Decoding Ta-Shma's Binary Codes

Fernando Granha Jeronimo (UChicago)

based on joint work with

Vedat Levi Alev (UWaterloo), Dylan Quintana (UChicago), Shashank Srivastava (TTIC) and Madhur Tulsiani (TTIC)

Junior Theorists Workshop 2020 Northwestern

Goal of the Talk

Goal

Present two efficient decoding algorithms for Ta-Shma's codes

Goal of the Talk

Goal

Present two efficient decoding algorithms for Ta-Shma's codes

While highlighting connections among:

- Approximation and Optimization
- Pseudorandomness and Expansion
- Coding Theory

A binary code is a subset $\mathcal{C}\subseteq \mathbb{F}_2^n$

Two fundamental parameters

Distance

The distance $\Delta(\mathcal{C})$ of \mathcal{C} is $\Delta(\mathcal{C}) \coloneqq \min_{z,z' \in \mathcal{C}: z \neq z'} \Delta(z,z')$

Two fundamental parameters

Distance

The distance
$$\Delta(\mathcal{C})$$
 of \mathcal{C} is $\Delta(\mathcal{C}) \coloneqq \min_{z,z' \in \mathcal{C} \colon z \neq z'} \Delta(z,z')$

Rate

The rate $r(\mathcal{C})$ of \mathcal{C} is $\frac{\log_2(|\mathcal{C}|)}{n}$ (the fraction of information symbols)

Tension between Rate and Distance of a Code

Tension

- Higher rate $r(\mathcal{C})$, lower distance $\Delta(\mathcal{C})$
- Higher distance $\Delta(\mathcal{C})$, lower rate $r(\mathcal{C})$

Tension between Rate and Distance of a Code

Question

What is the best trade-off between rate $r(\mathcal{C})$ and distance $\Delta(\mathcal{C})$?

Gilbert-Varshamov existential bound (Gilbert'52, Varshamov'57)

McEliece-Rodemich-Rumsey-Welch'77 impossibility bound

Why is the Gilbert-Varshamov bound interesting?

The Gilbert-Varshamov (GV) bound is "nearly" optimal

For distance $1/2 - \epsilon$

- rate $\Omega(\epsilon^2)$ is achievable (Gilbert–Varshamov bound)
- rate better than $O(\epsilon^2 \log(1/\epsilon))$ is impossible (McEliece *et al.*)

For distance $1/2 - \epsilon$

- rate $\Omega(\epsilon^2)$ is achievable (Gilbert–Varshamov bound)
- rate better than $O(\epsilon^2 \log(1/\epsilon))$ is impossible (McEliece *et al.*)

Ta-Shma's Codes (60 years later!)

First explicit binary codes near the GV bound are due to Ta-Shma'17 with

- distance $1/2 \epsilon/2$ (actually ϵ -balanced), and
- rate $\Omega(\epsilon^{2+o(1)})$.

Ta-Shma's Codes (60 years later!)

First explicit binary codes near the GV bound are due to Ta-Shma'17 with

- distance $1/2 \epsilon/2$ (actually ϵ -balanced), and
- rate $\Omega(\epsilon^{2+o(1)})$.

Open at the time

It was an open question whether Ta-Shma's codes admit efficient decoding

Open at the time

It was an open question whether Ta-Shma's codes admit efficient decoding

Theorem (this talk)

Ta-Shma's codes are polynomial (even near-linear) time unique decodable

Our Contribution

Theorem (Near-linear Time Decoding)

For every $\epsilon > 0$, \exists explicit binary linear Ta-Shma codes $C_{N,\epsilon} \subseteq \mathbb{F}_2^N$ with

- distance at least $1/2 \epsilon/2$ (actually ϵ -balanced),
- 2 rate $\Omega(\epsilon^{2+o(1)})$, and

③ a unique decoding algorithm with running time $O_{\epsilon}(N)$.

Our Contribution

Pseudorandomness approach

Theorem (Near-linear Time Decoding)

For every $\epsilon > 0$, \exists explicit binary linear Ta-Shma codes $C_{N,\epsilon} \subseteq \mathbb{F}_2^N$ with

- distance at least $1/2 \epsilon/2$ (actually ϵ -balanced),
- 2 rate $\Omega(\epsilon^{2+o(1)})$, and
- **3** a unique decoding algorithm with running time $O_{\epsilon}(N)$.

