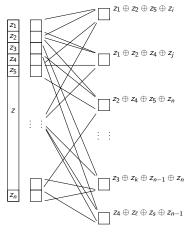
W

rate loss factor n/|W|

distance amplification needs to be worth this loss

Fix a bipartite graph between [n] and $W \subseteq [n]^k$. Let $z \in \mathbb{F}_2^n$.

Direct Sum



[*n*]

W

rate loss factor n/|W|

distance amplification needs to be worth this loss

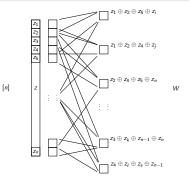
Alon-Brooks-Naor-Naor-Roth & Alon-Edmonds-Luby style distance amplification

Direct Sum

Let $z \in \mathbb{F}_2^n$ and $W \subseteq [n]^k$. The *direct sum* of z is $y \in \mathbb{F}_2^W$ defined as

$$y_{(i_1,\ldots,i_k)}=\mathsf{z}_{i_1}\oplus\cdots\oplus\mathsf{z}_{i_k},$$

for every $(i_1, \ldots, i_k) \in W$. We denote $y = \operatorname{dsum}_W(z)$.



Bias

- Let $z \in \mathbb{F}_2^n$. Define $bias(z) \coloneqq |\mathbf{E}_{i \in [n]}(-1)^{z_i}|$
- $bias(C) = max_{z \in C \setminus 0} bias(z)$
- If $bias(\mathcal{C}) \leq \epsilon$, then $\Delta(\mathcal{C}) \geq 1/2 \epsilon/2$

(assuming C linear)

Bias

- Let $z \in \mathbb{F}_2^n$. Define $bias(z) \coloneqq |E_{i \in [n]}(-1)^{z_i}|$
- $bias(C) = max_{z \in C \setminus 0} bias(z)$
- If $\mathsf{bias}(\mathcal{C}) \leq \epsilon$, then $\Delta(\mathcal{C}) \geq 1/2 \epsilon/2$

(assuming C linear)

$$\operatorname{bias}(\underbrace{00\dots0}_{n}) = \operatorname{bias}(\underbrace{11\dots1}_{n}) = 1$$
$$\operatorname{bias}(\underbrace{0\dots0}_{n/2}\underbrace{1\dots1}_{n/2}) = 0$$

Bias

- Let $z \in \mathbb{F}_2^n$. Define $\mathsf{bias}(z) \coloneqq |\mathbf{E}_{i \in [n]}(-1)^{z_i}|$
- $bias(C) = max_{z \in C \setminus 0} bias(z)$
- If $\mathsf{bias}(\mathcal{C}) \leq \epsilon$, then $\Delta(\mathcal{C}) \geq 1/2 \epsilon/2$

(assuming C linear)

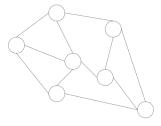
Definition (Parity Sampler, c.f. Ta-Shma'17)

Let $W \subseteq [n]^k$. We say that dsum_W is (ϵ_0, ϵ) -parity sampler iff

 $(\forall z \in \mathbb{F}_2^n) (\text{bias}(z) \leq \epsilon_0 \implies \text{bias}(\text{dsum}_W(z)) \leq \epsilon).$

Solution (Alon and Rozenman–Wigderson)

Take $W \subseteq [n]^k$ to be the collection of all length-(k - 1) walks on a sparse expander graph G = (V = [n], E)

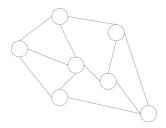


Solution (Alon and Rozenman-Wigderson)

Take $W \subseteq [n]^k$ to be the collection of all length-(k - 1) walks on a sparse expander graph G = (V = [n], E)

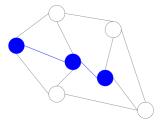
Solution (good but not near optimal)

This yields codes of distance $1/2 - \epsilon$ and rate $\Omega(\epsilon^{4+o(1)})$



Solution of Ta-Shma'17

Take $W \subseteq [n]^k$ to be a carefully chosen collection of length-(k-1) walks on a structured sparse expander graph G = (V = [n], E)

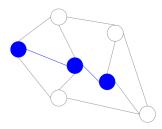


Solution of Ta-Shma'17

Take $W \subseteq [n]^k$ to be a **carefully chosen** collection of length-(k-1) walks on a structured sparse expander graph G = (V = [n], E)

Solution (near optimal)

This yields codes of distance $1/2 - \epsilon$ and rate $\Omega(\epsilon^{2+o(1)})$



General Techniques for Decoding

Decoding Direct Sum

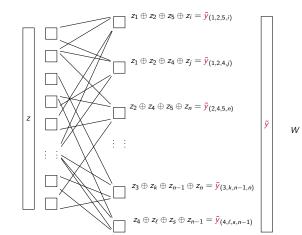
What does decoding look like for direct sum?

