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Construct larger and larger expanders

starting from a constant rizeany
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Any expander can be transformed
into an almost Ramanujan one

Corollary TMRW 22

All expanding groups admit
almost optimal expanders
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Near optimal Spectral Expanders

Theorem J Mittal Ray Wigderson 22

Any expander can be transformed
into an almost Ramanujan one

keyTechnique higher order Zig Zag
for operators

building on the work of
Ben Aroya and Ta Shima
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