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Motivation and Background

Context

Context

Binary codes are not that well understood compared to larger
alphabet codes. We lack:

algorithmic tools,
explicit constructions, and
impossibility results.
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Context

Larger Alphabets

Binary Alphabet

Reed–Solomon Codes

Algebraic Geometry Codes

Folded Reed-Solomon Codes

Powerful Algebraic Decoding Techniques

List Decoding Capacity

Ta-Shma Codes

Expander Codes

Adversarial Error Regime (Hamming model)
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Motivation and Background

Context

Larger Alphabets

Binary Alphabet

Adversarial Error Regime (Hamming)

Reed–Solomon Codes

Algebraic Geometry Codes

Folded Reed-Solomon Codes

Powerful Algebraic Decoding Techniques

List Decoding Capacity

Code Concatenation

Popular approach: obtain results by concatenating with binary codes
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Motivation and Background

Context

This work

We make partial progress on the algorithmic tool front by
providing a list decoding framework to handle direct sum codes on
some (sparse) “expanding structures”.
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Motivation and Background

Notation

Notation

Let Σ be a finite alphabet.

A code is a subset C ⊆ Σn (where n the block length).

The (normalized) Hamming distance between z , z ′ ∈ Σn is
∆(z , z ′) := |{i | zi 6= z ′i }|/n.

The distance ∆(C) of C is minz,z′∈C : z 6=z′ ∆(z , z ′).

The rate r(C) of C is log|Σ|(C)/n.
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Notation

Σn

∆(C)

codewords of C
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Motivation and Background

Notation

Σn

codewords of C

Lower rate r(C)

List Decoding of Direct Sum



List Decoding of Direct Sum

Motivation and Background

Notation

Σn

codewords of C

Higher rate r(C)

List Decoding of Direct Sum



List Decoding of Direct Sum

Motivation and Background

Background

We digress a bit to provide some background.

Expander and Codes

Expander graphs and codes have had a synergetic relationship.
There are two major approaches:

Distance amplification: use pseudorandom properties to
boost distance ([ABNNR92], [AEL95], [GI03], [DHKNT19],
etc).
Parity Check Matrix: adjacency of a bipartite expander is
used to define a parity check matrix ([Sipser–Spielman94],
[Zémor01], LDPCs, etc).
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Motivation and Background

Background

We digress a bit to provide some background.

Expander and Codes

Expander graphs and codes have had a synergetic relationship.
There are two major approaches:

Distance amplification: use pseudorandom properties to
boost distance ([ABNNR92], [AEL95], [GI03], [DHKNT19],
etc). (this talk!)
Parity Check Matrix: adjacency of a bipartite expander is
used to define a parity check matrix ([Sipser–Spielman94],
[Zémor01], LDPCs, etc).
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Distance Amplification

Expansion and Distance Amplification

Direct Product
Let z ∈ Fn

2 and X (k) ⊆ [n]k . The direct product of z is y ∈ (Fk
2)X (k)

defined as
y(i1,...,ik ) = (zi1 , . . . , zik ),

for every (i1, . . . , ik) ∈ X (k).
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Distance Amplification

Expansion and Distance Amplification

Direct Product
Let z ∈ Fn

2 and X (k) ⊆ [n]k . The direct product of z is y ∈ (Fk
2)X (k)

defined as
y(i1,...,ik ) = (zi1 , . . . , zik ),

for every (i1, . . . , ik) ∈ X (k).

Shortcoming

Resulting alphabet is no longer binary.
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Distance Amplification

Expansion and Distance Amplification

z

...
...

...
...

(z2, z4, z5, zn)

(z1, z2, z5, zi )

(z1, z2, z4, zj)

(z3, zk , zn−1, zn)

(z4, z`, zs , zn−1)

Direct Product

[n] X (k)
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Distance Amplification

Expansion and Distance Amplification

...
...

...
...

Most vertices on the right have
≈ δ fraction of marked neighbors

Sampler [ABNNR92]

δ fraction of marked
vertices on the left

[n] X (k)
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Distance Amplification

Expansion and Distance Amplification

z z ′

...
...