Setup (informal)

- $\mathcal{C}_0 \subseteq \mathbb{F}_2^n$ is a code of small distance
- $W \subseteq [n]^k$ for direct sum
- $\mathcal{C} = dsum_{W}(\mathcal{C}_{0})$ is a code of large distance

[*n*]

Suppose $y^* \in C$ is corrupted into some $\tilde{y} \in \mathbb{F}_2^W$ in the unique decoding ball centered at y^* .



k-XOR

Unique Decoding Scenario: k-XOR like

Unique decoding \tilde{y} amounts to solving

$$\operatorname*{arg\,max}_{z\in\mathcal{C}_0}\mathrm{E}_{(i_1,\ldots,i_k)\in\mathcal{W}}\mathbb{1}[z_{i_1}\oplus\cdots\oplus z_{i_k}=\tilde{y}_{(i_1,\ldots,i_k)}].$$

Unique Decoding Scenario: k-XOR like

Unique decoding \tilde{y} amounts to solving

$$\underset{z \in \mathcal{C}_0}{\operatorname{arg\,max}} \operatorname{E}_{(i_1, \dots, i_k) \in \mathcal{W}} \mathbb{1}[z_{i_1} \oplus \dots \oplus z_{i_k} = \tilde{y}_{(i_1, \dots, i_k)}].$$

A Relaxation

Suppose that we can find $\tilde{z} \in \mathbb{F}_2^n$ (rather than in \mathcal{C}_0) satisfying

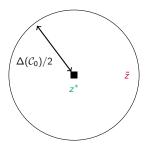
$$\mathrm{E}_{(i_1,\ldots,i_k)\in W} \mathbb{1}[\widetilde{z}_{i_1}\oplus\cdots\oplus\widetilde{z}_{i_k}=\widetilde{y}_{(i_1,\ldots,i_k)}]pprox \mathsf{OPT}.$$

Decoding by Solving a k-CSP

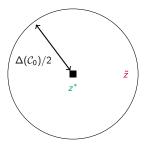
Say $y^* = \operatorname{dsum}(z^*)$ for some $z^* \in \mathcal{C}_0$

Claim (Informal)

If the parity sampler is *strong enough*, then \tilde{z} lies in the unique decoding ball centered at $z^* \in C_0$.



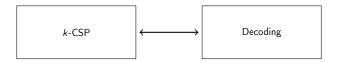
Decoding by Solving a k-CSP



Moral

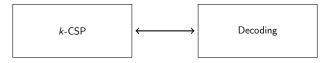
- Find approx. optimal solution $\tilde{z} \in \mathbb{F}_2^n$ (rather than in \mathcal{C}_0) is enough
- Use unique decoder of C_0 to correct \tilde{z} into z^*

What do we have so far?



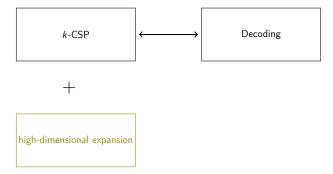
What do we have so far?

Why can we efficiently approximate these k-CSPs?

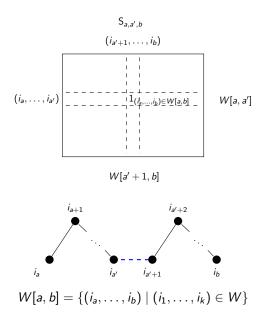


What do we have so far?

Why can we efficiently approximate these k-CSPs?