Our Contribution

Sum-of-Squares SDP hierarchy approach (SOS approach)

Theorem (J-Quintana-Srivastava-Tulsiani'20)

Ta-Shma's codes are unique decodable in $N^{O_{\epsilon}(1)}$ time

Related Work (a Sample)

Theorem (Guruswami–Indyk'04)

Efficiently decodable non-explicit binary codes at the GV bound

Theorem (Hemenway–Ron-Zewi–Wootters'17)

Near-linear time decodable non-explicit binary codes at the GV bound

Towards Ta-Shma's Codes

Expander Graphs and Codes

Expanders can amplify the distance of a not so great base code \mathcal{C}_{0}

Fix a bipartite graph between [n] and $W \subseteq [n]^k$. Let $z \in \mathbb{F}_2^n$.

Direct Sum

[*n*]

Fix a bipartite graph between [n] and $W \subseteq [n]^k$. Let $z \in \mathbb{F}_2^n$.

Direct Sum

W

rate loss factor n/|W|

distance amplification needs to be worth this loss

Fix a bipartite graph between [n] and $W \subseteq [n]^k$. Let $z \in \mathbb{F}_2^n$.

Direct Sum

W

rate loss factor n/|W|

distance amplification needs to be worth this loss

Alon-Brooks-Naor-Naor-Roth & Alon-Edmonds-Luby style distance amplification

Direct Sum

Let $z \in \mathbb{F}_2^n$ and $W \subseteq [n]^k$. The *direct sum* of z is $y \in \mathbb{F}_2^W$ defined as

$$\mathbf{y}_{(i_1,\ldots,i_k)}=\mathbf{z}_{\mathbf{i}_1}\oplus\cdots\oplus\mathbf{z}_{\mathbf{i}_k},$$

for every $(i_1, \ldots, i_k) \in W$. We denote $y = \operatorname{dsum}_W(z)$.

Bias

- Let $z \in \mathbb{F}_2^n$. Define $bias(z) \coloneqq |\mathbf{E}_{i \in [n]}(-1)^{z_i}|$
- $bias(C) = max_{z \in C \setminus 0} bias(z)$
- If $bias(\mathcal{C}) \leq \epsilon$, then $\Delta(\mathcal{C}) \geq 1/2 \epsilon/2$

(assuming C linear)

Bias

- Let $z \in \mathbb{F}_2^n$. Define bias $(z) \coloneqq |\mathrm{E}_{i \in [n]}(-1)^{z_i}|$
- $bias(C) = max_{z \in C \setminus 0} bias(z)$
- If $\mathsf{bias}(\mathcal{C}) \leq \epsilon$, then $\Delta(\mathcal{C}) \geq 1/2 \epsilon/2$

(assuming C linear)

$$\operatorname{bias}(\underbrace{00\dots0}_{n}) = \operatorname{bias}(\underbrace{11\dots1}_{n}) = 1$$
$$\operatorname{bias}(\underbrace{0\dots0}_{n/2}\underbrace{1\dots1}_{n/2}) = 0$$

Bias

- Let $z \in \mathbb{F}_2^n$. Define $\mathsf{bias}(z) \coloneqq |\mathbf{E}_{i \in [n]}(-1)^{z_i}|$
- $bias(C) = max_{z \in C \setminus 0} bias(z)$
- If $\mathsf{bias}(\mathcal{C}) \leq \epsilon$, then $\Delta(\mathcal{C}) \geq 1/2 \epsilon/2$

(assuming C linear)

Definition (Parity Sampler, c.f. Ta-Shma'17)

Let $W \subseteq [n]^k$. We say that dsum_W is (ϵ_0, ϵ) -parity sampler iff

 $(\forall z \in \mathbb{F}_2^n) (\text{bias}(z) \leq \epsilon_0 \implies \text{bias}(\text{dsum}_W(z)) \leq \epsilon).$

Parity Samplers

Where to look for good parity samplers $W \subseteq [n]^k$?

A Dream Parity Sampler

Let
$$z \in \mathbb{F}_2^n$$
 with $bias(z) = \epsilon_0$. Let $W = [n]^k$. Then

$$\mathsf{bias}\left(\mathsf{dsum}_W(z)\right) \leq |\mathbf{E}_{i \in [n]}(-1)^{z_i}|^k \leq \epsilon_0^k,$$

implying that W is a $(\epsilon_0, \epsilon_0^k)$ -parity sampler (for every ϵ_0).

