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Goal of the Talk

Goal
Present two efficient decoding algorithms for Ta-Shma’s codes
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Goal of the Talk

Goal
Present two efficient decoding algorithms for Ta-Shma’s codes

While highlighting connections among:
Approximation and Optimization
Pseudorandomness and Expansion
Coding Theory
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Coding Theory Concepts

Code
A binary code is a subset C ⊆ Fn

2

Fn
2

codewords of C
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Coding Theory Concepts

Two fundamental parameters

Distance
The distance ∆(C) of C is ∆(C) := minz,z ′∈C : z 6=z ′ ∆(z , z ′)
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Coding Theory Concepts

Two fundamental parameters

Distance
The distance ∆(C) of C is ∆(C) := minz,z ′∈C : z 6=z ′ ∆(z , z ′)

Rate

The rate r(C) of C is log2(|C|)
n (the fraction of information symbols)
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Tension between Rate and Distance of a Code

Tension
Higher rate r(C), lower distance ∆(C)

Higher distance ∆(C), lower rate r(C)
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Tension between Rate and Distance of a Code

Fn
2

codewords of C

Lower rate r(C)

∆(C)

Fn
2

codewords of C

Higher rate r(C)

∆(C)
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Coding Theory Concepts

Question
What is the best trade-off between rate r(C) and distance ∆(C)?
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Coding Theory Concepts

Gilbert–Varshamov existential bound (Gilbert’52,Varshamov’57)

distance ∆(C)0 1/2

rate r(C)

GV

1
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Coding Theory Concepts

McEliece–Rodemich–Rumsey–Welch’77 impossibility bound

distance ∆(C)0 1/2

rate r(C)

GV

1
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Coding Theory Concepts

distance ∆(C)0 1/2

rate r(C)

GV

1

distance 1
2 − ε (this talk)
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Coding Theory Concepts

Why is the Gilbert–Varshamov bound interesting?
The Gilbert–Varshamov (GV) bound is “nearly” optimal

For distance 1/2− ε
rate Ω(ε2) is achievable (Gilbert–Varshamov bound)
rate better than O(ε2 log(1/ε)) is impossible (McEliece et al.)
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Coding Theory Concepts

For distance 1/2− ε
rate Ω(ε2) is achievable (Gilbert–Varshamov bound)
rate better than O(ε2 log(1/ε)) is impossible (McEliece et al.)

Ta-Shma’s Codes (60 years later!)
First explicit binary codes near the GV bound are due to Ta-Shma’17 with

distance 1/2− ε/2 (actually ε-balanced), and
rate Ω(ε2+o(1)).
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Coding Theory Concepts

Ta-Shma’s Codes (60 years later!)
First explicit binary codes near the GV bound are due to Ta-Shma’17 with

distance 1/2− ε/2 (actually ε-balanced), and
rate Ω(ε2+o(1)).

Open at the time
It was an open question whether Ta-Shma’s codes admit efficient decoding
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Coding Theory Concepts

Open at the time
It was an open question whether Ta-Shma’s codes admit efficient decoding

Theorem (this talk)
Ta-Shma’s codes are polynomial (even near-linear) time unique decodable
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Our Contribution

Theorem (Near-linear Time Decoding)

For every ε > 0, ∃ explicit binary linear Ta-Shma codes CN,ε ⊆ FN
2 with

1 distance at least 1/2− ε/2 (actually ε-balanced),
2 rate Ω(ε2+o(1)), and
3 a unique decoding algorithm with running time Õε(N).
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Our Contribution

Pseudorandomness approach

Theorem (Near-linear Time Decoding)

For every ε > 0, ∃ explicit binary linear Ta-Shma codes CN,ε ⊆ FN
2 with

1 distance at least 1/2− ε/2 (actually ε-balanced),
2 rate Ω(ε2+o(1)), and
3 a unique decoding algorithm with running time Õε(N).
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Our Contribution

Sum-of-Squares SDP hierarchy approach (SOS approach)

Theorem (J-Quintana-Srivastava-Tulsiani’20)

Ta-Shma’s codes are unique decodable in NOε(1) time
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Related Work (a Sample)

Theorem (Guruswami–Indyk’04)
Efficiently decodable non-explicit binary codes at the GV bound

Theorem (Hemenway–Ron-Zewi–Wootters’17)
Near-linear time decodable non-explicit binary codes at the GV bound
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Towards Ta-Shma’s Codes

Expander Graphs and Codes
Expanders can amplify the distance of a not so great base code C0
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Expansion and Distance Amplification

Fix a bipartite graph between [n] and W ⊆ [n]k . Let z ∈ Fn
2.

z
...