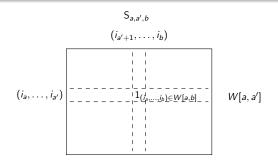
Let
$$W \subseteq [n]^k$$
. Define $W[a, b]$ for $1 \le a \le b \le k$ as $W[a, b] = \{(i_a, \ldots, i_b) \mid (i_1, \ldots, i_k) \in W\}.$



Definition (Splittability (informal) Mossel'10)

A collection $W \subseteq [n]^k$ is said to be τ -splittable, if k = 1 or for every $1 \leq a \leq a' < b \leq k$:

• The (normalized) matrix $S_{a,a',b} \in \mathbb{R}^{W[a,a'] \times W[a'+1,b]}$ defined as $S_{a,a',b}(w,w') = 1_{ww' \in W[a,b]}$ satisfy $\sigma_2(S_{a,a',b}) \leq \tau$

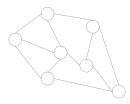


W[a'+1,b]

Example of τ -splittable structures

Lemma (Alev–J–Quintana–Srivastava–Tulsiani'20)

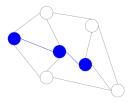
The collection $W \subseteq [n]^k$ of **all** walks on τ -two-sided spectral expander graph G = (V = [n], E) is τ -splittable



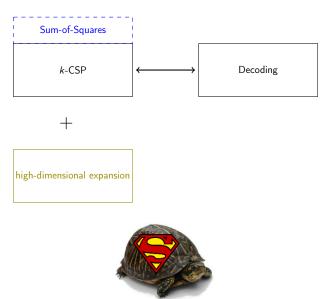
Example of τ -splittable structures

Lemma (J–Quintana–Srivastava–Tulsiani'20)

A simple modification of Ta-Shma's parity sampler $W \subseteq [n]^k$ is τ -splittable



Previous Approach via Sum-of-Squares



Previous Approach via Sum-of-Squares

Using the Sum-of-Squares (SOS) semi-definite programming hierarchy:

Theorem (Alev–J–Tulsiani'19 (informal))

Instances of k-XOR supported on expanding (τ -splittable) tuples $W \subseteq [n]^k$ can be efficiently approximated

(building on Barak-Raghavendra-Steurer'11)

Previous Approach via Sum-of-Squares

Using the Sum-of-Squares (SOS) semi-definite programming hierarchy:

Theorem (Alev–J–Tulsiani'19)

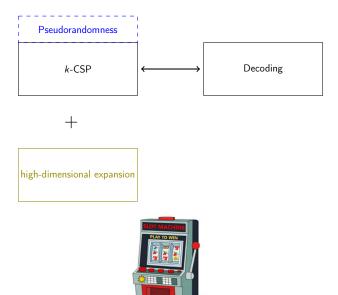
Let $W \subseteq [n]^k$ be τ -splittable. Suppose \mathfrak{I} is a k-XOR instance on W. If $\tau \leq \operatorname{poly}(\delta/2^k)$, then we can find a solution $z \in \mathbb{F}_2^n$ satisfying

 $\mathsf{OPT}(\mathfrak{I}) - \boldsymbol{\delta},$

fraction of the constraints of \mathfrak{I} in time $n^{\text{poly}(2^k/\delta)}$.

(building on Barak-Raghavendra-Steurer'11)

Pseudorandomness Approach



Pseudorandomness Approach

Using pseudorandomness techniques (weak regularity decompositions):

Theorem (J–Srivastava–Tulsiani'20)

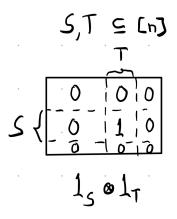
Let $W \subseteq [n]^k$ be τ -splittable. Suppose \mathfrak{I} is a k-XOR instance on W. If $\tau \leq \operatorname{poly}(\delta/k)$, then we can find a solution $z \in \mathbb{F}_2^n$ satisfying

 $\mathsf{OPT}(\mathfrak{I}) - \delta$,

fraction of the constraints of \mathfrak{I} in time $\widetilde{O}_{\delta}(|W|)$.

Weak Regularity Decomposition: Notation

Cut Matrix



We recall Frieze and Kannan'96 approach.