A Dream Parity Sampler

Let $z \in \mathbb{F}_2^n$ with $bias(z) = \epsilon_0$. Let $W = [n]^k$. Then

$$\mathsf{bias}\left(\mathsf{dsum}_W(z)
ight) \leq |\mathrm{E}_{i\in[n]}(-1)^{z_i}|^k \leq \epsilon_0^k,$$

implying that W is a $(\epsilon_0, \epsilon_0^k)$ -parity sampler (for every ϵ_0).

Issue: Vanishing Rate

W is **"too dense**" so distance amplified code has rate $\leq 1/n^{k-1}$

Another Dream Parity Sampler

Sample a uniformly random $W \subseteq [n]^k$ of size $\Theta_{\epsilon_0}(n/\epsilon^2)$. Then w.h.p. dsum_W is (ϵ_0, ϵ) -parity sampler.

Another Dream Parity Sampler

Sample a uniformly random $W \subseteq [n]^k$ of size $\Theta_{\epsilon_0}(n/\epsilon^2)$. Then w.h.p. dsum_W is (ϵ_0, ϵ) -parity sampler.

Issue: Non-explicit

Now W has near optimal size but it is non-explicit

Explicit Constructions of Parity Samplers

Solution (Alon and Rozenman–Wigderson)

Take $W \subseteq [n]^k$ to be the collection of all length-(k - 1) walks on a sparse expander graph G = (V = [n], E)

Explicit Constructions of Parity Samplers

Solution (Alon and Rozenman-Wigderson)

Take $W \subseteq [n]^k$ to be the collection of all length-(k - 1) walks on a sparse expander graph G = (V = [n], E)

Solution (good but not near optimal)

This yields codes of distance $1/2 - \epsilon$ and rate $\Omega(\epsilon^{4+o(1)})$

Explicit Constructions of Parity Samplers

Solution of Ta-Shma'17

Take $W \subseteq [n]^k$ to be a carefully chosen collection of length-(k-1) walks on a structured sparse expander graph G = (V = [n], E)

Explicit Constructions of Parity Samplers

Solution of Ta-Shma'17

Take $W \subseteq [n]^k$ to be a **carefully chosen** collection of length-(k-1) walks on a structured sparse expander graph G = (V = [n], E)

Solution (near optimal)

This yields codes of distance $1/2 - \epsilon$ and rate $\Omega(\epsilon^{2+o(1)})$

General Techniques for Decoding

Decoding Direct Sum

What does decoding look like for direct sum?

Setup (informal)

- $\mathcal{C}_0 \subseteq \mathbb{F}_2^n$ is a code of small distance
- $W \subseteq [n]^k$ for direct sum
- $\mathcal{C} = dsum_{W}(\mathcal{C}_{0})$ is a code of large distance

Suppose $y^* \in C$ is corrupted into some $\tilde{y} \in \mathbb{F}_2^W$ in the unique decoding ball centered at y^* .

k-XOR

Unique Decoding Scenario: k-XOR like

Unique decoding \tilde{y} amounts to solving

$$\operatorname*{arg\,max}_{z\in\mathcal{C}_0}\mathrm{E}_{(i_1,\ldots,i_k)\in W}\mathbf{1}[z_{i_1}\oplus\cdots\oplus z_{i_k}=\tilde{y}_{(i_1,\ldots,i_k)}].$$

Unique Decoding Scenario: k-XOR like

Unique decoding \tilde{y} amounts to solving

$$\arg\max_{z\in\mathcal{C}_0}\mathrm{E}_{(i_1,\ldots,i_k)\in\mathcal{W}}\mathbf{1}[z_{i_1}\oplus\cdots\oplus z_{i_k}=\tilde{y}_{(i_1,\ldots,i_k)}].$$

A Relaxation

Suppose that we can find $\tilde{z} \in \mathbb{F}_2^n$ (rather than in \mathcal{C}_0) satisfying

$$\mathrm{E}_{(i_1,\ldots,i_k)\in W}\mathbf{1}[\widetilde{z}_{i_1}\oplus\cdots\oplus\widetilde{z}_{i_k}=\widetilde{y}_{(i_1,\ldots,i_k)}]pprox\mathsf{OPT}.$$

Say $y^* = \mathsf{dsum}(z^*)$ for some $z^* \in \mathcal{C}_0$

Claim (Informal)

If the parity sampler is *strong enough*, then \tilde{z} lies in the unique decoding ball centered at $z^* \in C_0$.