... ...
...

z2 ⊕ z4 ⊕ z5 ⊕ zn

z1 ⊕ z2 ⊕ z5 ⊕ zi

z1 ⊕ z2 ⊕ z4 ⊕ zj

z3 ⊕ zk ⊕ zn−1 ⊕ zn

z4 ⊕ z` ⊕ zs ⊕ zn−1

Direct Sum

[n] W

z1
z2
z3

zn

z4
z5
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rate loss factor n/|W |
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Expansion and Distance Amplification

Fix a bipartite graph between [n] and W ⊆ [n]k . Let z ∈ Fn
2.

z
...

... ...
...

z2 ⊕ z4 ⊕ z5 ⊕ zn

z1 ⊕ z2 ⊕ z5 ⊕ zi

z1 ⊕ z2 ⊕ z4 ⊕ zj

z3 ⊕ zk ⊕ zn−1 ⊕ zn

z4 ⊕ z` ⊕ zs ⊕ zn−1

Direct Sum

[n] W

rate loss factor n/|W |
distance amplification needs to be worth this loss

z1
z2
z3

zn

z4
z5

Alon–Brooks–Naor–Naor–Roth & Alon–Edmonds–Luby style distance amplification
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Expansion and Distance Amplification

Direct Sum
Let z ∈ Fn

2 and W ⊆ [n]k . The direct sum of z is y ∈ FW
2 defined as

y(i1,...,ik ) = zi1 ⊕ · · · ⊕ zik ,

for every (i1, . . . , ik) ∈W . We denote y = dsumW (z).

z
...

... ...
...

z2 ⊕ z4 ⊕ z5 ⊕ zn

z1 ⊕ z2 ⊕ z5 ⊕ zi

z1 ⊕ z2 ⊕ z4 ⊕ zj

z3 ⊕ zk ⊕ zn−1 ⊕ zn

z4 ⊕ z` ⊕ zs ⊕ zn−1

[n] W

z1
z2
z3

zn

z4
z5
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Expansion and Distance Amplification

Bias
Let z ∈ Fn

2. Define bias(z) :=|IEi∈[n](−1)zi |
bias(C) = maxz∈C\0 bias(z)

If bias(C) ≤ ε, then ∆(C) ≥ 1/2− ε/2 (assuming C linear)
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Expansion and Distance Amplification

Bias
Let z ∈ Fn

2. Define bias(z) :=|IEi∈[n](−1)zi |
bias(C) = maxz∈C\0 bias(z)

If bias(C) ≤ ε, then ∆(C) ≥ 1/2− ε/2 (assuming C linear)

bias(00 . . . 0︸ ︷︷ ︸
n

) = bias(11 . . . 1︸ ︷︷ ︸
n

) = 1

bias(0 . . . 0︸ ︷︷ ︸
n/2

1 . . . 1︸ ︷︷ ︸
n/2

) = 0
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Expansion and Distance Amplification

Bias
Let z ∈ Fn

2. Define bias(z) :=|IEi∈[n](−1)zi |
bias(C) = maxz∈C\0 bias(z)

If bias(C) ≤ ε, then ∆(C) ≥ 1/2− ε/2 (assuming C linear)

Definition (Parity Sampler, c.f. Ta-Shma’17)

Let W ⊆ [n]k . We say that dsumW is (ε0, ε)-parity sampler iff

(∀z ∈ Fn
2) (bias(z) ≤ ε0 =⇒ bias(dsumW (z)) ≤ ε) .
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Expanders and Distance Amplification

Parity Samplers

Where to look for good parity samplers W ⊆ [n]k?
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Expanders and Distance Amplification

A Dream Parity Sampler

Let z ∈ Fn
2 with bias(z) = ε0. Let W = [n]k . Then

bias (dsumW (z)) ≤ |IEi∈[n](−1)zi |k ≤ εk0 ,

implying that W is a (ε0, ε
k
0)-parity sampler (for every ε0).
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Expanders and Distance Amplification

A Dream Parity Sampler

Let z ∈ Fn
2 with bias(z) = ε0. Let W = [n]k . Then

bias (dsumW (z)) ≤ |IEi∈[n](−1)zi |k ≤ εk0 ,

implying that W is a (ε0, ε
k
0)-parity sampler (for every ε0).