Let A be the adjacency matrix of a **dense** graph G = ([n], E). Suppose we have $A \approx \sum_{\ell=1}^{L} c_{\ell} \cdot 1_{S_1^{\ell}} \otimes 1_{S_2^{\ell}}$ such that

$$\max_{S,T\subseteq[n]} \left| \langle A - \sum_{\ell=1}^{L} c_{\ell} \cdot \mathbf{1}_{S_{1}^{\ell}} \otimes \mathbf{1}_{S_{2}^{\ell}}, \mathbf{1}_{S} \otimes \mathbf{1}_{T} \rangle \right| \leq \delta \cdot n^{2},$$

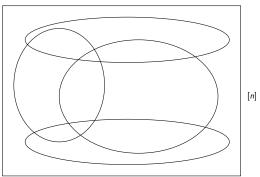
and $L = O(1/\delta^2)$.

Frieze and Kannan use $\sum_{\ell=1}^{L} c_{\ell} \cdot 1_{S_1^{\ell}} \otimes 1_{S_2^{\ell}}$ to approximate the **maximum** cut value of *G* within additive error $\delta \cdot n^2$

$$egin{aligned} |E(S,\overline{S})| &= \langle A, \mathbf{1}_S \otimes \mathbf{1}_{\overline{S}}
angle pprox \langle \sum_{\ell=1}^L c_\ell \cdot \mathbf{1}_{S_1^\ell} \otimes \mathbf{1}_{S_2^\ell}, \mathbf{1}_S \otimes \mathbf{1}_{\overline{S}}
angle, \ &= \sum_{\ell=1}^L c_\ell \cdot |S_1^\ell \cap S| |S_2^\ell \cap \overline{S}|, \end{aligned}$$

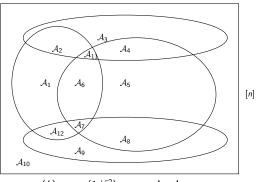
 $|E(S,\overline{S})| \approx \sum_{\ell=1}^{L} c_{\ell} \cdot |S_1^{\ell} \cap S| |S_2^{\ell} \cap \overline{S}|$

Venn diagram of sets S_1^ℓ, S_2^ℓ for $\ell \in [L]$



 $|E(S,\overline{S})| \approx \sum_{\ell=1}^{L} c_{\ell} \cdot |S_1^{\ell} \cap S| |S_2^{\ell} \cap \overline{S}|$

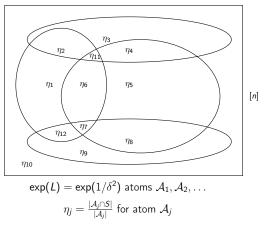
Venn diagram of sets S_1^ℓ, S_2^ℓ for $\ell \in [L]$



 $\exp(\mathcal{L})=\exp(1/\delta^2)$ atoms $\mathcal{A}_1,\mathcal{A}_2,\ldots$

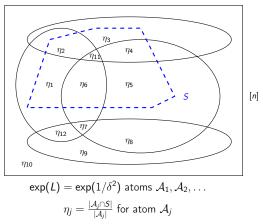
 $|E(S,\overline{S})| \approx \sum_{\ell=1}^{L} c_{\ell} \cdot |S_1^{\ell} \cap S| |S_2^{\ell} \cap \overline{S}|$

Venn diagram of sets S_1^ℓ, S_2^ℓ for $\ell \in [L]$



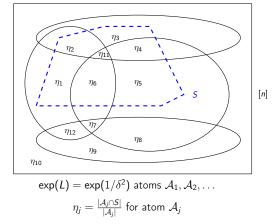
 $|E(S,\overline{S})| \approx \sum_{\ell=1}^{L} c_{\ell} \cdot |S_1^{\ell} \cap S| |S_2^{\ell} \cap \overline{S}|$

Venn diagram of sets S_1^ℓ, S_2^ℓ for $\ell \in [L]$



Weak Regularity Decomposition: Dense Graphs $|E(S,\overline{S})| \approx \sum_{\ell=1}^{L} c_{\ell} \cdot |S_{1}^{\ell} \cap S| |S_{2}^{\ell} \cap \overline{S}|$

Venn diagram of sets S_1^ℓ, S_2^ℓ for $\ell \in [L]$

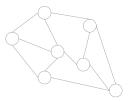


To find best S brute-force over a fine enough discretization of η_i 's

Theorem (Oveis Gharan and Trevisan'13)

Expander graphs admit efficient weak regularity decompositions, so MaxCut can be approximated on them

(their result also holds for low threshold rank graphs)



