List Decoding of Direct Sum Codes

Fernando Granha Jeronimo ¹ joint work with Vedat Levi Alev, Dylan Quintana, Shashank Srivastava and Madhur Tulsiani

SODA 2020

¹Supported by NSF travel award.

1 Motivation and Background

2 Distance Amplification

2 Distance Amplification

3 Main Results

2 Distance Amplification

3 Main Results

4 Unique Decoding Techniques

2 Distance Amplification

3 Main Results

4 Unique Decoding Techniques

5 List Decoding Techniques

2 Distance Amplification

- 3 Main Results
- **4** Unique Decoding Techniques
- **5** List Decoding Techniques

Context

Context

Binary codes are not that well understood compared to larger alphabet codes. We lack:

- algorithmic tools,
- explicit constructions, and
- impossibility results.

Context

Adversarial Error Regime (Hamming model)

Context

Context

This work

We make partial progress on the **algorithmic tool** front by providing a list decoding framework to handle *direct sum codes* on some (sparse) "expanding structures".

Notation

Notation

- Let Σ be a finite alphabet.
- A code is a subset $\mathcal{C} \subseteq \Sigma^n$ (where *n* the block length).
- The (normalized) Hamming distance between $z, z' \in \Sigma^n$ is $\Delta(z, z') := |\{i \mid z_i \neq z'_i\}|/n.$
- The distance $\Delta(\mathcal{C})$ of \mathcal{C} is $\min_{z,z' \in \mathcal{C}: z \neq z'} \Delta(z,z')$.
- The rate $r(\mathcal{C})$ of \mathcal{C} is $\log_{|\Sigma|}(\mathcal{C})/n$.

List Decoding of Direct Sum

Motivation and Background

Notation

 Σ^n

List Decoding of Direct Sum

Motivation and Background

Notation

Lower rate $r(\mathcal{C})$

List Decoding of Direct Sum

Motivation and Background

Notation

Higher rate r(C)

Background

We digress a bit to provide some background.

Expander and Codes

Expander graphs and codes have had a synergetic relationship. There are two major approaches:

- Distance amplification: use pseudorandom properties to boost distance ([ABNNR92], [AEL95], [GI03], [DHKNT19], etc).
- Parity Check Matrix: adjacency of a bipartite expander is used to define a parity check matrix ([Sipser-Spielman94], [Zémor01], LDPCs, etc).

Background

We digress a bit to provide some background.

Expander and Codes

Expander graphs and codes have had a synergetic relationship. There are two major approaches:

- Distance amplification: use pseudorandom properties to boost distance ([ABNNR92], [AEL95], [GI03], [DHKNT19], etc). (this talk!)
- Parity Check Matrix: adjacency of a bipartite expander is used to define a parity check matrix ([Sipser-Spielman94], [Zémor01], LDPCs, etc).

Expansion and Distance Amplification

Direct Product

Let $z \in \mathbb{F}_2^n$ and $X(k) \subseteq [n]^k$. The *direct product* of z is $y \in (\mathbb{F}_2^k)^{X(k)}$ defined as

$$y_{(i_1,\ldots,i_k)}=(z_{i_1},\ldots,z_{i_k}),$$

for every $(i_1, \ldots, i_k) \in X(k)$.

Expansion and Distance Amplification

Direct Product

Let $z \in \mathbb{F}_2^n$ and $X(k) \subseteq [n]^k$. The direct product of z is $y \in (\mathbb{F}_2^k)^{X(k)}$ defined as

$$y_{(i_1,\ldots,i_k)}=(z_{i_1},\ldots,z_{i_k}),$$

for every $(i_1, \ldots, i_k) \in X(k)$.

Shortcoming

Resulting alphabet is no longer binary.

Expansion and Distance Amplification

Direct Product

[*n*]

Expansion and Distance Amplification

Sampler [ABNNR92]

Expansion and Distance Amplification

Expansion and Distance Amplification

Theorem (Dinur, Harsha, Kaufman, Navon and Ta-Shma'19)

For every $\beta > 0$, there is a family of explicit (non-binary) **direct product** codes list decodable from radius $1 - \beta$ with rate $\exp(-\exp(\operatorname{poly}(1/\beta)))$ in polynomial time. (The construction relies on "double samplers").