Issue: Vanishing Rate

W is "too dense” so distance amplified code has rate ≤ 1/nk−1
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Expanders and Distance Amplification

Another Dream Parity Sampler

Sample a uniformly random W ⊆ [n]k of size Θε0(n/ε2).
Then w.h.p. dsumW is (ε0, ε)-parity sampler.
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Expanders and Distance Amplification

Another Dream Parity Sampler

Sample a uniformly random W ⊆ [n]k of size Θε0(n/ε2).
Then w.h.p. dsumW is (ε0, ε)-parity sampler.

Issue: Non-explicit
Now W has near optimal size but it is non-explicit
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Explicit Constructions of Parity Samplers

Solution (Alon and Rozenman–Wigderson)

Take W ⊆ [n]k to be the collection of all length-(k − 1) walks on a sparse
expander graph G = (V = [n],E )
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Explicit Constructions of Parity Samplers

Solution (Alon and Rozenman–Wigderson)

Take W ⊆ [n]k to be the collection of all length-(k − 1) walks on a sparse
expander graph G = (V = [n],E )

Solution (good but not near optimal)

This yields codes of distance 1/2− ε and rate Ω(ε4+o(1))
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Explicit Constructions of Parity Samplers

Solution of Ta-Shma’17
Take W ⊆ [n]k to be a carefully chosen collection of length-(k − 1) walks
on a structured sparse expander graph G = (V = [n],E )
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Explicit Constructions of Parity Samplers

Solution of Ta-Shma’17
Take W ⊆ [n]k to be a carefully chosen collection of length-(k − 1) walks
on a structured sparse expander graph G = (V = [n],E )

Solution (near optimal)

This yields codes of distance 1/2− ε and rate Ω(ε2+o(1))
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General Techniques for Decoding

Decoding Direct Sum
What does decoding look like for direct sum?
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Decoding by Solving a k-CSP

Setup (informal)
C0 ⊆ Fn

2 is a code of small distance
W ⊆ [n]k for direct sum
C = dsumW (C0) is a code of large distance
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Decoding by Solving a k-CSP

Suppose y∗ ∈ C is corrupted into some ỹ ∈ FW
2 in the unique decoding ball

centered at y∗.

z

...
...

...
...

z2 ⊕ z4 ⊕ z5 ⊕ zn = ỹ (2,4,5,n)

z1 ⊕ z2 ⊕ z5 ⊕ zi = ỹ (1,2,5,i)

z1 ⊕ z2 ⊕ z4 ⊕ zj = ỹ (1,2,4,j)

z3 ⊕ zk ⊕ zn−1 ⊕ zn = ỹ (3,k,n−1,n)

z4 ⊕ z` ⊕ zs ⊕ zn−1 = ỹ (4,`,s,n−1)

k-XOR

[n]
ỹ

W
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Decoding by Solving a k-CSP

Unique Decoding Scenario: k-XOR like
Unique decoding ỹ amounts to solving

arg max
z∈C0

IE(i1,...,ik )∈W1[zi1 ⊕ · · · ⊕ zik = ỹ (i1,...,ik )].
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Decoding by Solving a k-CSP

Unique Decoding Scenario: k-XOR like
Unique decoding ỹ amounts to solving

arg max
z∈C0

IE(i1,...,ik )∈W1[zi1 ⊕ · · · ⊕ zik = ỹ (i1,...,ik )].

A Relaxation
Suppose that we can find z̃ ∈ Fn

2 (rather than in C0) satisfying

IE(i1,...,ik )∈W1[z̃ i1 ⊕ · · · ⊕ z̃ ik = ỹ (i1,...,ik )] ≈ OPT.
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Decoding by Solving a k-CSP

Say y∗ = dsum(z∗) for some z∗ ∈ C0

Claim (Informal)
If the parity sampler is strong enough, then z̃ lies in the unique decoding
ball centered at z∗ ∈ C0.

z∗

∆(C0)/2
z̃
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Decoding by Solving a k-CSP

z∗

∆(C0)/2
z̃

Moral
Find approx. optimal solution z̃ ∈ Fn

2 (rather than in C0) is enough
Use unique decoder of C0 to correct z̃ into z∗
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What do we have so far?

k-CSP Decoding
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What do we have so far?

Why can we efficiently approximate these k-CSPs?

k-CSP Decoding

Decoding Binary Codes 19 / 34



What do we have so far?