Sparse Tensors on Splittable Structures

Let $W \subseteq [n]^k$ and $g \colon W \to [-1, 1]$. We want to find $g \approx \sum_{\ell=1}^L c_\ell \cdot 1_{S_1^\ell} \otimes \cdots \otimes 1_{S_k^\ell}$ such that

$$\max_{S_1,\ldots,S_k\subseteq [n]} \left| \langle g - \sum_{\ell=1}^L c_\ell \cdot \mathbf{1}_{S_1^\ell} \otimes \cdots \otimes \mathbf{1}_{S_k^\ell}, \mathbf{1}_{S_1} \otimes \cdots \otimes \mathbf{1}_{S_k} \rangle \right| \leq \delta \cdot |W|,$$

and $L = O(1/\delta^2)$.

Sparse Tensors on Splittable Structures

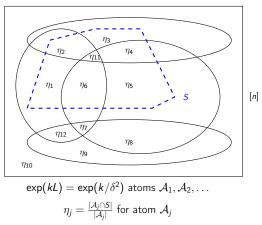
Let $W \subseteq [n]^k \tau$ -splittable and $g: W \to [-1, 1]$. If $\tau \leq \text{poly}(\delta/k)$, there exists $\sum_{\ell=1}^{L} c_{\ell} \cdot 1_{S_1^{\ell}} \otimes \cdots \otimes 1_{S_k^{\ell}}$ such that

$$\max_{S_1,\ldots,S_k\subseteq [n]} \left| \langle g - \sum_{\ell=1}^L c_\ell \cdot \mathbf{1}_{S_1^\ell} \otimes \cdots \otimes \mathbf{1}_{S_k^\ell}, \mathbf{1}_{S_1} \otimes \cdots \otimes \mathbf{1}_{S_k} \rangle \right| \leq \delta \cdot |W|,$$

and $L = O(1/\delta^2)$.

Similar strategy works for k-CSPs (FK'96 and even to list decoding JST'21)

Venn diagram of sets $S_1^\ell, \ldots, S_k^\ell$ for $\ell \in [L]$



Existential regularity decomposition for splittable tensors

Showing the existence of $\sum_{\ell=1}^{L} c_{\ell} \cdot 1_{S_{1}^{\ell}} \otimes \cdots \otimes 1_{S_{k}^{\ell}} \approx g$ is not too hard

Reingold, Trevisan, Tulsiani and Vadhan [RTTV'08,TTV'09]

$$CUT^{\otimes k} = \{\pm 1_{S_1} \otimes \cdots \otimes 1_{S_k} \mid S_1, \dots, S_k \subseteq [n]\}$$

Let μ be a probability measure on W

1: function ExistentialWeakRegularityDecomposition($g: W \rightarrow [-1, 1]$)

2:
$$h \leftarrow 0$$

3: while
$$\exists f \in CUT^{\otimes k} : \langle g - h, f \rangle_{\mu} \geq \delta$$
 do

4:
$$h \leftarrow h + \delta \cdot f$$

- 5: end while
- 6: return h
- 7: end function

1: function ExistentialWeakRegularityDecomposition $(g: W \rightarrow [-1, 1])$ 2: $h \leftarrow 0$ 3: while $\exists f \in CUT^{\otimes k}: \langle g - h, f \rangle_{\mu} \geq \delta$ do 4: $h \leftarrow h + \delta \cdot f$ 5: end while 6: return h 7: end function

Claim: $\|g - h\|_{\mu}^2$ decreases by δ^2 at each iteration

$$\langle g-h-\delta\cdot f,g-h-\delta\cdot f
angle_{\mu}=\langle g-h,g-h
angle_{\mu}-2\delta\langle g-h,f
angle_{\mu}+\delta^{2}\langle f,f
angle_{\mu}$$

1: function ExistentialWeakRegularityDecomposition($g: W \rightarrow [-1, 1]$)

2:
$$h \leftarrow 0$$

3: while
$$\exists f \in CUT^{\otimes k} : \langle g - h, f \rangle_{\mu} \geq \delta$$
 do