...
...

z1 6= z ′1

z4 6= z ′4

zn 6= z ′n

(z2, z4, z5, zn) 6= (z ′2, z
′
4, z
′
5, z
′
n)

[n] X (k)
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Distance Amplification

Expansion and Distance Amplification

Theorem (Dinur, Harsha, Kaufman, Navon and Ta-Shma’19)

For every β > 0, there is a family of explicit (non-binary) direct
product codes list decodable from radius 1− β with rate
exp(− exp(poly(1/β))) in polynomial time. (The construction relies
on “double samplers”).
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Distance Amplification

Expansion and Distance Amplification

Direct Sum

Let z ∈ Fn
2 and X (k) ⊆ [n]k . The direct sum of z is y ∈ FX (k)

2
defined as

y(i1,...,ik ) = zi1 ⊕ · · · ⊕ zik ,

for every (i1, . . . , ik) ∈ X (k). We denote y = dsumX (k)(z).
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Direct Sum

Let z ∈ Fn
2 and X (k) ⊆ [n]k . The direct sum of z is y ∈ FX(k)

2
defined as

y(i1,...,ik ) = zi1 ⊕ · · · ⊕ zik ,

for every (i1, . . . , ik) ∈ X (k). We denote y = dsumX (k)(z).

Advantage

The resulting alphabet is binary.
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Distance Amplification

Expansion and Distance Amplification

Direct Sum

Let z ∈ Fn
2 and X (k) ⊆ [n]k . The direct sum of z is y ∈ FX(k)

2
defined as

y(i1,...,ik ) = zi1 ⊕ · · · ⊕ zik ,

for every (i1, . . . , ik) ∈ X (k). We denote y = dsumX (k)(z).

Advantage

The resulting alphabet is binary.

Further Motivation
Ta-Shma [Ta-Shma’17] found explicit binary codes “near” the
Gilbert–Varshamov bound using direct sum.
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Distance Amplification

Expansion and Distance Amplification

z

...
...

...
...

z2 ⊕ z4 ⊕ z5 ⊕ zn

z1 ⊕ z2 ⊕ z5 ⊕ zi

z1 ⊕ z2 ⊕ z4 ⊕ zj

z3 ⊕ zk ⊕ zn−1 ⊕ zn

z4 ⊕ z` ⊕ zs ⊕ zn−1

Direct Sum

[n] X (k)
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Distance Amplification

Expansion and Distance Amplification

Further Notation

Let z ∈ Fn
2. Define bias(z) :=|IEi∈[n](−1)zi |.

Let C ⊆ Fn
2. Define bias(C) := maxz∈C\{0} bias(z).

Definition

Let X ⊆ [n]k . We say that dsumX is (β0, β)-parity sampler iff

(∀z ∈ Fn
2) (bias(z) ≤ β0 =⇒ bias(dsumX (z)) ≤ β) .
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Distance Amplification

Expansion and Distance Amplification

A Dream Parity Sampler

Let z ∈ Fn
2 with bias(z) ≤ β0 < 1. Let X (k) = [n]k (i.e., all

k-tuples of [n]). Then

bias
(
dsumX (k)(z)

)
≤ |IEi∈[n](−1)zi |k ≤ βk0 .
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Distance Amplification

Expansion and Distance Amplification

A Dream Parity Sampler

Let z ∈ Fn
2 with bias(z) ≤ β0 < 1. Let X (k) = [n]k (i.e., all

k-tuples of [n]). Then

bias
(
dsumX (k)(z)

)
≤ |IEi∈[n](−1)zi |k ≤ βk0 .

Issue

X (k) is "too dense” . The code dsumX (k)(C) has vanishing rate.
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Distance Amplification

Expansion and Distance Amplification

Explicit Sparse Expanding Structures

Two explicit sparse “expanding” structures for parity sampling:
(sparse) High-dimensional expanders [this work], and
X (k) ⊆ [n]k from length-(k − 1) walks on expander graph
G = ([n],E ) [Ta-Shma’17].

List Decoding of Direct Sum



List Decoding of Direct Sum

Distance Amplification

Expansion and Distance Amplification

High-dimensional expander (informal) definition

A γ-spectral high-dimensional expander X is a hypergraph s.t.
Downward-close: if s ∈ X and t ⊆ s, then t ∈ X .
“Multiscale expansion” : all sub-expander graphs are γ-two
sided spectral expanders.
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Distance Amplification

Expansion and Distance Amplification

Intuition

Expander graph: “sparse approximation” of a complete graph
High-dimensional expander: “sparse approximation” of

( [n]
≤d
)
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Distance Amplification

Expansion and Distance Amplification

{1} {2} {3} {4} {5} {n}

{1, 2}

X (1)

X (d)

...