Why can we efficiently approximate these k-CSPs?

k-CSP Decoding

high-dimensional expansion

+
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A Notion of High-dimensional Expansion

Let W ⊆ [n]k . Define W [a, b] for 1 ≤ a ≤ b ≤ k as

W [a, b] = {(ia, . . . , ib) | (i1, . . . , ik) ∈W }.
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A Notion of High-dimensional Expansion

W [a, a′]

W [a′ + 1, b]

1(ia,...,ib)∈W [a,b](ia, . . . , ia′)

(ia′+1, . . . , ib)

Sa,a′,b

. . . . . .

ia ia′ ia′+1 ib

ia+1 ia′+2

W [a, b] = {(ia, . . . , ib) | (i1, . . . , ik) ∈W }
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A Notion of High-dimensional Expansion

Definition (Splittability (informal))

A collection W ⊆ [n]k is said to be τ -splittable, if k = 1 or for every
1 ≤ a ≤ a′ < b ≤ k :

1 The (normalized) matrix Sa,a′,b ∈ RW [a,a′]×W [a′+1,b] defined as
Sa,a′,b(w ,w ′) = 1ww ′∈W [a,b] satisfy σ2(Sa,a′,b) ≤ τ

W [a, a′]

W [a′ + 1, b]

1(ia,...,ib)∈W [a,b](ia, . . . , ia′)

(ia′+1, . . . , ib)

Sa,a′,b
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A Notion of High-dimensional Expansion

Example of τ -splittable structures

Lemma (Alev–J–Quintana–Srivastava–Tulsiani’20)

The collection W ⊆ [n]k of all walks on τ -two-sided spectral expander
graph G = (V = [n],E ) is τ -splittable
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A Notion of High-dimensional Expansion

Example of τ -splittable structures

Lemma (J–Quintana–Srivastava–Tulsiani’20)

A simple modification of Ta-Shma’s parity sampler W ⊆ [n]k is τ -splittable
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A Notion of High-dimensional Expansion

Example of τ -splittable structures

Theorem (Alev–J–Tulsiani’19 and Dikstein–Dinur’19)
The collection W of hyperedges of sufficiently expanding high-dimensional
expander (link spectral HDX [Dinur–Kaufman]) is τ -splittabe

{1} {2} {3} {4} {5} {n}

{1, 2}

X (1)

X (d)

...

X (2)

· · ·

X (k) = W

...

{2, 5} {4, n}· · ·

· · ·

· · ·

...
...

...
...

...
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Sum-of-Squares Approach

k-CSP Decoding

high-dimensional expansion

+

Sum-of-Squares
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Sum-of-Squares Approach

Using the Sum-of-Squares (SOS) semi-definite programming hierarchy:

Theorem (Alev–J–Tulsiani’19 (informal))

Instances of k-XOR supported on expanding (τ -splittable) tuples W ⊆ [n]k

can be efficiently approximated

(building on Barak–Raghavendra–Steurer’11)
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Sum-of-Squares Approach

Using the Sum-of-Squares (SOS) semi-definite programming hierarchy:

Theorem (Alev–J–Tulsiani’19)

Let W ⊆ [n]k be τ -splittable. Suppose I is a k-XOR instance on W . If
τ ≤ poly(δ/2k), then we can find a solution z ∈ Fn

2 satisfying

OPT(I)− δ,

fraction of the constraints of I in time npoly(2
k/δ).

(building on Barak–Raghavendra–Steurer’11)
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Sum-of-Squares Approach

What are the techniques?
We will just mention the techniques at a very high-level
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Sum-of-Squares Approach

k-CSP approx.
via SOSUnique Decoding

Problem
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Sum-of-Squares Approach

Well... Our parameters...
We can only decode codes C satisfying

∆(C) ≥ 1/2− ε, and
rate r(C) = 2−polylog(1/ε) � ε2+o(1) (not even polynomial rate)
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Sum-of-Squares Approach

Leveraging Unique Decoding to List Decoding AJQST’20
Maximizing an entropic function Ψ while “solving” the Sum-of-Squares
program of unique decoding yields a list decoding algorithm
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Sum-of-Squares Approach

Leveraging Unique Decoding to List Decoding AJQST’20
Maximizing an entropic function Ψ while “solving” the Sum-of-Squares
program of unique decoding yields a list decoding algorithm