4:
$$h \leftarrow h + \delta \cdot f$$

- 5: end while
- 6: return h
- 7: end function

Claim: $||g - h||^2_{\mu}$ decreases by δ^2 at each iteration $\langle g - h - \delta \cdot f, g - h - \delta \cdot f \rangle_{\mu} = \langle g - h, g - h \rangle_{\mu} - 2\delta \underbrace{\langle g - h, f \rangle_{\mu}}_{\geq \delta} + \delta^2 \underbrace{\langle f, f \rangle_{\mu}}_{\leq 1}$

1: function ExistentialWeakRegularityDecomposition($g: W \rightarrow [-1, 1]$)

2:
$$h \leftarrow 0$$

3: while
$$\exists f \in CUT^{\otimes k} : \langle g - h, f \rangle_{\mu} \geq \delta$$
 do

4:
$$h \leftarrow h + \delta \cdot f$$

- 5: end while
- 6: return h
- 7: end function

Claim:
$$||g - h||^2_{\mu}$$
 decreases by δ^2 at each iteration
 $\langle g - h - \delta \cdot f, g - h - \delta \cdot f \rangle_{\mu} = \langle g - h, g - h \rangle_{\mu} - 2\delta \underbrace{\langle g - h, f \rangle_{\mu}}_{\geq \delta} + \delta^2 \underbrace{\langle f, f \rangle_{\mu}}_{\leq 1}$
 $\leq \langle g - h, g - h \rangle_{\mu} - \delta^2$

Near-linear time regularity decomposition for splittable tensors

The more challenging steps are related to algorithmically finding a decomposition $\sum_{\ell=1}^{L} c_{\ell} \cdot 1_{S_{1}^{\ell}} \otimes \cdots \otimes 1_{S_{k}^{\ell}} \approx g$ in time $\widetilde{O}_{\delta}(|W|)$ (and also proving list decoding)

Near-linear time regularity decomposition for splittable tensors

The more challenging steps are related to algorithmically finding a decomposition $\sum_{\ell=1}^{L} c_{\ell} \cdot 1_{S_{1}^{\ell}} \otimes \cdots \otimes 1_{S_{k}^{\ell}} \approx g$ in time $\widetilde{O}_{\delta}(|W|)$ (and also proving list decoding)

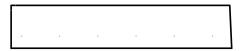
We will give a (simplified) high-level description of the algorithmic ideas

Weak Regularity Decomposition: Algorithmic Ideas

Iteratively "Splitting" the function $g \colon W \subseteq [n]^k \to [-1,1]$

At step 1, find
$$h_1 = \sum_{\ell=1}^{L} c_\ell \cdot \mathbf{1}_{S_1^\ell} \otimes \mathbf{1}_{T^\ell} \approx g$$

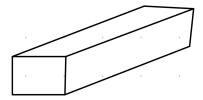
where $S_1^\ell \subseteq [n], \ T^\ell \subseteq [n]^{k-1}$



Weak Regularity Decomposition: Algorithmic Ideas Iteratively "Splitting" the function $g: W \subseteq [n]^k \rightarrow [-1, 1]$

At step 1, find
$$h_1 = \sum_{\ell=1}^{L} c_\ell \cdot \mathbf{1}_{S_1^\ell} \otimes \mathbf{1}_{T^\ell} \approx g$$

where $S_1^\ell \subseteq [n], \ T^\ell \subseteq [n]^{k-1}$
At step 2, find $h_2 = \sum_{\ell=1}^{L} c_\ell \cdot \mathbf{1}_{S_1^\ell} \otimes \mathbf{1}_{S_2^\ell} \otimes \mathbf{1}_{T^\ell} \approx h_1$
where $S_1^\ell, S_2^\ell \subseteq [n], \ T^\ell \subseteq [n]^{k-2}$



Iteratively "Splitting" the function $g \colon W \subseteq [n]^k \to [-1,1]$

At step 1, find
$$h_1 = \sum_{\ell=1}^{L} c_\ell \cdot \mathbf{1}_{S_1^\ell} \otimes \mathbf{1}_{\mathcal{T}^\ell} \approx g$$

where $S_1^\ell \subseteq [n], \ \mathcal{T}^\ell \subseteq [n]^{k-1}$
At step 2, find $h_2 = \sum_{\ell=1}^{L} c_\ell \cdot \mathbf{1}_{S_1^\ell} \otimes \mathbf{1}_{S_2^\ell} \otimes \mathbf{1}_{\mathcal{T}^\ell} \approx h_1$
where $S_1^\ell, S_2^\ell \subseteq [n], \ \mathcal{T}^\ell \subseteq [n]^{k-2}$