X (2)

· · ·

X (k)

...

{2, 5} {4, n}· · ·

· · ·

· · ·

...
...

...
...

...

High-dimensional exapnder adjacency by containment.
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Distance Amplification

Expansion and Distance Amplification

High-dimensional Expander as Parity Sampler

High-dimensional expander ≈ complete hypergraph
( [n]
≤d
)
.

Complete hypergraph
( [n]
≤d
)
is a parity sampler.

Follows that high-dimensional expander is a parity sampler.
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Main Results

Main Results

Theorem (Direct Sum High-dimensional Exapnders)

For every β > 0, there is a family of explicit binary direct sum
codes based on high-dimensional expanders list decodable from
radius 1/2− β with rate exp(−poly(1/β)) in time npoly(1/β), where
n is the block length.
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Main Results

Main Results

Theorem (Direct Sum High-dimensional Exapnders)

For every β > 0, there is a family of explicit binary direct sum
codes based on high-dimensional expanders list decodable from
radius 1/2− β with rate exp(−poly(1/β)) in time npoly(1/β), where
n is the block length.

Corollary (Direct Product High-dimensional Exapnders)

For every β > 0, there is a family of explicit (non-binary) direct
product codes based on high-dimensional expanders list decodable
from radius 1− β with rate exp(−poly(1/β)) in time npoly(1/β),
where n is the block length.
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Main Results

Main Results

Theorem (Direct Sum Expander Walks)

For every β > 0, there is a family of explicit binary direct sum
codes based on walks on expanders list decodable from radius
1/2− β with (quasipolynomial) rate exp(−polylog(1/β)) in time
npoly(1/β), where n is the block length.
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Technique

Bird’s-eye view of Techniques

Very High-level Strategy

Start with a unique decoding algorithm for direct sum codes.
Enhance this algorithm with list decoding capabilities.
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Technique

Bird’s-eye view of Techniques

Very High-level Strategy

Start with a unique decoding algorithm for direct sum codes.
Enhance this algorithm with list decoding capabilities.

First Step: Dealing with k-XOR

We first describe this unique decoding algorithm and how it is
naturally related to k-XOR.
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Unique Decoding Techniques

Bird’s-eye view of Techniques: Unique Decoding

Setup

C ⊆ Fn
2 a β0-biased code,

X ⊆ [n]k for direct sum, and
C′ = dsumX (C) a β-biased code.
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Unique Decoding Techniques

Bird’s-eye view of Techniques: Unique Decoding

Suppose y∗ ∈ C′ is corrupted into some ỹ ∈ FX
2 in the unique

decoding ball centered at y∗.

Unique Decoding Scenario: k-XOR

Unique decoding ỹ amounts to solving

arg max
z∈C

IE(i1,...,ik )∈X1[zi1 ⊕ · · · ⊕ zik = ỹ (i1,...,ik )],

which is a MAX k-XOR instance I with the additional constraint
that the solution z must lie in C.
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Unique Decoding Techniques

Bird’s-eye view of Techniques: Unique Decoding

z

...
...

...
...

z2 ⊕ z4 ⊕ z5 ⊕ zn = ỹ (2,4,5,n)

z1 ⊕ z2 ⊕ z5 ⊕ zi = ỹ (1,2,5,i)

z1 ⊕ z2 ⊕ z4 ⊕ zj = ỹ (1,2,4,j)

z3 ⊕ zk ⊕ zn−1 ⊕ zn = ỹ (3,k,n−1,n)

z4 ⊕ z` ⊕ zs ⊕ zn−1 = ỹ (4,`,s,n−1)

k-XOR

[n]
ỹ

X
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Unique Decoding Techniques

Bird’s-eye view of Techniques: Unique Decoding

Let z∗ ∈ C be s.t. y∗ = dsumX (z∗).