Expansion and Distance Amplification

Direct Sum

Let $z \in \mathbb{F}_2^n$ and $X(k) \subseteq [n]^k$. The *direct sum* of z is $y \in \mathbb{F}_2^{X(k)}$ defined as

$$y_{(i_1,\ldots,i_k)}=z_{i_1}\oplus\cdots\oplus z_{i_k},$$

for every $(i_1, \ldots, i_k) \in X(k)$. We denote $y = \operatorname{dsum}_{X(k)}(z)$.

Expansion and Distance Amplification

Direct Sum

Let $z \in \mathbb{F}_2^n$ and $X(k) \subseteq [n]^k$. The *direct sum* of z is $y \in \mathbb{F}_2^{X(k)}$ defined as

$$y_{(i_1,\ldots,i_k)} = \mathsf{z}_{\mathbf{i}_1} \oplus \cdots \oplus \mathsf{z}_{\mathbf{i}_k},$$

for every $(i_1, \ldots, i_k) \in X(k)$. We denote $y = \operatorname{dsum}_{X(k)}(z)$.

Advantage

The resulting alphabet is binary.

Expansion and Distance Amplification

Direct Sum

Let $z \in \mathbb{F}_2^n$ and $X(k) \subseteq [n]^k$. The *direct sum* of z is $y \in \mathbb{F}_2^{X(k)}$ defined as

$$\mathbf{y}_{(i_1,\ldots,i_k)} = \mathbf{z}_{\mathbf{i}_1} \oplus \cdots \oplus \mathbf{z}_{\mathbf{i}_k},$$

for every
$$(i_1, \ldots, i_k) \in X(k)$$
. We denote $y = \operatorname{dsum}_{X(k)}(z)$.

Advantage

The resulting alphabet is binary.

Further Motivation

Ta-Shma [Ta-Shma'17] found explicit binary codes "near" the Gilbert–Varshamov bound using direct sum.

Expansion and Distance Amplification

Direct Sum

[*n*]

Expansion and Distance Amplification

Further Notation

Definition

Let $X \subseteq [n]^k$. We say that dsum_X is (β_0, β) -parity sampler iff $(\forall z \in \mathbb{F}_2^n) (\operatorname{bias}(z) \leq \beta_0 \implies \operatorname{bias}(\operatorname{dsum}_X(z)) \leq \beta)$.

Expansion and Distance Amplification

A Dream Parity Sampler

Let $z \in \mathbb{F}_2^n$ with $bias(z) \le \beta_0 < 1$. Let $X(k) = [n]^k$ (i.e., all *k*-tuples of [n]). Then

$$ext{bias}\left(ext{dsum}_{X(k)}(z)
ight) \leq | ext{E}_{i\in[n]}(-1)^{z_i}|^k \leq eta_0^k.$$

Expansion and Distance Amplification

A Dream Parity Sampler

Let $z \in \mathbb{F}_2^n$ with $bias(z) \le \beta_0 < 1$. Let $X(k) = [n]^k$ (i.e., all *k*-tuples of [n]). Then

bias
$$(\operatorname{dsum}_{X(k)}(z)) \leq |\mathbf{E}_{i \in [n]}(-1)^{z_i}|^k \leq \beta_0^k$$
.

Issue

X(k) is "too dense". The code dsum_{X(k)}(C) has vanishing rate.

Expansion and Distance Amplification

Explicit Sparse Expanding Structures

Two explicit sparse "expanding" structures for parity sampling:

- (sparse) High-dimensional expanders [this work], and
- $X(k) \subseteq [n]^k$ from length-(k-1) walks on expander graph G = ([n], E) [Ta-Shma'17].

Expansion and Distance Amplification

High-dimensional expander (informal) definition

- A γ -spectral high-dimensional expander X is a hypergraph s.t.
 - **Downward-close**: if $\mathfrak{s} \in X$ and $\mathfrak{t} \subseteq \mathfrak{s}$, then $\mathfrak{t} \in X$.
 - "Multiscale expansion": all sub-expander graphs are γ-two sided spectral expanders.