At step
$$k - 1$$
, find $h_{k-1} = \sum_{\ell=1}^{L} c_{\ell} \cdot 1_{S_{1}^{\ell}} \otimes \cdots \otimes 1_{S_{k}^{\ell}} \approx h_{k-2}$
where $S_{1}^{\ell}, \dots, S_{k}^{\ell} \subseteq [n]$

(The sets and L change at each step and splittability is being crucially used)

÷

Suppose we are at the begining of the sth step and we have

$$h_{s-1} = \sum_{\ell=1}^{L} c_{\ell} \cdot \mathbf{1}_{S_{1}^{\ell}} \otimes \cdots \otimes \mathbf{1}_{S_{s-1}^{\ell}} \otimes \mathbf{1}_{\mathcal{T}^{\ell}},$$

where $S_{1}^{\ell}, \dots, S_{s-1}^{\ell} \subseteq [n], \ \mathcal{T}^{\ell} \subseteq [n]^{k-(s-1)}$

Suppose we are at the begining of the sth step and we have

$$h_{s-1} = \sum_{\ell=1}^{L} c_{\ell} \cdot \mathbf{1}_{\mathcal{S}_{1}^{\ell}} \otimes \cdots \otimes \mathbf{1}_{\mathcal{S}_{s-1}^{\ell}} \otimes \mathbf{1}_{\mathcal{T}^{\ell}},$$

where $S_1^{\ell}, \ldots, S_{s-1}^{\ell} \subseteq [n]$, $T^{\ell} \subseteq [n]^{k-(s-1)}$

1: function WeakRegularityDecomposition($g = h_{s-1}$)

2:
$$h \leftarrow 0$$

- 3: while $\exists f = \pm 1_{S'_1} \otimes \cdots \otimes 1_{S'_s} \otimes 1_{T'}, S'_i \subseteq [n], T' \subseteq [n]^{k-s} \colon \langle g h, f \rangle \ge \delta$ do
- 4: $h \leftarrow h + \delta \cdot f$
- 5: end while
- 6: return h
- 7: end function

1: function WeakRegularityDecomposition $(g = h_{s-1})$ 2: $h \leftarrow 0$ 3: while $\exists f = \pm 1_{S'_1} \otimes \cdots \otimes 1_{S'_s} \otimes 1_{T'}, S'_i \subseteq [n], T' \subseteq [n]^{k-s}$: $\langle g - h, f \rangle \ge \delta$ do 4: $h \leftarrow h + \delta \cdot f$ 5: end while 6: return h 7: end function

Can we make the red step efficient?

1: function WeakRegularityDecomposition $(g = h_{s-1})$ 2: $h \leftarrow 0$ 3: while $\exists f = \pm 1_{S'_1} \otimes \cdots \otimes 1_{S'_s} \otimes 1_{T'}, S'_i \subseteq [n], T' \subseteq [n]^{k-s}$: $\langle g - h, f \rangle \ge \delta$ do 4: $h \leftarrow h + \delta \cdot f$ 5: end while 6: return h 7: end function

Can we make the red step efficient? Difficulty: How can we find sets $S'_1, \ldots, S'_s \subseteq [n]$, $T' \subseteq [n]^{k-s}$?

1: function WeakRegularityDecomposition $(g = h_{s-1})$ 2: $h \leftarrow 0$ 3: while $\exists f = \pm \mathbf{1}_{S'_1} \otimes \cdots \otimes \mathbf{1}_{S'_s} \otimes \mathbf{1}_{T'}, S'_i \subseteq [n], T' \subseteq [n]^{k-s}$: $\langle g - h, f \rangle \ge \delta$ do 4: $h \leftarrow h + \delta \cdot f$ 5: end while 6: return h 7: end function

Can we make the red step efficient? Suppose Merlin tells us (all but the last two sets)

$$S'_1,\ldots,S'_{s-1}\subseteq [n]$$

We still need to find $S'_s \subseteq [n]$ and $T' \subseteq [n]^{k-s}$

$$\max_{S'_s,T'} |\langle \sum_{\ell=1}^{L} c_{\ell} \cdot 1_{S_1^{\ell}} \otimes \cdots \otimes 1_{S_{s-1}^{\ell}} \otimes 1_{T^{\ell}}, 1_{S_1'} \otimes \cdots \otimes 1_{S'_s} \otimes 1_{T'} \rangle|$$