Moral

- Find approx. optimal solution $\tilde{z} \in \mathbb{F}_2^n$ (rather than in \mathcal{C}_0) is enough
- Use unique decoder of \mathcal{C}_0 to correct \tilde{z} into z^*

What do we have so far?

What do we have so far?

Why can we efficiently approximate these k-CSPs?

What do we have so far?

Why can we efficiently approximate these k-CSPs?

Let
$$W \subseteq [n]^k$$
. Define $W[a, b]$ for $1 \le a \le b \le k$ as $W[a, b] = \{(i_a, \ldots, i_b) \mid (i_1, \ldots, i_k) \in W\}.$

W[a' + 1, b]

Definition (Splittability (informal))

A collection $W \subseteq [n]^k$ is said to be τ -splittable, if k = 1 or for every $1 \leq a \leq a' < b \leq k$:

• The (normalized) matrix $S_{a,a',b} \in \mathbb{R}^{W[a,a'] \times W[a'+1,b]}$ defined as $S_{a,a',b}(w,w') = 1_{ww' \in W[a,b]}$ satisfy $\sigma_2(S_{a,a',b}) \leq \tau$

W[a' + 1, b]

Example of τ -splittable structures

Lemma (Alev–J–Quintana–Srivastava–Tulsiani'20)

The collection $W \subseteq [n]^k$ of **all** walks on τ -two-sided spectral expander graph G = (V = [n], E) is τ -splittable

Example of τ -splittable structures

Lemma (J-Quintana-Srivastava-Tulsiani'20)

A simple modification of Ta-Shma's parity sampler $W \subseteq [n]^k$ is τ -splittable

Example of τ -splittable structures

Theorem (Alev-J-Tulsiani'19 and Dikstein-Dinur'19)

The collection W of hyperedges of sufficiently expanding high-dimensional expander (link spectral HDX [Dinur–Kaufman]) is τ -splittabe

Using the Sum-of-Squares (SOS) semi-definite programming hierarchy:

Theorem (Alev–J–Tulsiani'19 (informal))

Instances of k-XOR supported on expanding (τ -splittable) tuples $W \subseteq [n]^k$ can be efficiently approximated

(building on Barak-Raghavendra-Steurer'11)

Using the Sum-of-Squares (SOS) semi-definite programming hierarchy:

Theorem (Alev–J–Tulsiani'19)

Let $W \subseteq [n]^k$ be τ -splittable. Suppose \mathfrak{I} is a k-XOR instance on W. If $\tau \leq \operatorname{poly}(\delta/2^k)$, then we can find a solution $z \in \mathbb{F}_2^n$ satisfying

 $\mathsf{OPT}(\mathfrak{I}) - \delta$,

fraction of the constraints of \mathfrak{I} in time $n^{\text{poly}(2^k/\delta)}$.

(building on Barak-Raghavendra-Steurer'11)

What are the techniques?

We will just mention the techniques at a very high-level

Well... Our parameters...

We can only decode codes $\ensuremath{\mathcal{C}}$ satisfying

•
$$\Delta(\mathcal{C}) \geq 1/2 - \epsilon$$
, and

• rate
$$\mathit{r}(\mathcal{C}) = 2^{-\mathsf{polylog}(1/\epsilon)} \ll \epsilon^{2+o(1)}$$

(not even polynomial rate)

Leveraging Unique Decoding to List Decoding AJQST'20

Maximizing an entropic function Ψ while "solving" the Sum-of-Squares program of unique decoding yields a list decoding algorithm

Leveraging Unique Decoding to List Decoding AJQST'20

Maximizing an entropic function Ψ while "solving" the Sum-of-Squares program of unique decoding yields a list decoding algorithm

Several independent applications in robust statistics: Raghavendra-Yau & Karmalkar-Klivans-Kothari to regression by Raghavendra-Yau & Bakshi-Kothari to subspace recovery by Bakshi-Kothari to clustering mixtures of Gaussians

Second Hammer Effect

We can only decode codes $\ensuremath{\mathcal{C}}$ satisfying

•
$$\Delta(\mathcal{C}) \geq 1/2 - \epsilon$$
, and

• rate
$$r(\mathcal{C}) = 2^{-\operatorname{polylog}(1/\epsilon)} \ll \epsilon^{2+o(1)}$$

(not even polynomial rate)

Ta-Shma's walks admit a recursive structure

Figure: Code cascading: recursive construction of codes.