Expansion and Distance Amplification

Intuition

Expander graph: "sparse approximation" of a complete graph

• High-dimensional expander: "sparse approximation" of $\binom{[n]}{\leq d}$

Expansion and Distance Amplification

High-dimensional exapnder adjacency by containment.

Expansion and Distance Amplification

High-dimensional Expander as Parity Sampler

- High-dimensional expander ≈ complete hypergraph $\binom{[n]}{<d}$.
- Complete hypergraph $\binom{[n]}{\leq d}$ is a parity sampler.
- Follows that high-dimensional expander is a parity sampler.

Main Results

Theorem (Direct Sum High-dimensional Exapnders)

For every $\beta > 0$, there is a family of explicit **binary** direct sum codes based on high-dimensional expanders list decodable from radius $1/2 - \beta$ with rate $\exp(-\operatorname{poly}(1/\beta))$ in time $n^{\operatorname{poly}(1/\beta)}$, where n is the block length.

Main Results

Theorem (Direct Sum High-dimensional Exapnders)

For every $\beta > 0$, there is a family of explicit **binary** direct sum codes based on high-dimensional expanders list decodable from radius $1/2 - \beta$ with rate $\exp(-\operatorname{poly}(1/\beta))$ in time $n^{\operatorname{poly}(1/\beta)}$, where n is the block length.

Corollary (Direct Product High-dimensional Exapnders)

For every $\beta > 0$, there is a family of explicit (non-binary) direct product codes based on high-dimensional expanders list decodable from radius $1 - \beta$ with rate $\exp(-\operatorname{poly}(1/\beta))$ in time $n^{\operatorname{poly}(1/\beta)}$, where n is the block length.
Main Results

Theorem (Direct Sum Expander Walks)

For every $\beta > 0$, there is a family of explicit **binary** direct sum codes based on walks on expanders list decodable from radius $1/2 - \beta$ with (**quasipolynomial**) rate $\exp(-\operatorname{polylog}(1/\beta))$ in time $n^{\operatorname{poly}(1/\beta)}$, where n is the block length. Technique

Bird's-eye view of Techniques

Very High-level Strategy

- Start with a unique decoding algorithm for direct sum codes.
- Enhance this algorithm with list decoding capabilities.

Technique

Bird's-eye view of Techniques

Very High-level Strategy

- Start with a unique decoding algorithm for direct sum codes.
- Enhance this algorithm with list decoding capabilities.

First Step: Dealing with k-XOR

We first describe this unique decoding algorithm and how it is naturally related to k-XOR.

Bird's-eye view of Techniques: Unique Decoding

Setup

- $\mathcal{C} \subseteq \mathbb{F}_2^n$ a β_0 -biased code,
- $X \subseteq [n]^k$ for direct sum, and
- $\mathcal{C}' = \operatorname{dsum}_X(\mathcal{C})$ a β -biased code.

Bird's-eye view of Techniques: Unique Decoding

Suppose $y^* \in C'$ is corrupted into some $\tilde{y} \in \mathbb{F}_2^X$ in the unique decoding ball centered at y^* .

Unique Decoding Scenario: k-XOR

Unique decoding \tilde{y} amounts to solving

$$\underset{z\in\mathcal{C}}{\operatorname{arg\,max}} \operatorname{E}_{(i_1,\ldots,i_k)\in X} \mathbf{1}[z_{i_1}\oplus\cdots\oplus z_{i_k}=\tilde{y}_{(i_1,\ldots,i_k)}],$$

which is a MAX k-XOR instance \Im with the additional constraint that the solution z must lie in C.

Bird's-eye view of Techniques: Unique Decoding

[*n*]

Bird's-eye view of Techniques: Unique Decoding

Let
$$z^* \in \mathcal{C}$$
 be s.t. $y^* = \operatorname{dsum}_X(z^*)$.