Optimal Value

Since ỹ is in the unique decoding ball centered at y∗, we have

IE(i1,...,ik )∈X1[z∗i1 ⊕ · · · ⊕ z∗ik 6= ỹ (i1,...,ik )] = ∆(y∗, ỹ) < ∆(C′)/2

Thus,

OPT(I) ≥ IE(i1,...,ik )∈X1[z∗i1 ⊕· · ·⊕ z∗ik = ỹ (i1,...,ik )] > 1−∆(C′)/2
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Unique Decoding Techniques

Bird’s-eye view of Techniques: Unique Decoding

Optimal Solution

Suppose that we can find z̃ ∈ Fn
2 (rather than in C) satisfying

IE(i1,...,ik )∈X1[z̃ i1 ⊕ · · · ⊕ z̃ ik = ỹ (i1,...,ik )] = OPT(I) > 1−∆(C′)/2

Thus, ∆(dsumX (z̃), ỹ) < ∆(C′)/2
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Unique Decoding Techniques

Bird’s-eye view of Techniques: Unique Decoding

By triangle inequality,

∆(dsumX (z̃), dsumX (z∗)) ≤ ∆(dsumX (z̃), ỹ) +

∆(ỹ , dsumX (z∗)) < ∆(C′) ≤ 1/2− β/2,

implying

bias(dsumX (z̃)⊕ dsumX (z∗)) = bias(dsumX (z̃ ⊕ z∗)) > β

“Nontrivial bias”

List Decoding of Direct Sum



List Decoding of Direct Sum

Unique Decoding Techniques

Bird’s-eye view of Techniques: Unique Decoding

Claim

If dsumX is a “strong enough” parity sampler, then either z̃ or z̃ ⊕ 1
lie in the unique decoding ball of C centered at z∗.
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Unique Decoding Techniques

Bird’s-eye view of Techniques: Unique Decoding

Claim

If dsumX is a (1/2 + β0/2, β)-parity sampler, then either z̃ or z̃ ⊕ 1
lie in the unique decoding ball of C centered at z∗.

Proof
Towards a contradiction, suppose

∆(C)/2 ≤ ∆(z̃ , z∗) ≤ 1−∆(C)/2,

implying that bias(z̃ ⊕ z∗) ≤ 1−∆(C) ≤ 1/2 + β0/2. “not too large”
Using the (1/2 + β0/2, β)-parity sampler assumption,

bias(dsumX (z̃ ⊕ z∗)) ≤ β, “small”

contradicting bias(dsumX (z̃ ⊕ z∗)) > β “Nontrivial bias” from before.
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Unique Decoding Techniques

Bird’s-eye view of Techniques: Unique Decoding

Moral

Find solution z̃ ∈ Fn
2 (rather than in C) is enough.

Unique decoder of C: correct z̃ into z∗.
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Unique Decoding Techniques

Bird’s-eye view of Techniques: Unique Decoding

Need to resolve the following assumption.

Optimal Solution

Suppose that we can find z̃ ∈ Fn
2 (rather than z̃ ∈ C) satisfying

IE(i1,...,ik )∈X1[z̃ i1 ⊕ · · · ⊕ z̃ ik = ỹ (i1,...,ik )] = OPT(I)
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Unique Decoding Techniques

Bird’s-eye view of Techniques: Unique Decoding

Need to resolve the following assumption.

Optimal Solution

Suppose that we can find z̃ ∈ Fn
2 (rather than z̃ ∈ C) satisfying

IE(i1,...,ik )∈X1[z̃ i1 ⊕ · · · ⊕ z̃ ik = ỹ (i1,...,ik )] = OPT(I)

Possible issue?

MAX k-XOR is NP-hard, right?
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Unique Decoding Techniques

Bird’s-eye view of Techniques: Unique Decoding

Possible issue?

MAX k-XOR is NP-hard, right?

Not an issue
Right, it can be NP-hard in general. However, for expanding instances
we can find an approximate solution (and that is enough).
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Unique Decoding Techniques

Bird’s-eye view of Techniques: Unique Decoding

Not an issue
Right, it can be NP-hard in general. However, for expanding instances
we can find an approximate solution (and that is enough).

Using a better spectral analysis of Dinur–Dikstein’19.