We still need to find $S'_s \subseteq [n]$ and $T' \subseteq [n]^{k-s}$

$$\max_{\substack{S'_{s}, T'\\ S'_{s}, T'}} |\langle \sum_{\ell=1}^{L} c_{\ell} \cdot \mathbf{1}_{S_{1}^{\ell}} \otimes \cdots \otimes \mathbf{1}_{S_{s-1}^{\ell}} \otimes \mathbf{1}_{T^{\ell}}, \mathbf{1}_{S_{1}^{\prime}} \otimes \cdots \otimes \mathbf{1}_{S'_{s}} \otimes \mathbf{1}_{T^{\prime}} \rangle| = \\ \max_{\substack{S'_{s}, T'\\ S'_{s}, T'}} |\sum_{\ell=1}^{L} c_{\ell} \prod_{i=1}^{s-1} \langle \mathbf{1}_{S_{i}^{\ell}}, \mathbf{1}_{S'_{i}} \rangle \langle \mathbf{1}_{T}^{\ell}, \mathbf{1}_{S'_{s}} \otimes \mathbf{1}_{T^{\prime}} \rangle|| \\ \xrightarrow{\gamma_{\ell}}$$

We still need to find $S'_s \subseteq [n]$ and $T' \subseteq [n]^{k-s}$

$$\begin{split} \max_{\substack{S'_s, T'\\ S'_s, T'}} & |\langle \sum_{\ell=1}^{L} c_\ell \cdot \mathbf{1}_{S_1^{\ell}} \otimes \cdots \otimes \mathbf{1}_{S_{s-1}^{\ell}} \otimes \mathbf{1}_{T^{\ell}}, \mathbf{1}_{S_1'} \otimes \cdots \otimes \mathbf{1}_{S'_s} \otimes \mathbf{1}_{T'} \rangle| = \\ \max_{\substack{S'_s, T'\\ S'_s, T'}} & |\sum_{\ell=1}^{L} c_\ell \prod_{i=1}^{s-1} \langle \mathbf{1}_{S_i^{\ell}}, \mathbf{1}_{S_i'} \rangle \langle \mathbf{1}_T^{\ell}, \mathbf{1}_{S'_s} \otimes \mathbf{1}_{T'} \rangle| = \\ \\ \max_{\substack{S'_s, T'\\ S'_s, T'}} & |\langle \sum_{\ell=1}^{L} \gamma_\ell \cdot \mathbf{1}_T^{\ell}, \mathbf{1}_{S'_s} \otimes \mathbf{1}_{T'} \rangle| \end{split}$$

$$\max_{S'_s,T'} |\langle M, 1_{S'_s} \otimes 1_{T'} \rangle|$$

Good News 1

The problem above is the well-known CUT norm optimization which has an SDP-based approximation algorithm by Alon–Naor'04

$$\max_{S'_s, T'} |\langle M, 1_{S'_s} \otimes 1_{T'} \rangle|$$

Good News 1

The problem above is the well-known CUT norm optimization which has an SDP-based approximation algorithm by Alon–Naor'04

Good News 2

M is an $n \times n^{k-s}$ matrix, but it is very sparse in our case ($O_{\epsilon}(n)$ non-zero entries). We can use near-linear time SDP solvers such as Arora–Kale'06

Question

Do we really need Merlin to tell us S'_1, \ldots, S'_{s-1} ?

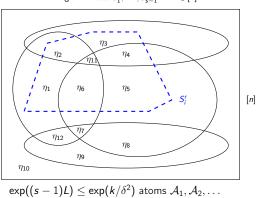
Question

Do we really need Merlin to tell us S'_1, \ldots, S'_{s-1} ?

Good News 3

No! Arthur is enough!

We have a low-complexity set system, so we can (approximately) generate S'_1, \ldots, S'_{s-1} ourselves!



Venn diagram of sets $S_1^\ell, \ldots, S_{s-1}^\ell$ for $\ell \in [L]$

That's all.

Thank you!

Questions?