Pseudorandomness Approach

Pseudorandomness Approach

Using pseudorandomness techniques (weak regularity decompositions):

Theorem (J–Srivastava–Tulsiani'20)

Let $W \subseteq [n]^k$ be τ -splittable. Suppose \mathfrak{I} is a k-XOR instance on W. If $\tau \leq \operatorname{poly}(\delta/k)$, then we can find a solution $z \in \mathbb{F}_2^n$ satisfying

 $OPT(\mathfrak{I}) - \delta$,

fraction of the constraints of \mathfrak{I} in time $\widetilde{O}_{\delta}(|W|)$.

We recall Frieze and Kannan'96 approach.

Let A be the adjacency matrix of a **dense** graph G = ([n], E). Suppose we have $A \approx \sum_{\ell=1}^{L} c_i \cdot 1_{S_1^i} \otimes 1_{S_2^i}$ such that

$$\max_{S,T\subseteq[n]} \left| \langle A - \sum_{\ell=1}^{L} c_i \cdot \mathbf{1}_{S_1^i} \otimes \mathbf{1}_{S_2^j}, \mathbf{1}_S \otimes \mathbf{1}_T \rangle \right| \leq \delta \cdot n^2,$$

and $L = O(1/\delta^2)$.

Frieze and Kannan use $\sum_{\ell=1}^{L} c_i \cdot 1_{S_1^i} \otimes 1_{S_2^i}$ to approximate the **maximum** cut value of *G* within additive error $\delta \cdot n^2$

$$egin{aligned} |E(S,\overline{S})| &= \langle A, \mathbf{1}_S \otimes \mathbf{1}_{\overline{S}}
angle pprox \langle \sum_{\ell=1}^L c_i \cdot \mathbf{1}_{S_1^i} \otimes \mathbf{1}_{S_2^i}, \mathbf{1}_S \otimes \mathbf{1}_{\overline{S}}
angle, \ &= \sum_{\ell=1}^L c_i \cdot |S_1^i \cap S| |S_2^i \cap \overline{S}|, \end{aligned}$$

 $|E(S,\overline{S})| \approx \sum_{\ell=1}^{L} c_i \cdot |S_1^i \cap S| |S_2^i \cap \overline{S}|$

Venn diagram of sets S_1^i, S_2^i for $i \in [L]$

 $|E(S,\overline{S})| \approx \sum_{\ell=1}^{L} c_i \cdot |S_1^i \cap S| |S_2^i \cap \overline{S}|$

Venn diagram of sets S_1^i, S_2^i for $i \in [L]$

Weak Regularity Decomposition: Dense Graphs $|E(S,\overline{S})| \approx \sum_{\ell=1}^{L} c_i \cdot |S_1^i \cap S| |S_2^i \cap \overline{S}|$

Venn diagram of sets S_1^i, S_2^i for $i \in [L]$

Weak Regularity Decomposition: Dense Graphs $|E(S,\overline{S})| \approx \sum_{\ell=1}^{L} c_i \cdot |S_1^i \cap S| |S_2^i \cap \overline{S}|$

Venn diagram of sets S_1^i, S_2^i for $i \in [L]$

Weak Regularity Decomposition: Dense Graphs $|E(S,\overline{S})| \approx \sum_{\ell=1}^{L} c_i \cdot |S_1^i \cap S| |S_2^i \cap \overline{S}|$

Venn diagram of sets S_1^i, S_2^i for $i \in [L]$

To find best S brute-force over a fine enough discretization of η_i 's

Weak Regularity Decomposition: Sparse Graphs

Theorem (Oveis Gharan and Trevisan'13)

Expander graphs admit efficient weak regularity decompositions, so MaxCut can be approximated on them

(their result also holds for low threshold rank graphs)

Sparse Tensors on Splittable Structures

Let $W \subseteq [n]^k$ and $g: W \to [-1, 1]$. We want to find $g \approx \sum_{\ell=1}^L c_i \cdot 1_{S_1^i} \otimes \cdots \otimes 1_{S_k^i}$ such that

$$\max_{S_1,\ldots,S_k\subseteq [n]} \left| \langle g - \sum_{\ell=1}^L c_i \cdot 1_{S_1^i} \otimes \cdots \otimes 1_{S_k^i}, 1_{S_1} \otimes \cdots \otimes 1_{S_k} \rangle \right| \leq \delta \cdot |W|,$$

and $L = O(1/\delta^2)$.