Optimal Value

Since \tilde{y} is in the unique decoding ball centered at y^* , we have

$$\mathbf{E}_{(i_1,\ldots,i_k)\in X}\mathbf{1}[z^*_{i_1}\oplus\cdots\oplus z^*_{i_k}\neq \tilde{y}_{(i_1,\ldots,i_k)}]=\Delta(y^*,\tilde{y})<\Delta(\mathcal{C}')/2$$

Thus,

$$\mathsf{OPT}(\mathfrak{I}) \geq \mathrm{E}_{(i_1, \dots, i_k) \in X} \mathbf{1}[z^*_{i_1} \oplus \dots \oplus z^*_{i_k} = \frac{\tilde{y}_{(i_1, \dots, i_k)}] > 1 - \Delta(\mathcal{C}')/2$$

Bird's-eye view of Techniques: Unique Decoding

Optimal Solution

Suppose that we can find $\tilde{z} \in \mathbb{F}_2^n$ (rather than in \mathcal{C}) satisfying

$$\mathbf{E}_{(i_1,\ldots,i_k)\in X}\mathbf{1}[\tilde{z}_{i_1}\oplus\cdots\oplus\tilde{z}_{i_k}=\tilde{y}_{(i_1,\ldots,i_k)}]=\mathsf{OPT}(\mathfrak{I})>1-\Delta(\mathcal{C}')/2$$

Thus, $\Delta(\operatorname{dsum}_X(\tilde{z}), \tilde{y}) < \Delta(\mathcal{C}')/2$

Bird's-eye view of Techniques: Unique Decoding

By triangle inequality,

$$\begin{array}{ll} \Delta(\operatorname{\mathsf{dsum}}_X(\tilde{z}),\operatorname{\mathsf{dsum}}_X(z^*)) &\leq & \Delta(\operatorname{\mathsf{dsum}}_X(\tilde{z}),\tilde{y}) + \\ & & \Delta(\tilde{y},\operatorname{\mathsf{dsum}}_X(z^*)) < \Delta(\mathcal{C}') \leq 1/2 - \beta/2, \end{array}$$

implying

 $bias(dsum_X(\tilde{z}) \oplus dsum_X(z^*)) = bias(dsum_X(\tilde{z} \oplus z^*)) > \beta$ "Nontrivial bias"

Bird's-eye view of Techniques: Unique Decoding

Claim

If dsum_X is a "strong enough" parity sampler, then either \tilde{z} or $\tilde{z} \oplus 1$ lie in the unique decoding ball of C centered at z^* .

Bird's-eye view of Techniques: Unique Decoding

Claim

If dsum_X is a $(1/2 + \beta_0/2, \beta)$ -parity sampler, then either \tilde{z} or $\tilde{z} \oplus 1$ lie in the unique decoding ball of C centered at z^* .

Proof

Towards a contradiction, suppose

$$\Delta(\mathcal{C})/2 \leq \Delta(\tilde{z}, z^*) \leq 1 - \Delta(\mathcal{C})/2,$$

implying that $\text{bias}(\tilde{z} \oplus z^*) \leq 1 - \Delta(\mathcal{C}) \leq 1/2 + \beta_0/2$. "not too large" Using the $(1/2 + \beta_0/2, \beta)$ -parity sampler assumption,

 $\operatorname{bias}(\operatorname{dsum}_X(\tilde{z} \oplus z^*)) \leq \beta,$ "small"

contradicting bias(dsum_X($\tilde{z} \oplus z^*$)) > β "Nontrivial bias" from before.

Bird's-eye view of Techniques: Unique Decoding

Moral

- Find solution $\tilde{z} \in \mathbb{F}_2^n$ (rather than in C) is enough.
- Unique decoder of C: correct \tilde{z} into z^* .

Bird's-eye view of Techniques: Unique Decoding

Need to resolve the following assumption.

Optimal Solution

Suppose that we can find $\tilde{z} \in \mathbb{F}_2^n$ (rather than $\tilde{z} \in C$) satisfying

$$\mathbf{E}_{(i_1,\ldots,i_k)\in X}\mathbf{1}[\tilde{z}_{i_1}\oplus\cdots\oplus\tilde{z}_{i_k}=\tilde{y}_{(i_1,\ldots,i_k)}]=\mathsf{OPT}(\mathfrak{I})$$

Bird's-eye view of Techniques: Unique Decoding

Need to resolve the following assumption.