Theorem (Alev–J–Tulsiani’19)

Let X be a γ-spectral high-dimensional expander on n vertices. Let
I be a k-CSP on X (k) with alphabet size q.
If γ ≤ poly(ε/qk), then we can find a solution z ∈ [q]n satisfying

OPT(I)− ε,

fraction of the constraints of I in time npoly(qk/ε).
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Unique Decoding Techniques

Bird’s-eye view of Techniques: Unique Decoding

Theorem (this work)

Alev–J–Tulsiani’19 also holds when X (k) is the collection of
length-(k − 1) walks on a γ-two-sided spectral expander graph G .
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List Decoding Techniques

Bird’s-eye view of Techniques: List Decoding

List Decoding

How about our main goal of list decoding?
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List Decoding Techniques

Bird’s-eye view of Techniques: List Decoding

ỹ

List decoding radius

1/2− β

y ∗ ∈ C ′
y (2) ∈ C ′

y (3) ∈ C ′

. . .y (m) ∈ C ′

Unique decoding radius
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List Decoding Techniques

Bird’s-eye view of Techniques: List Decoding

List Decoding Task

Given ỹ promised to satisfy ∆(ỹ , C′) ≤ 1/2− β, we want to find

L(ỹ) :=

{
y ∈ C′ | ∆(y , ỹ) ≤ 1

2
− β

}
.
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List Decoding Techniques

Bird’s-eye view of Techniques: List Decoding

CSP Algorithms

We will need to understand a bit more the preceding CSP
algorithms for expanding structures which are based on the
Sum-of-Squares (SOS) semidefinite programming hierarchy.
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List Decoding Techniques

Bird’s-eye view of Techniques: List Decoding

ỹ

List decoding radius

1/2− β

y ∗ ∈ C ′
y (2) ∈ C ′

y (3) ∈ C ′

. . .y (m) ∈ C ′

Unique decoding radius

Convex program solution

Issue: "Low Entropy" convex program solution
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List Decoding Techniques

Bird’s-eye view of Techniques: List Decoding

ỹ

List decoding radius

1/2− β

y ∗ ∈ C ′
y (2) ∈ C ′

y (3) ∈ C ′

. . .y (m) ∈ C ′

Unique decoding radius

Convex program solution

Want: "High Entropy" convex program solution
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List Decoding Techniques

Bird’s-eye view of Techniques: List Decoding

Sum-of-Square Solution: PSD ensemble

A t-local PSD ensemble ensemble is a collection Z1, . . . ,Zn of
“local random variables” taking value in {±1} and satisfying:

for S ⊆ [n] with |S | ≤ t, the variable ZS has a distribution µS .
for S ,T ⊆ [n] with |S |, |T | ≤ t, µS |T = µT |S .
a global PSD property (we won’t have time to describe).
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List Decoding Techniques

Bird’s-eye view of Techniques: List Decoding

S

µS

S TS ∩ T

µS µT

µS|T = µT |S
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List Decoding Techniques

Bird’s-eye view of Techniques: List Decoding

Pseudo-expectation

ĨE will denote the “expectation” w.r.t. the local random variables.
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List Decoding Techniques

Bird’s-eye view of Techniques: List Decoding

maximize IE(i1,...,ik )∈X ĨE
[
1[Zi1 · · ·Zik = ỹ (i1,...,ik )]

]
(Objective)

subject to
Z1, . . . ,Zn being t-local PSD ensemble

Table: k-XOR unique decoding SOS formulation for ỹ .
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List Decoding Techniques

Bird’s-eye view of Techniques: List Decoding

Recall the SOS program. Do you see the issue for list decoding?

maximize IE(i1,...,ik )∈X ĨE
[
1[Zi1 · · ·Zik = ỹ (i1,...,ik )]

]
(Objective)

subject to
Z1, . . . ,Zn being t-local PSD ensemble

Table: k-XOR unique decoding SOS formulation for ỹ .
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List Decoding Techniques

Bird’s-eye view of Techniques: List Decoding

Recall the SOS program. Do you see the issue for list decoding?

maximize IE(i1,...,ik )∈X ĨE
[
1[Zi1 · · ·Zik = ỹ (i1,...,ik )]

]
(Objective)

subject to
Z1, . . . ,Zn being t-local PSD ensemble

Table: k-XOR unique decoding SOS formulation for ỹ .

Issue

The objective function “forces” the solution to agree with ỹ as
much as possible.
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List Decoding Techniques

Bird’s-eye view of Techniques: List Decoding

Direct Sum of the PSD ensemble

Let X ⊆ [n]k . For s = (i1, . . . , ik) ∈ X , define the local random
variable (we are working with {±1} variables now)

Ys := Zi1 · · ·Zik .