Several independent applications in robust statistics:
Raghavendra–Yau & Karmalkar–Klivans–Kothari to regression
by Raghavendra–Yau & Bakshi–Kothari to subspace recovery
by Bakshi–Kothari to clustering mixtures of Gaussians
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Sum-of-Squares Approach

Unique Decoding
Problem

k-CSP approx.
via SOS

List decoding via SOS
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Sum-of-Squares Approach

Second Hammer Effect
We can only decode codes C satisfying

∆(C) ≥ 1/2− ε, and
rate r(C) = 2−polylog(1/ε) � ε2+o(1) (not even polynomial rate)
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Sum-of-Squares Approach

Code Cascading
(Recursion)
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Sum-of-Squares Approach

Ta-Shma’s walks admit a recursive structure

C0 C1 Ci−1 Ci C`· · · · · ·
dsum1 dsumi

ε0 ε1 εi−1 εi ε` = ε

Figure: Code cascading: recursive construction of codes.
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Sum-of-Squares Approach

Unique Decoding
Problem

k-CSP approx.
via SOS

List decoding via SOS

Code Cascading
(Recursion)
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Pseudorandomness Approach

k-CSP Decoding

high-dimensional expansion

+

Pseudorandomness
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Pseudorandomness Approach

Using pseudorandomness techniques (weak regularity decompositions):

Theorem (J–Srivastava–Tulsiani’20)

Let W ⊆ [n]k be τ -splittable. Suppose I is a k-XOR instance on W . If
τ ≤ poly(δ/k), then we can find a solution z ∈ Fn

2 satisfying

OPT(I)− δ,

fraction of the constraints of I in time Õδ(|W |).
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Weak Regularity Decomposition: Dense Graphs

We recall Frieze and Kannan’96 approach.
Let A be the adjacency matrix of a dense graph G = ([n],E ). Suppose we
have A ≈

∑L
`=1 ci · 1S i

1
⊗ 1S i

2
such that

max
S ,T⊆[n]

∣∣∣∣∣〈A−
L∑
`=1

ci · 1S i
1
⊗ 1S i

2
, 1S ⊗ 1T 〉

∣∣∣∣∣ ≤ δ · n2,
and L = O(1/δ2).
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Weak Regularity Decomposition: Dense Graphs

Frieze and Kannan use
∑L

`=1 ci · 1S i
1
⊗ 1S i

2
to approximate the maximum

cut value of G within additive error δ · n2

|E (S , S)| = 〈A, 1S ⊗ 1S〉 ≈ 〈
L∑
`=1

ci · 1S i
1
⊗ 1S i

2
, 1S ⊗ 1S〉,

=
L∑
`=1

ci · |S i
1 ∩ S ||S i

2 ∩ S |,
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Weak Regularity Decomposition: Dense Graphs

|E (S , S)| ≈
∑L

`=1 ci · |S i
1 ∩ S ||S i

2 ∩ S |

Venn diagram of sets S i
1,S

i
2 for i ∈ [L]

[n]
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Weak Regularity Decomposition: Dense Graphs

|E (S , S)| ≈
∑L

`=1 ci · |S i
1 ∩ S ||S i

2 ∩ S |

Venn diagram of sets S i
1,S

i
2 for i ∈ [L]

[n]

A1

A2

A3

A4

A5A6

A7

A8

A9

A10

A11

A12

exp(L) = exp(1/δ2) atoms A1,A2, . . .
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Weak Regularity Decomposition: Dense Graphs

|E (S , S)| ≈
∑L

`=1 ci · |S i
1 ∩ S ||S i

2 ∩ S |

Venn diagram of sets S i
1,S

i
2 for i ∈ [L]

[n]

exp(L) = exp(1/δ2) atoms A1,A2, . . .

η1

η2

η3
η4

η5η6

η7

η8
η9

η10

η11

η12

ηj =
|Aj∩S |
|Aj | for atom Aj
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exp(L) = exp(1/δ2) atoms A1,A2, . . .
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Weak Regularity Decomposition: Dense Graphs

|E (S , S)| ≈
∑L

`=1 ci · |S i
1 ∩ S ||S i

2 ∩ S |

Venn diagram of sets S i
1,S

i
2 for i ∈ [L]

[n]

exp(L) = exp(1/δ2) atoms A1,A2, . . .