Optimal Solution

Suppose that we can find $\tilde{z} \in \mathbb{F}_2^n$ (rather than $\tilde{z} \in C$) satisfying

$$\mathbf{E}_{(i_1,\ldots,i_k)\in X}\mathbf{1}[\tilde{z}_{i_1}\oplus\cdots\oplus\tilde{z}_{i_k}=\tilde{y}_{(i_1,\ldots,i_k)}]=\mathsf{OPT}(\mathfrak{I})$$

Possible issue?

MAX k-XOR is NP-hard, right?

Bird's-eye view of Techniques: Unique Decoding

Possible issue?

MAX k-XOR is NP-hard, right?

Not an issue

Right, it can be NP-hard in general. However, for **expanding** instances we can find an **approximate** solution (and that is enough).

Bird's-eye view of Techniques: Unique Decoding

Not an issue

Right, it can be NP-hard in general. However, for **expanding** instances we can find an **approximate** solution (and that is enough).

Using a better spectral analysis of Dinur-Dikstein'19.

Theorem (Alev–J–Tulsiani'19)

Let X be a γ -spectral high-dimensional expander on n vertices. Let \Im be a k-CSP on X(k) with alphabet size q. If $\gamma < \text{poly}(\epsilon/q^k)$, then we can find a solution $z \in [q]^n$ satisfying

 $\mathsf{OPT}(\mathfrak{I}) - \epsilon,$

fraction of the constraints of \mathfrak{I} in time $n^{\text{poly}(q^k/\epsilon)}$.

Bird's-eye view of Techniques: Unique Decoding

Theorem (this work)

Alev–J–Tulsiani'19 also holds when X(k) is the collection of length-(k - 1) walks on a γ -two-sided spectral expander graph G.

Bird's-eye view of Techniques: List Decoding

List Decoding

How about our main goal of list decoding?

Bird's-eye view of Techniques: List Decoding

Bird's-eye view of Techniques: List Decoding

List Decoding Task

Given \tilde{y} promised to satisfy $\Delta(\tilde{y}, \mathcal{C}') \leq 1/2 - \beta$, we want to find

$$\mathcal{L}(ilde{oldsymbol{y}}) \coloneqq \left\{ y \in \mathcal{C}' \mid \Delta(y, ilde{oldsymbol{y}}) \leq rac{1}{2} - eta
ight\}.$$

Bird's-eye view of Techniques: List Decoding

CSP Algorithms

We will need to understand a bit more the preceding CSP algorithms for expanding structures which are based on the *Sum-of-Squares* (SOS) semidefinite programming hierarchy.

Bird's-eye view of Techniques: List Decoding

Issue: "Low Entropy" convex program solution

Bird's-eye view of Techniques: List Decoding

Want: "High Entropy" convex program solution

Bird's-eye view of Techniques: List Decoding

Sum-of-Square Solution: PSD ensemble

A *t*-local PSD ensemble ensemble is a collection Z_1, \ldots, Z_n of "local random variables" taking value in $\{\pm 1\}$ and satisfying:

- for $S \subseteq [n]$ with $|S| \leq t$, the variable Z_S has a distribution μ_S .
- for $S, T \subseteq [n]$ with $|S|, |T| \leq t, \mu_{S|T} = \mu_{T|S}$.
- a global PSD property (we won't have time to describe).

Bird's-eye view of Techniques: List Decoding

List Decoding of Direct Sum

Bird's-eye view of Techniques: List Decoding

Pseudo-expectation

 $\widetilde{\mathbf{E}}$ will denote the "expectation" w.r.t. the local random variables.

Bird's-eye view of Techniques: List Decoding

maximize
$$\mathbf{E}_{(i_1,\ldots,i_k)\in X} \widetilde{\mathbf{E}} \left[\mathbf{1} [\mathbf{Z}_{i_1}\cdots\mathbf{Z}_{i_k} = \widetilde{\mathbf{y}}_{(i_1,\ldots,i_k)}] \right]$$
 (Objective) subject to

 Z_1, \ldots, Z_n being *t*-local PSD ensemble

Table: k-XOR unique decoding SOS formulation for \tilde{y} .