{Ys}s∈X is also a PSD ensemble.
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List Decoding Techniques

Bird’s-eye view of Techniques: List Decoding

List Decoding Attempt

Drop the objective function and add a constraint?

IEs∈X (k)ĨE [ỹs · Ys] ≥ 2β (Agreement Constraint)
Ys := Zi1 · · ·Zik (∀s = (i1, . . . , ik) ∈ X (k))

Z1, . . . ,Zn being t-local PSD ensemble
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List Decoding Techniques

Bird’s-eye view of Techniques: List Decoding

List Decoding Attempt

Drop the objective function and add a constraint?

IEs∈X (k)ĨE [ỹs · Ys] ≥ 2β (Agreement Constraint)
Ys := Zi1 · · ·Zik (∀s = (i1, . . . , ik) ∈ X (k))

Z1, . . . ,Zn being t-local PSD ensemble

Issue

SOS solution may not be “diverse” enough. In particular, a delta
distribution with any single element in L(ỹ) is a feasible solution.
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List Decoding Techniques

Bird’s-eye view of Techniques: List Decoding

Issue

SOS solution may not be “diverse” enough. In particular, a delta
distribution with any single element in L(ỹ) is a feasible solution.

The goal

Make the SOS solution richer (“high entropy”) somehow.
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Bird’s-eye view of Techniques: List Decoding

Solution: use a proxy for negative entropy to enforce diversity in
the SOS solution.

Definition (Entropic Proxy)

Let Y = {Ys}s∈X (k) be a t-local PSD ensemble. Define
Ψ = Ψ

(
{Ys}s∈X (k)

)
as

Ψ := IEs,t∈X (k)

(
ĨE [YsYt]

)2
.
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Solution: use a proxy for negative entropy to enforce diversity in
the SOS solution.

Definition (Entropic Proxy)

Let Y = {Ys}s∈X (k) be a t-local PSD ensemble. Define
Ψ = Ψ

(
{Ys}s∈X (k)

)
as

Ψ := IEs,t∈X (k)

(
ĨE [YsYt]

)2
.

A similar idea was independently used by Raghavendra–Yau’19 and
Karmalkar–Klivans–Kothari’19 both in the context of learning
regression.
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minimize Ψ
(
{Ys}s∈X (k)

)
(Negative Entropy Proxy)

subject to

IEs∈X (k)ĨE [ỹs · Ys] ≥ 2β (Agreement Constraint)
Ys := Zi1 · · ·Zik (∀s = (i1, . . . , ik) ∈ X (k))

Z1, . . . ,Zn being t-local PSD ensemble

Table: List decoding SOS formulation for ỹ .
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Why does Ψ enforce diversity in the SOS solution?

y (i)

Ψ = IEs,t∈X (k)

(
ĨE [YsYt]

)2
= 1 (as large as possible)

If SOS solution contains a single codeword

y (i) ∈ L(ỹ)
1 −1 1 · · ·
s t

List Decoding of Direct Sum



List Decoding of Direct Sum

List Decoding Techniques

Bird’s-eye view of Techniques: List Decoding

Why does Ψ enforce diversity in the SOS solution?

y (i)

Ψ = IEs,t∈X (k)

(
ĨE [YsYt]

)2
< 1

If SOS solution is uniform on two codewords

y (i), y (j) ∈ L(ỹ)

y (j)1

−1

1

1

−1

· · ·1

s t

· · ·
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Bird’s-eye view of Techniques: List Decoding

Propagation Rounding Algorithm

Choose ` ∈ [t/k].
Sample S ∼

(X
`

)
.

Sample an assignment η ∼ YS .
Sample zi ∼ {Zi |YS = η} independently for i ∈ [n].
Return assignment (z1, . . . , zn).
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Bird’s-eye view of Techniques: List Decoding

Figure: SOS solution is like a book. Each choice of S and η lead to a
“page” (or set of pages), i.e., solution(s).
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...

y (1)

y (m)

y (2)

y (3)

· · ·

L(ỹ) = {

}

Slices/"pages" of the SOS solution

Covering Property
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Questions

How far can we push this technique?
Can we get rate Ω(βO(1))?
Can we decode Ta-Shma’s construction?
Can we do better than the (algebraic) state-of-the-art rate
Ω(β3)?
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That’s all.

Thank you!
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