η1

η2

η3
η4

η5η6

η7

η8
η9

η10

η11

η12

ηj =
|Aj∩S |
|Aj | for atom Aj

S

To find best S brute-force over a fine enough discretization of ηj ’s
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Weak Regularity Decomposition: Sparse Graphs

Theorem (Oveis Gharan and Trevisan’13)
Expander graphs admit efficient weak regularity decompositions, so
MaxCut can be approximated on them

(their result also holds for low threshold rank graphs)
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Weak Regularity Decomposition: Sparse Tensors

Sparse Tensors on Splittable Structures

Let W ⊆ [n]k and g : W → [−1, 1]. We want to find
g ≈

∑L
`=1 ci · 1S i

1
⊗ · · · ⊗ 1S i

k
such that

max
S1,...,Sk⊆[n]

∣∣∣∣∣〈g −
L∑
`=1

ci · 1S i
1
⊗ · · · ⊗ 1S i

k
, 1S1 ⊗ · · · ⊗ 1Sk 〉

∣∣∣∣∣ ≤ δ · |W |,
and L = O(1/δ2).
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Weak Regularity Decomposition: Sparse Tensors

Sparse Tensors on Splittable Structures

Let W ⊆ [n]k τ -splittable and g : W → [−1, 1]. If τ ≤ poly(δ/k), there
exists

∑L
`=1 ci · 1S i

1
⊗ · · · ⊗ 1S i

k
such that

max
S1,...,Sk⊆[n]

∣∣∣∣∣〈g −
L∑
`=1

ci · 1S i
1
⊗ · · · ⊗ 1S i

k
, 1S1 ⊗ · · · ⊗ 1Sk 〉

∣∣∣∣∣ ≤ δ · |W |,
and L = O(1/δ2).
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Weak Regularity Decomposition: Sparse Tensors

Similar strategy works for k-CSPs (and even to list decoding)

Venn diagram of sets S i
1, . . . ,S

i
k for i ∈ [L]

[n]

exp(kL) = exp(k/δ2) atoms A1,A2, . . .

η1

η2

η3
η4

η5η6

η7

η8
η9

η10

η11

η12

ηj =
|Aj∩S |
|Aj | for atom Aj

S
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Weak Regularity Decomposition: Sparse Tensors

Existential regularity decomposition for splittable tensors

Showing the existence of
∑L

`=1 ci · 1S i
1
⊗ · · · ⊗ 1S i

k
≈ g is not too hard
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Weak Regularity Decomposition: Sparse Tensors

CUT⊗k = {±1S1 ⊗ · · · ⊗ 1Sk | S1, . . . ,Sk ⊆ [n]}
Let µ be a probability measure on W

1: function ExistentialWeakRegularityDecomposition(g : W → [−1, 1])
2: h ← 0
3: while ∃f ∈ CUT⊗k : 〈g − h, f 〉µ ≥ δ do
4: h ← h + δ · f
5: end while
6: return h
7: end function
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Weak Regularity Decomposition: Sparse Tensors

1: function ExistentialWeakRegularityDecomposition(g : W → [−1, 1])
2: h ← 0
3: while ∃f ∈ CUT⊗k : 〈g − h, f 〉µ ≥ δ do
4: h ← h + δ · f
5: end while
6: return h
7: end function

Claim: ‖g − h‖2µ decreases by δ2 at each iteration

〈g − h − δ · f , g − h − δ · f 〉µ = 〈g − h, g − h〉µ − 2δ〈g − h, f 〉µ + δ2〈f , f 〉µ
≤ 〈g − h, g − h〉µ − δ2
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Weak Regularity Decomposition: Sparse Tensors

Near-linear time regularity decomposition for splittable tensors
The more challenging steps are related to algorithmically finding a
decomposition

∑L
`=1 ci · 1S i

1
⊗ · · · ⊗ 1S i

k
≈ g in time Õδ(|W |) (and also

proving list decoding)
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Towards List Decoding Capacity

Major Open Problem in the adversarial (Hamming) model
Find explicit efficient list decodable binary codes from radius 1/2− ε
having rate Ω(ε2)

(pointed by Guruswami and Sudan)
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Towards List Decoding Capacity

Open Problem: Near List Decoding Capacity
Find explicit efficient list decodable binary codes from radius 1/2− ε
having rate Ω(ε2+o(1))

Can any of our approaches help resolve this problem?

Decoding Binary Codes 33 / 34



Towards List Decoding Capacity

More broadly, where else can these techniques be applied?
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That’s all.

Thank you!
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Questions?
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