Sparse Tensors on Splittable Structures

Let $W \subseteq [n]^k \tau$ -splittable and $g: W \to [-1, 1]$. If $\tau \leq \text{poly}(\delta/k)$, there exists $\sum_{\ell=1}^{L} c_i \cdot 1_{S_1^i} \otimes \cdots \otimes 1_{S_k^j}$ such that

$$\max_{S_1,\ldots,S_k\subseteq [n]} \left| \langle g - \sum_{\ell=1}^L c_i \cdot 1_{S_1^i} \otimes \cdots \otimes 1_{S_k^i}, 1_{S_1} \otimes \cdots \otimes 1_{S_k} \rangle \right| \leq \delta \cdot |W|,$$

and $L = O(1/\delta^2)$.

Similar strategy works for k-CSPs (and even to list decoding)

Venn diagram of sets S_1^i, \ldots, S_k^i for $i \in [L]$

Existential regularity decomposition for splittable tensors

Showing the existence of $\sum_{\ell=1}^{L} c_i \cdot 1_{S_1^i} \otimes \cdots \otimes 1_{S_k^i} \approx g$ is not too hard

 $\mathsf{CUT}^{\otimes k} = \{ \pm 1_{S_1} \otimes \cdots \otimes 1_{S_k} \mid S_1, \dots, S_k \subseteq [n] \}$ Let μ be a probability measure on W

1: function ExistentialWeakRegularityDecomposition($g: W \rightarrow [-1, 1]$)

2: $h \leftarrow 0$

3: while
$$\exists f \in CUT^{\otimes k}$$
: $\langle g - h, f \rangle_{\mu} \geq \delta$ do

4:
$$h \leftarrow h + \delta \cdot f$$

- 5: end while
- 6: return h
- 7: end function

1: function ExistentialWeakRegularityDecomposition $(g: W \rightarrow [-1, 1])$ 2: $h \leftarrow 0$ 3: while $\exists f \in CUT^{\otimes k}: \langle g - h, f \rangle_{\mu} \geq \delta$ do 4: $h \leftarrow h + \delta \cdot f$ 5: end while 6: return h 7: end function

Claim: $\|g - h\|_{\mu}^2$ decreases by δ^2 at each iteration

$$egin{aligned} &\langle m{g}-m{h}-\delta\cdotm{f},m{g}-m{h}-\delta\cdotm{f}
angle_{\mu} &= \langle m{g}-m{h},m{g}-m{h}
angle_{\mu} - 2\delta\langlem{g}-m{h},m{f}
angle_{\mu} + \delta^{2}\langlem{f},m{f}
angle_{\mu} \ &\leq \langlem{g}-m{h},m{g}-m{h}
angle_{\mu} - \delta^{2} \end{aligned}$$

Near-linear time regularity decomposition for splittable tensors

The more challenging steps are related to algorithmically finding a decomposition $\sum_{\ell=1}^{L} c_i \cdot 1_{S_1^i} \otimes \cdots \otimes 1_{S_k^i} \approx g$ in time $\widetilde{O}_{\delta}(|W|)$ (and also proving list decoding)

Towards List Decoding Capacity

Major Open Problem in the adversarial (Hamming) model

Find explicit efficient list decodable binary codes from radius $1/2-\epsilon$ having rate $\Omega(\epsilon^2)$

(pointed by Guruswami and Sudan)

Towards List Decoding Capacity

Open Problem: Near List Decoding Capacity

Find explicit efficient list decodable binary codes from radius $1/2 - \epsilon$ having rate $\Omega(\epsilon^{2+o(1)})$

Can any of our approaches help resolve this problem?

Towards List Decoding Capacity

More broadly, where else can these techniques be applied?

That's all.

Thank you!

Questions?