Bird's-eye view of Techniques: List Decoding

Recall the SOS program. Do you see the issue for list decoding?

maximize
$$\mathbf{E}_{(i_1,...,i_k)\in X} \widetilde{\mathbf{E}} \left[\mathbf{1} [\mathbf{Z}_{i_1}\cdots\mathbf{Z}_{i_k} = \widetilde{y}_{(i_1,...,i_k)}] \right]$$
 (Objective)
subject to
 $\mathbf{Z}_1,\ldots,\mathbf{Z}_n$ being *t*-local PSD ensemble

Table: k-XOR unique decoding SOS formulation for \tilde{y} .

Bird's-eye view of Techniques: List Decoding

Recall the SOS program. Do you see the issue for list decoding?

maximize
$$E_{(i_1,...,i_k)\in X} \widetilde{E} \left[\mathbf{1} [\mathbf{Z}_{i_1}\cdots\mathbf{Z}_{i_k} = \widetilde{y}_{(i_1,...,i_k)}] \right]$$
 (Objective) subject to

 Z_1, \ldots, Z_n being *t*-local PSD ensemble

Table: k-XOR unique decoding SOS formulation for \tilde{y} .

lssue

The objective function "forces" the solution to agree with \tilde{y} as much as possible.

Bird's-eye view of Techniques: List Decoding

Direct Sum of the PSD ensemble

Let $X \subseteq [n]^k$. For $\mathfrak{s} = (i_1, \ldots, i_k) \in X$, define the local random variable (we are working with $\{\pm 1\}$ variables now)

$$\mathbf{Y}_{\mathfrak{s}} \coloneqq \mathbf{Z}_{i_1} \cdots \mathbf{Z}_{i_k}.$$

 $\{Y_{\mathfrak{s}}\}_{\mathfrak{s}\in X}$ is also a PSD ensemble.

Bird's-eye view of Techniques: List Decoding

List Decoding Attempt

Drop the objective function and add a constraint?

$$\begin{split} \mathbf{E}_{\mathfrak{s}\in X(k)} & \widetilde{\mathbf{E}}\left[\tilde{y}_{\mathfrak{s}} \cdot \mathbf{Y}_{\mathfrak{s}}\right] \geq 2\beta & (\text{Agreement Constraint}) \\ \mathbf{Y}_{\mathfrak{s}} &:= \mathbf{Z}_{i_1} \cdots \mathbf{Z}_{i_k} & (\forall \mathfrak{s} = (i_1, \dots, i_k) \in X(k)) \\ \mathbf{Z}_1, \dots, \mathbf{Z}_n \text{ being } t\text{-local PSD ensemble} \end{split}$$

Bird's-eye view of Techniques: List Decoding

List Decoding Attempt

Drop the objective function and add a constraint?

$$\begin{split} \mathbf{E}_{\mathfrak{s}\in\mathcal{X}(k)} & \widetilde{\mathbf{E}}\left[\tilde{y}_{\mathfrak{s}}\cdot\mathbf{Y}_{\mathfrak{s}}\right] \geq 2\beta \\ \mathbf{Y}_{\mathfrak{s}} &:= \mathbf{Z}_{i_{1}}\cdots\mathbf{Z}_{i_{k}} \\ \mathbf{Z}_{1},\ldots,\mathbf{Z}_{n} \text{ being } t\text{-local PSD ensemble} \end{split}$$

Issue

SOS solution may not be "diverse" enough. In particular, a delta distribution with any single element in $\mathcal{L}(\tilde{y})$ is a feasible solution.

(Agreement Constraint) $(\forall \mathfrak{s} = (i_1, \dots, i_k) \in X(k))$

Bird's-eye view of Techniques: List Decoding

Issue

SOS solution may not be "diverse" enough. In particular, a delta distribution with any single element in $\mathcal{L}(\tilde{y})$ is a feasible solution.

The goal

Make the SOS solution richer ("high entropy") somehow.

Bird's-eye view of Techniques: List Decoding

Solution: use a proxy for negative entropy to enforce diversity in the SOS solution.

Definition (Entropic Proxy)

Let $\mathbf{Y} = {\{\mathbf{Y}_{s}\}_{s \in X(k)}}$ be a *t*-local PSD ensemble. Define $\Psi = \Psi ({\{\mathbf{Y}_{s}\}_{s \in X(k)}})$ as

$$\Psi := \mathbf{E}_{\mathfrak{s},\mathfrak{t}\in X(k)} \left(\widetilde{\mathbf{E}} \left[\mathbf{Y}_{\mathfrak{s}} \mathbf{Y}_{\mathfrak{t}} \right] \right)^2.$$

Bird's-eye view of Techniques: List Decoding

Solution: use a proxy for negative entropy to enforce diversity in the SOS solution.

Definition (Entropic Proxy)

Let
$$\mathbf{Y} = {\{\mathbf{Y}_{s}\}_{s \in X(k)}}$$
 be a *t*-local PSD ensemble. Define $\Psi = \Psi \left({\{\mathbf{Y}_{s}\}_{s \in X(k)}} \right)$ as

$$\Psi \coloneqq \mathbf{E}_{\mathfrak{s},\mathfrak{t}\in X(k)}\left(\widetilde{\mathbf{E}}\left[\mathbf{Y}_{\mathfrak{s}}\mathbf{Y}_{\mathfrak{t}}\right]\right)^{2}.$$

A similar idea was independently used by Raghavendra–Yau'19 and Karmalkar–Klivans–Kothari'19 both in the context of learning regression.

Bird's-eye view of Techniques: List Decoding

$$\begin{array}{ll} \mbox{minimize} & \Psi\left(\{\mathbf{Y}_{\mathfrak{s}}\}_{\mathfrak{s}\in X(k)}\right) & (\mbox{Negative Entropy Proxy}) \\ \mbox{subject to} & \end{array}$$

$$\begin{split} \mathbf{E}_{\mathfrak{s}\in X(k)} & \widetilde{\mathbf{E}}\left[\tilde{\boldsymbol{y}}_{\mathfrak{s}} \cdot \mathbf{Y}_{\mathfrak{s}} \right] \geq 2\beta & (\text{Agreement Constraint}) \\ \mathbf{Y}_{\mathfrak{s}} &\coloneqq \mathbf{Z}_{i_1} \cdots \mathbf{Z}_{i_k} & (\forall \mathfrak{s} = (i_1, \dots, i_k) \in X(k)) \\ \mathbf{Z}_1, \dots, \mathbf{Z}_n \text{ being } t\text{-local PSD ensemble} \end{split}$$

Table: List decoding SOS formulation for \tilde{y} .
Bird's-eye view of Techniques: List Decoding

Why does Ψ enforce diversity in the SOS solution?

If SOS solution contains a single codeword

$$\Psi = \mathrm{E}_{\mathfrak{s},\mathfrak{t} \in X(k)} \left(\widetilde{\mathrm{E}} \left[\mathbf{Y}_\mathfrak{s} \mathbf{Y}_\mathfrak{t} \right] \right)^2 = 1 \text{ (as large as possible)}$$

Bird's-eye view of Techniques: List Decoding

Why does Ψ enforce diversity in the SOS solution?

If SOS solution is uniform on two codewords

 $y^{(i)}, y^{(j)} \in \mathcal{L}(\tilde{y})$

Bird's-eye view of Techniques: List Decoding

Propagation Rounding Algorithm

- Choose $\ell \in [t/k]$.
- Sample $S \sim \binom{X}{\ell}$.
- Sample an assignment $\eta \sim \mathbf{Y}_{S}$.
- Sample $z_i \sim \{ \mathbf{Z}_i | \mathbf{Y}_S = \eta \}$ independently for $i \in [n]$.
- Return assignment (z_1, \ldots, z_n) .

Bird's-eye view of Techniques: List Decoding

Figure: SOS solution is like a book. Each choice of S and η lead to a "page" (or set of pages), i.e., solution(s).

Bird's-eye view of Techniques: List Decoding

List Decoding of Direct Sum

Questions

How far can we push this technique?

- Can we get rate $\Omega(\beta^{O(1)})$?
- Can we decode Ta-Shma's construction?
- Can we do better than the (algebraic) state-of-the-art rate $\Omega(\beta^3)$?

That's all.

Thank you!

List Decoding of Direct Sum